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Abstract
Rudolf Carnap’s principle of tolerance states that there is no need to justify the adoption of a logic by
philosophical means. Carnap uses the freedom provided by this principle in his philosophy of mathematics:
he wants to capture the idea that mathematical truth is a matter of linguistic rules by relying on a strong
metalanguage with infinitary inference rules. In this paper, I give a new interpretation of an argument by
E. W. Beth, which shows that the principle of tolerance does not suffice to remove all obstacles to the
employment of infinitary rules.
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1. Introduction
In his Logical Syntax of Language, Rudolf Carnap develops an account of the nature of logic and
mathematics that differs radically from the views of his predecessors and contemporaries (1937a).
At the heart of Logical Syntax is the principle of tolerance, according to which we can freely adopt
any system of logic we like without further philosophical justification. This principle plays a crucial
role in Carnap’s philosophy of mathematics. Since it licences the use of strong metalanguages with
infinitary inference rules, Carnap thinks that he is able to capture the idea thatmathematical truth is
determined by linguistic rules despite the limitative results of Gödel’s incompleteness theorems.We
thus end upwith a view that seems attractive all around: classical logic andmathematics can be used,
but there is no need to deal with the metaphysical questions associated with the acceptance of a
Platonist ontology (Carnap 1956a). So what’s not to like?

In this paper I argue that one of the most damaging objections to Carnap’s philosophy of
mathematics—namely E. W. Beth’s argument from nonstandard models (Beth 1963)—has not
received the attention it deserves so far. The upshot of Beth’s paper is that there is a deep tension
between two different roles Carnap has for metalanguages. On the one hand, Carnap needs a strong
metalanguage to define mathematical truth, but, on the other hand, a metalanguage is also
something that speakers use and share. The problem, so my reading of Beth, is that Carnap cannot
account for the latter feature if metalanguages are sufficiently strong for the former task.

In the next section, I will outline Carnap’s philosophy of mathematics with an emphasis on the
role of tolerance in dealing with Gödel’s incompleteness theorems. Section three contains a detailed
reconstruction of Beth’s argument from nonstandard models, including a discussion of Carnap’s
own dismissive reaction to it. In section four, I then show that the force of the argument has been
underestimated since, rightly understood, Beth has correctly diagnosed a serious problem for
Carnap’s reliance on infinitary inference rules to overcome incompleteness. Section five concludes
the paper by comparing my reading of Beth to other well-known model-theoretic arguments.
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2. Carnap’s philosophy of mathematics
2.a Tolerance, analyticity, and conventionalism

When it comes to logic and mathematics, Carnap’s main influences were Frege, Russell, and the
earlyWittgenstein. Despite their many differences, these philosophers share a monistic conception
of logic according to which there is one true system of logic. The development of intuitionist logic,
for instance, was seen as a challenge to the orthodox view that (some form of) classical logic is the
correct one, with philosophical disputes ensuing. Carnap, on the other hand, wants to dispense with
skirmishes of this kind, as he stresses in the introduction to Logical Syntax:

The fact that no attempts have been made to venture still further from the classical forms
[of logic and mathematics] is perhaps due to the widely held opinion that any such deviation
must be justified—that is, that the new language-form must be proved to be “correct” and to
constitute a faithful rendering of “the true logic.” To eliminate this standpoint, together with
the pseudo-problems and wearisome controversies which arise as a result of it, is one of the
chief tasks of this book. (1937a, xiv–xv)

Later in the book, Carnap sums up his own position in the form of a well-known set of slogans:

Principle of Tolerance: It is not our business to set up prohibitions, but to arrive at conventions.
[…] In logic there are no morals. Everyone is at liberty to build up his own logic, i.e. his own
form of language, as he wishes. All that is required of him is that, if he wishes to discuss it, he
must state his methods clearly, and give syntactical rules instead of philosophical arguments.
(1937a, 51–52)

There has been plenty of discussion of the principle of tolerance already, and friends of Carnap’s
position have fended off various objections to it, such as the charge that it presupposes an untenable
form of verificationism (Putnam 1983; Ricketts 1994; Putnam 1994). In this paper, I will focus on
one particular use of the principle of tolerance, however—namely its role in Carnap’s philosophy of
mathematics.

Let us begin by sketching Carnap’s position in Logical Syntax. In the book, he describes two
languages which contain mathematical vocabulary and come with certain rules. Carnap then calls a
sentence of such a language analytic if it follows from the rules the language, contradictory if its
negation follows, and synthetic if it is independent of the rules. Ultimately, he wants to establish that
in his preferred language for mathematics the following holds:

Every purely mathematical sentence, i.e. every sentence which only contains mathematical
vocabulary, is either analytic or contradictory. (adapted from Carnap 1937a, 116)

This is supposed to capture the classical idea that every purely mathematical sentence is either
determinately true or determinately false. Put differently, for mathematical sentences truth and
analyticity (as well as falsity and contradictoriness) coincide. For this reason, Carnap thinks that the
acceptance of classical mathematics does not commit us to anything metaphysically problematic,
such as a Platonist ontology (compare Carnap 1937a, 114).

Since mathematical truth is supposed to be a consequence of the adoption of certain rules, the
question of whether Carnap’s position is a form of linguistic conventionalism arises. In recent
years scholars such as Gary Ebbs (2011) have argued that, for instance, Quine’s well known
anticonventionalist arguments in “Truth by Convention” (1949) are not a problem for Carnap.
This is because conventionalism is usually understood as the claim that the truth of mathematical
statements can be explained in an informative and noncircular way in terms of conventions, but, as
Thomas Ricketts (2007, 211) stresses, Carnap has no place for the relevant notion of explanation
that is being invoked: “he rejects any thick notion of truth-in-virtue-of.”
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Such readings of Carnap are called deflationary, since they stress his refusal to engage with many
of the explanatory projects that were (and still are) part of the philosophical mainstream. While I
think that the deflationary interpreters are largely right, it would be an exaggeration to claim that
there is no similarity between Carnap’s position and linguistic conventionalism at all. Warren
Goldfarb and Ricketts themselves are perfectly happy to describe Carnap’s position as one accord-
ing to which “mathematical truths […] flow from the adoption of the metalanguage” (1992, 71), for
instance, and Ebbs also grants that there is an unproblematic sense in which, for Carnap, rules
determine truth (2017, 26). The distinguishing mark of Carnap’s brand of conventionalism is that
he allows the rules from which mathematical truth is supposed to follow to be formulated in a
mathematical metalanguage. Goldfarb describes the circular nature of Carnap’s approach as
follows:

Carnap’s position contains a circle, or, better, a regress: mathematics is obtained from rules of
syntax in a sense that can be made out only if mathematics is taken for granted (in the
metalanguage). Therefore, no full exhibition of the syntactical nature of mathematics is
possible. This is not lethal, however, insofar as the structure of Carnap’s views leaves no place
for the traditional foundational questions that such an answer would certainly beg. (Goldfarb
1995, 330; see also Goldfarb and Ricketts 1992, 71)

This is in line with Carnap’s acceptance of tolerance. Since there is, in general, no need to justify the
acceptance of a certain language, we do not need to justify the acceptance of a mathematical
metalanguage either. It would therefore be inappropriate to say that we can only use mathematical
languages because mathematics is conventional. Carnap’s position is thus an unusual one, but, so
far, appears stable.

2.b Gödel and incompleteness

Carnap’s tolerant attitude towards language choice also plays a crucial role in his response to what
seems to be a decisive obstacle to any version of conventionalism: Gödel’s incompleteness
theorems. In their most general form, Gödel’s theorems show that there is no theory T which
has all of the following properties:

(1) T is consistent.
(2) T is recursively formalised.1

(3) T is strong enough to do basic arithmetic.
(4) T is complete, i.e. for any T-sentence ϕ, either T proves ϕ or T proves ¬ϕ.

On the face of it, this result seems to be a problem for Carnap. After all, he wanted his definition of
analyticity for the mathematical language to be complete: for every purely mathematical sentence,
either it or its negation was supposed to follow from the rules of the language. It is thus natural to
think that Gödel’s theorems in themselves undermine Carnap’s project.

Carnap was aware of Gödel’s results, however, and thought that he had a way to overcome this
apparent problem. In effect, his strategy is to adopt a very liberal conception of what rules are
admissible, which allows the use of nonrecursive rules to specify mathematical truth. To illustrate
this, consider the well-known ω-rule:

ϕ 0ð Þ,ϕ 1ð Þ,ϕ 2ð Þ,…
∀xϕ xð Þ

1More specifically, condition (2) requires that there must be a way to enumerate the axioms of T, and tomechanically decide
whether its inference rules have been applied correctly (Raatikainen 2020, sec. 1.1).
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If we add the ω-rule to an arithmetical theory such as Peano arithmetic (PA), we get a complete
theory. This does not violate Gödel’s incompleteness theorems, because PAþω-rule is not a
recursively formalised theory. Since the ω-rule has infinitely many premises, it is impossible to
mechanically decide whether the rule has been correctly applied in a particular case.

To Gödel himself, it seemed obvious that the claim that mathematical truth is a matter of what
follows from the rules of a language only makes sense as long as the rules rely on “finitary concepts
referring to finite combinations of symbols”—this requirement, so Gödel, “should be beyond
dispute” (1995, 341).2 This was (and arguably still is) the standard view among philosophers of
mathematics, but Carnap explicitly disagreed. After outlining the ω-rule in Logical Syntax, he
addresses concerns about its infinitary nature as follows:

Tarski discusses [… the ω-rule] and rightly attributes to it an “infinitist character”. In his
opinion: “it cannot easily be harmonized with the interpretation of the deductive method that
has been accepted up to the present”; and this is so far as this rule differs fundamentally from
the [… finitary rules] which have hitherto been exclusively used. In my opinion however,
there is nothing to prevent the practical application of such a rule. (1937a, 173)

At the end of the day, I think Beth’s argument shows Carnap’s last claim to be mistaken. But for the
moment, we can note that Carnap apparently thought that the principle of tolerance allows him to use
infinitary rules in his philosophy of mathematics.3 Before he had accepted tolerance Carnap seems to
have shared the widespread skepticism towards the ω-rule, and, in 1931, described Hilbert’s
employment of this rule as “highly questionable” (Carnap, diary entry on 30.8.1931, quoted in Buldt
2004, 242). None of this caution remains in Logical Syntax, however, and it likely that Carnap
concluded that only philosophical prejudices had stopped him from using this rule so far.4

Once again, Carnap’s approach is unorthodox, but appears internally consistent given the
freedom the principle of tolerance provides. We will now move on to Beth’s argument from
nonstandardmodels, however, which challenges Carnap’s reliance on tolerance in his philosophy of
mathematics. The question of infinitary rules will then be revisited in section 4.

3. Beth’s argument from nonstandard models
3.a Beth’s objection and its reception

In his contribution to the Schilpp volume on Carnap, Beth argues that the possibility of interpreting
formal languages in a model-theoretically nonstandard way poses a problem for Carnap’s philos-
ophy. More specifically, Beth claims that the possibility of nonstandard interpretations shows the
following:

BETH’S THESIS

Carnap needs to rely on an intuitive interpretation of the metalanguage in The Logical Syntax
of Language that is not fully captured by the explicitly formulated rules. This entails that the

2These quotes are from Gödel’s unpublished paper “Is Mathematics Syntax of Language?” (1995), which aims to refute
Carnap’s position by relying on the second incompleteness theorem. There are some similarities to Beth’s argument, but overall
Gödel focusses muchmore on epistemic issues, and hence I will not go further into the details here. For discussion see Goldfarb
(1995), Potter (2000, chap. 11), Awodey and Carus (2004) and Lavers (2019).

3While Carnap was happy with infinitely many premises, he curiously objected to infinite chains of rule-application (1937a,
106).

4Carnap’s attitude towards impredicative definitions underwent a similar development. In a paper that first appeared in
1931, Carnap still thought that impredicative definitions commit one to Platonist metaphysics (1983, 50). In Logical Syntax he
came to hold that, rightly understood, impredicative definitions are perfectly acceptable and metaphysically neutral (1937a,
114). For an illuminating study of how this change in view came about see Flocke (2019).
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principle of tolerance cannot be maintained without restrictions. (adapted from Beth 1963,
479f)5

Beth introduces the following distinction to make his point:

In a treatise such as Logical Syntax, natural language can be used in two different ways, which I
should like to denote as strict usage and amplified usage, respectively. In strict usage of natural
language, we refer to a definite model of the theory to which our statements belong; it is this
model which has been called the intuitive model. In amplified usage of natural language—and
in all usage of formalised languages—on the other hand, we refer to anymodel of this theory.
(Beth 1963, 479f)

Let us illustrate this by considering a formal theory such as first-order Peano arithmetic (PA). The
intended model for the axioms of PA is one where the domain contains all and only the natural
numbers 1, 2, 3, … . This is called the standard model ℕ of arithmetic. It is a consequence of
metalogical results such as the Löwenheim-Skolem theorem and Gödel’s incompleteness theorems,
however, that the axioms of PA do not uniquely pin down the standard model, or even a class of
models isomorphic to it. While the standard model is countable, for instance, PA also has
uncountable models, which are regarded as nonstandard interpretations.

In broad strokes, Beth’s argument begins as follows:

(1) What Carnap says in Logical Syntax must be read as involving strict usage of language,
i.e., Carnap has one particular intended interpretation in mind.

(2) This intended interpretation is not pinned down by the explicit statements Carnapmakes in
Logical Syntax: someone could read the book but interpret it in an unintended way.

(3) This shows that there is a sense in which Carnap cannot replace all appeals to an intuitive
notion of interpretation by explicit rules.

This part of Beth’s paper has been discussed in the secondary literature, and commentators tend to
agree with Beth’s conclusions:

[…] since no amount of purely syntactical or inferential behavior will guarantee that [… two
investigators] share a metalanguage, they must trust their practical identifications of shared
vocabulary and inference rules. This “mystical” trust seems in tension with Carnap’s recom-
mendation that we construct language systems whose logical syntax is fixed and unambig-
uous. (Ebbs 2017, 31)

What becomes apparent in this and other representative passages (such as Goldfarb and Ricketts
1992, 72), however, is that Beth’s objection has not been regarded as a deep challenge that goes at
the heart of Carnap’s view. Rather Beth has largely been read as flagging that Carnap overstates his
case when he exclusively praises the virtues of exact rules, which is unfortunate, but more a case of
misleading advertising than a challenge to the coherence of his position.6

5Furthermore, Beth maintains that the need for an intuitive interpretation also shows that Carnap cannot treat questions
concerning ontology as a merely pragmatic matter (1963, 500f).

6One notable exception isMichael Friedman. In a paper that originally appeared in 1988, he argues against Carnap’s strategy
of overcoming incompleteness by means of nonrecursive inference rules (1999a), and explicitly draws the connection to Beth.
This criticism spawned a debate throughout the 1990s (Goldfarb and Ricketts 1992; Richardson 1994; Friedman 1999b), which
led Friedman to change his mind. In Friedman (2009, 240), he regards Carnap’s own response to Beth as adequate. I think that
the earlier Friedman was closer to the truth, but his interpretations of Beth are less effective than the one I will give.
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In the following, I will argue that the real force of Beth’s point has not been appreciated so far. For
this Beth himself is partly to blame, however, since he did not present his argument in a particularly
clear way. It will therefore be helpful to start with a detailed analysis of the text.

3.b Carnap and Carnap*

Beth’s core idea is that a logician whom he calls Carnap* might interpret the language in which
Logical Syntax is written in a nonstandard way. Our first task will be to understand what exactly
Carnap*’s nonstandard interpretation amounts to, as Beth’s own remarks on this are sometimes
confusing. The original presentation focusses on Carnap’s language II, which is a version of the
simple theory of types with higher-order quantifiers. In my reconstruction I will continue to talk
about first-order PA, however, since nowadays this is a much more familiar theory. This change
does no harm since, on my reading, the problem Beth identifies is not specific to a particular
arithmetical theory.

Beth begins by pointing out that PA has nonstandard models in which some sentences receive
different truth values from those they have in the standard model. This is illustrated by way of the
consistency sentence ConPA, which is not derivable from PA but true in the standard model of
arithmetic. Calling the standard model M, Beth generates a nonstandard model M* by adding
¬ConPA to the axioms of PA. He then describes Carnap* as a logician “whose logical and
mathematical intuitions are in accordance with model M*” (1963, 478).

At this point, it is tempting to understand the scenario as follows: Carnap and Carnap* both look
at the axioms of PA. Carnap interprets them as being about the natural numbers, while Carnap*
thinks that they should be interpreted with respect to the nonstandard modelM*. If they consider
the truth of ConPA, for instance, they will have different opinions.

As Carnap describes in his reply to Beth, however, this cannot be how the scenario is intended:

But now Beth proceeds to make a number of further statements about Carnap* which at first
glance appear as obviously false, e.g., the statement that the set of all axioms of II* is different
for Carnap* and for us, i.e. Carnap and Beth, and the statement that for Carnap* the languages
II* and II coincide. (1963, 929)

In our case, language II is PA and II* is PAþ¬ConPA. Clearly these are distinct theories since they
have different axioms, so why would Beth say that for Carnap* these languages coincide? Here is
Carnap’s take:

Beth’s statements are understandable only on the basis of an additional assumption, namely
that Carnap* interprets not only the symbolic object languages but also themetalanguageML
in a way different from Carnap. Therefore I suppose that Beth makes this additional
assumption, although he does not state it explicitly. (1963, 929)

This seems correct: for Beth’s claims to make any sense, it must be that the metalanguage Carnap*
uses is nonstandard in some way. In particular, Carnap*’s metalanguageML*must be such that, in
it, Carnap* can conclude that PA is inconsistent, for then it is clear why he cannot distinguish
between PA and PAþ¬ConPA: adding a sentence to an inconsistent theory just gives one the same
inconsistent theory once again.7

How exactly does Carnap* manage to prove the inconsistency of PA in his metalanguage
though? As Beth describes it, when Carnap and Carnap* both go through Logical Syntax, they will
agree up to the following point:

7Some of Beth’s remarks remain confusing. He, for instance, suggests that for Carnap* languages II and II* have no finite
axiomatisation (1963, 478n27), which is false if Carnap* regards these languages to be inconsistent. As I will discuss in section 5.b
this is not the only incorrect or misleading statement Beth makes in his paper.
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The first place where real trouble arises is indicated by Carnap himself on page 113. Carnap
there points out that a certain point in the given definition of “analytic in II” may appear
dubious. This definition contains certain phrases meaning “for all syntactical properties of
accented expressions …” Now the meaning of such phrases for Carnap and for Carnap* is
different, as for Carnap* the set of all accented expressions is larger than it is for Carnap. It
follows that Carnap will make (or accept) certain statements concerning the set of all
syntactical properties of accented expressions which Carnap* must reject. (1963, 480f)

Furthermore, Beth writes that this difference in how to interpret the meaning of “for all syntactical
properties of accented expressions” has the consequence that Carnap* will reject Theorem 36.6 of
Logical Syntax, which is just the statement that ConPA is true even though not derivable.

The consistency sentence ConPA is the following statement:

∀x¬PrPA x,⌜⊥⌝ð Þ
It is thus true if there is no number that encodes the proof of a contradiction from the axioms of
PA. Now although ∀x¬PrPA x,⌜⊥⌝ð Þ cannot be derived from PA, each instance of it is derivable. So
PA entails all of the following statements:

¬PrPA 0,⌜⊥⌝ð Þ

¬PrPA 00,⌜⊥⌝ð Þ

¬PrPAð000,⌜⊥⌝Þ
…

Carnap uses this fact to argue for the truth of ConPA in his metalanguage. His definition of the
analyticity of universal statements is as follows: in order to determinewhether “∀xP1 xð Þ” is analytic,
it is necessary to

refer for instance from “P1 xð Þ” to the sentences of the infinite sentential class f“P1 0ð Þ”,
“P1 00ð Þ”,“P1ð000Þ”, … . In this manner, the numerical variable is eliminated. (1937a, 106)

And since Carnap assumes that the infinite sentential class at issue here consists solely of the
standard numerals 0, 00, 000,… , this delivers the result that ∀x¬PrPA x,⌜⊥⌝ð Þ—i.e., ConPA is true.
Put differently, Carnap thinks that we can establish the truth of undecidable sentences such as
ConPA by using something like the ω-rule in the metalanguage.

It is precisely this last step that Carnap* takes issuewith. He interprets the range of the quantifiers
differently fromCarnap, and admits some numerals as substitution instances that are nonstandard,
i.e., they are not generated in a finite number of steps starting at “0.” And not only does Carnap*
believe that there are such nonstandard numerals, but he furthermore thinks that one of them
encodes the proof of a contradiction from the axioms of PA, which is why he holds ConPA to be
false. The case of Carnap* is thus similar to a scenario Jared Warren describes in a recent paper,
where some Martians use a version of Peano arithmetic that contains the following additional
inference rule (2015, 1360):

¬ConPA

Beth himself happily admits that this is a strange—even “psychopathic” (1963, 484)—conviction to
have, since Carnap* is not able to actually produce a syntactic proof of a contradiction from the
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axioms of PA (1963, 481). But what matters for now is that the case of Carnap* is coherent and
intelligible.

3.c What’s the problem?

We have now described what Carnap* is like in some detail. The crucial question then becomes: Is
the possibility of Carnap* a problem for Carnap? And if so, why? Let us begin by looking at how
Beth himself describes the connection between nonstandard interpretations and the principle of
tolerance:

It should be noted that we also meet here with a limitation regarding the Principle of
Tolerance. Indeed, Carnap could be tolerant with respect to Carnap*, for Carnap would be
able to understand why Carnap* adopting for certain personal reasons additional axioms for
Language II is compelled to accept additional theorems and to reject certain (and indeed all)
models for language II. But Carnap* would never be able to understand why Carnap, having
accepted certain axioms and certain rules of inference, as stated in Logical Syntax, stubbornly
refuses to accept non-WII as a theorem and believes Language II to have a model. (1963, 479)

We already discussed what Beth is alluding to here: namely that while from Carnap’s perspective
PA, PAþConPA, and PAþ¬ConPA are all distinct theories, Carnap* cannot draw the same
distinctions, since for him they are all inconsistent. From this observation one can draw a more
general lesson, namely that there is a sense in which the principle of tolerance itself can be
interpreted nonstandardly. After all, Carnap demands that logicians “give syntactical rules instead
of philosophical arguments,” but there is no guarantee that everyone shares our conception of
syntax, and hence there can be disagreements about what counts as a syntactical rule.

Some commentators, such as Friedman, think that this is the crucial upshot of Beth’s argument:

The crux of Beth’s argument is that syntax is itself a kind of arithmetic […]. And, viewed as an
arithmetic, a Carnapian syntax language or metalanguage may then have non-standard
models—containing non-finite numbers (non-finite sequences of expressions) beyond the
standard numbers 0, 1, 2, … (so that, in the case of syntax, there may be more than a finite
number of numerals 0, 00, 000, … , for example, or derivations may have more than a finite
number of steps). (2009, 238)

One might wonder whether the fact that it is possible to interpret the principle of tolerance in an
unintended way is really an objection to it though. Carnap himself did not think so, and he sounds
noticeably unmoved by Beth’s argument in his reply from the Schilpp volume:

Since the metalanguage ML serves as a means of communication […] I always presupposed
both in syntax and in semantics that a fixed interpretation of ML, which is shared by all
participants, is given. This interpretation is usually not formulated explicitly; but since ML
uses English words, it is assumed that these words are understood in their ordinary senses.
The necessity of this presupposition of a common interpreted metalanguage seems to me
obvious. (1963, 929)

Carnap’s view on the matter seems to be that while someone who interprets syntax nonstandardly
like Carnap* is possible, this is no reason to worry, since it is entirely reasonable to assume that the
readers of Logical Syntax use a metalanguage with a standard interpretation of syntax,
i.e., something like ML.

This relaxed reply is not without appeal. For as Carnap points out, it is also very important that
readers of Logical Syntax do not interpret the expression “no occurrence” as meaning “at least one
occurrence” (1963, 929), but surely the possibility that someone couldmisinterpret the book in this
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way does not amount to an objection. What matters is that we do not actually misinterpret each
other in the way Beth envisages, but demanding that misinterpretation is impossible is asking for
too much.

I think that this would be an effective reply, provided that Carnap is entitled to say that we de
facto use ML rather than ML* as our metalanguage. As I will argue now, however, this presuppo-
sition is less innocent than Carnap suggests. Exegetical issues will be set aside for a while, but in
section 5 I will address the question of whether the argument I am about to present can plausibly be
ascribed to Beth.

4. Tolerance and mathematics
4.a Metalanguages and how to use them

In his reply to Beth, Carnap regards it as obvious that we use metalanguageML. But without closer
inspection, it is not so clear what to make of this claim, since what we speak in the first instance is a
natural language such as English or German and not a formal language with explicit rules such as
ML. In order to assess Carnap’s response, we thus need to understand what it means to use a formal
system as the metalanguage.

One of the few passages in which Carnap discusses natural language is the following:

A language, as, e.g., English, is a system of activities or, rather, of habits, i.e., dispositions to
certain activities, serving mainly for the purposes of communication and of co-ordination of
activities among the members of a group. (1939, 3)

Languages understood in this broadly behaviouristic sense are obviously not the same thing as
languages conceived of as systems of explicit rules. But these two notions of language are not
completely unrelated either. Carnap thinks that we can coordinate languages understood as formal
calculi with languages understood as systems of dispositions in the following way: a population of
speakers can be said to use a calculus if the explicit rules of this calculus correspond to linguistic
dispositions the speakers actually have (1939, 5f). If, to take a simple example, speakers are disposed
to reason in accord with modus ponens, then it is appropriate to capture this fact using a calculus
that contains modus ponens as an inference rule.8

The situation is complicated by the fact that our linguistic behaviour does not unambiguously
determine one unique set of rules, as Carnap points out himself:

Suppose we have found that the word “mond” of B was used in 98 per cent of the cases for the
moon and in 2 per cent for a certain lantern. Now it is a matter of our decision whether we
construct the rules in such a way that both the moon and the lantern are designata of “mond”
or only themoon. If we choose the first, the use of “mond” in those 2 per cent of cases was right
—with respect to our rules; if we choose the second, it was wrong. (1939, 6)

What should we conclude from this underdetermination? At times, Carnap sounds like he is
endorsing the radical thesis that there are no objective standards of correctness at all when it comes
to coordinating formal calculi with speech behaviour (1939, 6f). But this attitude would be hard to
square with the reply to Beth we saw in the previous section, since there Carnap does rely on the fact
that our ways of speaking correspond to metalanguage ML. And Carnap’s later writings indeed
corroborate a reading on which he believes in facts about which rules correspond to the way natural

8I rely on Ricketts’s view that, for Carnap, logical calculi need to be coordinated with the “logically amorphous” natural
language (2003). This interpretation has been challenged by André Carus, who holds that instead of a sharp divide between
natural and formal languages Carnap sees their relationship as continuous (Carus 2004; Carus 2007; for discussion, see
Richardson 2012 and Wagner 2012). I will discuss how Beth’s argument fares on Carus’s reading of Carnap in future work.
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language is used. In a response to Quine that can also be found in the Schilpp volume, Carnap for
instance writes the following:

It seemed rather plausible to me from the beginning that there should be an empirical
criterion for the concept of themeaning of a word or a phrase, in view of the fact that linguists
traditionally determine empirically the meanings, meaning differences, and shifts of mean-
ings of words, and that with respect to these determinations they reach a measure of
agreement among themselves which is often considerably higher than that reached for results
in most of the other fields of the social sciences. Quine’s arguments to the effect that the
lexicographers actually have no criterion for their determinations did not seem at all
convincing to me. (1963, 920)

This is quite a strong claim: contra Quine, Carnap thinks that empirical investigations can tell us
what the meanings of words and sentences of natural languages are, where this is taken to include
both their extension and their intension. In light of this, the assumption that there are facts about
which inference rules we follow is a relatively innocent one.

What Carnap thought is one thing, but whether his assumptions are justified is, of course,
another matter. In light of Quine’s later thesis of the indeterminacy of translation (1960), as well as
Kripke’s interpretation of Wittgenstein’s remarks on rule-following (1982), it is natural to suspect
that Carnap was overly optimistic here. The reply to Quine as well as the paper “Meaning and
Synonymy in Natural Languages” (Carnap 1955) both suggest that Carnap took his claims about
empirical criteria of meaning to be supported by his account of linguistic dispositions, but the
explicit discussion is quite brief.

A full investigation of Carnap’s treatment of dispositions will not be possible here, as it would
require amore extensive survey of his views on scientific theories, laws of nature, andmodality.9 For
the purposes of this paper, I will therefore make the dialectically generous assumption that Carnap
is in fact justified to maintain that we have dispositions corresponding to ordinary inference rules
such asmodus ponens. Skeptical worries about rule-following in general will therefore be set aside,
in order to focus on what is crucial about the metalanguageML: namely that it includes infinitary
inference rules. In the following sections, I will argue that it is not plausible to suppose that we have
dispositions corresponding to such nonrecursive rules, and show that this turns Beth’s Carnap* into
a real challenge.

4.b Against infinitary rules

The argument to come can be summed up as follows: even if we grant that linguistic dispositions can
be coordinated with inference rules likemodus ponens, this strategy does not suffice to substantiate
the claim that we speak ML rather than ML*. This is because these metalanguages involve
nonrecursive inference rules, and, given plausible and widely shared assumptions, there are no
linguistic dispositions that such rules could correspond to. Consequently only languages with
recursive rules can be used as metalanguages—a restriction which undermines Carnap’s approach
to the philosophy of mathematics.

Let us revisit Carnap’s claim that “there is nothing to prevent the practical application of”
infinitary rules such as theω-rule, whichwe encountered in section 2.b. Unfortunately, Carnap does
not elaborate on what exactly he means by practical application in this context, but if we take it to
mean that we can use a metalanguage with infinitary rules just as easily as one with recursive rules,
then his claim seems false. Practical application requires that we are, or at least could be, disposed to

9Carnap’s most important papers on disposition are those from 1936, 1937b, and 1956b; for a survey of his position see
Schmitz (2007). Williamson (2013, sec. 2.4) is a helpful introduction to Carnap on modality.

Canadian Journal of Philosophy 291

https://doi.org/10.1017/can.2021.16 Published online by Cambridge University Press

https://doi.org/10.1017/can.2021.16


infer in accordance with something like the ω-rule, and, for finite creatures such as ourselves, this
appears to be impossible.

For one thing, since we will never be in a position to encounter infinitely many premises, there
can be no cases inwhichwe actually follow the rule. This in itself casts severe doubt on the claim that
we may be disposed to do so, since other inference rules such as modus ponens are actually used in
practice. Furthermore, consider what has been called the Cognitive Constraint: “humans cannot be
attributed noncomputational causal powers” (Warren and Waxman forthcoming, 485). It is
motivated by Van McGee in the following way:

Human beings are products of nature. They are finite systems whose behavioral responses to
environmental stimuli are produced by the mechanical operation of natural forces. Thus,
according to Church’s Thesis, human behavior ought to be simulable by a Turing machine.
This will hold even for idealized humans who never make mistakes and who are allowed
unlimited time, patience, and memory. (1991, 117)

Given Carnap’s sympathies with behaviourism, it is very likely that he would have endorsed the
Cognitive Constraint. But there is wide agreement in the literature that this constraint prevents
human beings from using nonrecursive inference rules since no Turing machine can decide
whether they have been correctly applied or not (Field 1994; Raatikainen 2005; Button and Walsh
2018, chap. 7). This consensus has only very recently been challenged by Warren, who argues that
following the ω-rule does not require nonrecursive abilities after all (2020a; 2020b). A full
assessment of his account of infinite reasoning, including a study of whether it is compatible with
Carnap’s own philosophical commitments, goes beyond the scope of this paper. I will argue below,
however, that even ifWarren’s defence of theω-rule succeeds, it would not suffice to defend Carnap
against a generalised version of Beth’s objection.

Scholars of Carnap usually accept that there are no infinitary dispositions straightforwardly
corresponding to infinitary rules (Lavers 2004, 313; Ebbs 2017, 31). Ricketts therefore draws the
conclusion that the connection between linguistic dispositions and a language with infinitary rules
is a loose one:

We see, then, that as regards transformation rules, the agreement between a calculus and
speech habits in virtue of which a language can be taken to instantiate a calculus is rather
loose. For a speaker’s habits to agree with a calculus, Carnap appears to require little more
than that the speaker not be disposed to affirm any contravalid [= false] sentence nor to deny
any valid [= true] sentence. (2003, 262)

In light of these considerations, we can now revisit Carnap’s earlier response to Beth. Carnap
maintained that we don’t have toworry about Carnap* since we actually speakML rather thanML*.
But only now can we really appreciate what the claim that we speakML amounts to: Carnap must
hold that our speech dispositions correspond toML rather thanML*. Is this the case? At first sight,
one might think that the answer is yes. For ConPA is true in ML and false in ML*. With few
exceptions, everyone who understands what it means either accepts ConPA or is neutral about its
truth value. So by Ricketts’s criterion, ML* is not compatible with our dispositions.

This argument does not go far enough to help Carnap, however, for a number of reasons. First,
one might think that the mere fact that ConPA is widely accepted is not enough since it should also
be accepted for the right reasons. To see what this means, remember that Beth described Carnap*’s
acceptance of ¬ConPA as “psychopathic,” because it appears to be a brute conviction not supported
by anything else. Presumably we want to say that the acceptance of ConPA is different in character:
not just a competing brute conviction that is more popular, but also one that is better justified. But it
is not clear whether Carnap can say this. Arguably the disposition to accept ConPAwould somehow
have to flow from the dispositions that constitute the acceptance of PA itself, but it is hard to see how
this could be the case given the independence of ConPA from the axioms of PA.
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I think this is an uncomfortable conclusion, since if the acceptance of ConPA is just as much a
brute fact as the acceptance of ¬ConPA, we come dangerously close to a view according to which the
consistency of PA is amatter of choice, akin to the radical conventionalism that has been ascribed to
Wittgenstein (Dummett 1959). I am happy to admit that this worry is not a knock-down argument,
however, and that the response considered seems coherent in itself. But it is important to stress that
Ricketts’s proposal only provides a defence of Carnap if we construe Beth’s objection in a narrow
way, namely as concerning the truth value of ConPA specifically. It is plausible to interpret Carnap’s
claim that mathematics is analytic in a broader sense, however, which is why we will turn to two
kinds of generalisations next.

4.c Beth’s argument generalised

The sentence ConPAwe have been focussing on is just one example of an undecidable sentence, even
though an especially interesting one. In addition, there are infinitely many other purely mathe-
matical sentences which are independent of the axioms of PA, and for most of themwe will have no
inclination to either assert or deny them. So even if our speech behaviour does exclude the specific
metalanguage ML* Beth describes, there will still be infinitely many alternative metalanguages
ML**,ML***, etc., that are compatible with it, and which differ concerning the truth value of some
undecidable sentence when compared to the standard model. Using Ricketts’s criterion, one can
thus at most argue that we do not speakML*, but we cannot draw the further conclusion that we do
speak ML rather than one of the infinitely many other nonstandard metalanguages.

Against this, one might object that there is no need to exclude all of the deviant metalanguages
since, while we care about the truth value of ConPA, the vastmajority of undecidable sentences are of
no particular interest and so one could live with indeterminate truth values in such cases. But I do
not think this is a satisfactory reply for both exegetical and systematic reasons. On the exegetical
side, Carnap nowhere suggests that he only considers some undecidable sentences to be analytic
(or contradictory). He usually describes mathematics as consisting of analytic and contradictory
sentences exclusively, without a third category of sentences that are indeterminate or true without
being analytic (1937a, 116). And this does not seem to be an incidental component of Carnap’s
position either because a mathematical sentence that is neither analytic nor contradictory would
have to be classified as synthetic, a category that Carnap reserves for claims about the empirical
world (1937a, 41). If he wants to retain these commitments, then the rules of themetalanguage need
not only settle the truth value of one but of all undecidable sentences, and so all of the infinitely
many deviant metalanguages ML**, ML***, etc., need to be excluded.

On the systematic side, consider why we think that the truth value of ConPA is important.
Presumably the reason is that it expresses a claim about syntax, and there is a strong presumption to
think that it must be determinate whether a contradiction is derivable from some axioms given
some rules or not. But this seems to hold not just for the special case of PA but for formal theories in
general, which makes the task at hand much harder. For the set of true consistency sentences,
despite being a proper subset of all true mathematical claims, is itself nonrecursive (Clarke-Doane
2020, 161). The need for nonrecursive dispositions thus reappears even if all we require of Carnap is
to explain the determinacy of claims about syntactic consistency, which seems a moderate and
reasonable demand.

Another kind of generality problem emerges once we look beyond the case of Peano arithmetic.
It is plausible enough that we accept ConPA since the consistency of PA is regarded as well-
established. But PAwas just a convenient example, and it is clear that Carnap also wants to apply his
approach to other mathematical theories, including set theory, and also theories concerning other
abstract objects such as propositions (1956a, 205). In order to treat Zermelo-Fraenkel set theory
(ZFC) in analogy to the case of PA, for instance, he needs to claim that we use ametalanguage which
settles the consistency sentence ConZFC, and in general for any theory T we want to use, we would
need to speak ametalanguage in which ConT is true. But for many logical systems, such as ZFC plus
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some large cardinal axiom, it will be an open questionwhether the system is consistent or not. Those
who are well-informed and epistemically responsible about such matters will presumably have no
disposition to either assert or deny the relevant consistency sentence.

This observation also demonstrates the limits of Warren’s defence of the ω-rule which I
mentioned above. Adding the ω-rule to PA does result in a complete theory, and hence there is
at least some hope to save the analyticity of arithmetic from Beth’s objection. But there is no
analogous rule to theω-rule for ZFC, or most other formal theories, and so even in the best case the
unified treatment of mathematical discourse Carnap aimed for is untenable. We can thus conclude
that Carnap’s position faces serious obstacles even if we make very generous assumptions about
what our linguistic dispositions can commit us to, many of which may themselves be questioned.
This shows that Beth’s argument is much more forceful than has been recognised so far.

4.d Incompleteness revisited

The dispute between Carnap and Beth revolves around the use of metalanguages, and it is useful to
distinguish two distinct roles Carnap has for them. In the first instance, they are needed to make
communication possible:

MEANS OF COMMUNICATION

Unless participants in a discussion use the same metalanguage, there is no genuine commu-
nication between them.

It is hard to deny that there must be some language which plays this role. What is distinctive of
Carnap’s philosophy of mathematics, however, is that he thinks that metalanguages also have a
second function:

RESOLVES INCOMPLETENESS

Since by Gödel’s incompleteness theorems no recursive mathematical theory is complete, a
strong metalanguage with infinitary rules needs to settle the truth and falsity of undecidable
sentences.

This move was supposed to capture the idea that mathematical truth is a matter of linguistic rules.
Carnap seems to have thought that using strongmetalanguages for this task is unproblematic, since
the only objections that could arise are of a metaphysical kind, and hence in tension with the
principle of tolerance. But Beth’s argument shows that this is too quick, for when a formal language
is actually to be used as ametalanguage, there needs to be a sense in which our linguistic dispositions
can correspond to the rules of this language. And this requirement severely limits what languages
can be employed in this role.

It seems that Carnap faces a dilemma: resolving incompleteness requires strong metalanguages,
but communication requires weak metalanguages. Is there a way out? One idea would be to have
distinct metalanguages play the different roles. Maybe what we actually speak is a weak metalan-
guage, but a strong metalanguage such as ML can still resolve incompleteness. But this raises the
question of what privileges ML over deviant metalanguages if not the fact thatML is the one we use.
For consider the lesson Beth himself, but also Stephen Kleene, drew from the case of undecidable
sentences: namely that since some metalanguages make them true and others make them false,
linguistic rules do not determine their truth values in the sense of, say, “2þ 2= 4” (Kleene 1939, 84f;
Beth 1963, 478). This conclusion seems unavoidable unless one can argue that ML, and not some
alternativemetalanguage, encodes the correct rules when it comes tomathematics. But Carnap does
not seem to have any resources left to do so: by the principle of tolerance he cannot appeal to
metaphysical considerations to establish the superiority ofML, and by Beth’s argument he cannot
appeal to the fact that we actually speak ML either. It is hard to see what other option there is.
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Alternatively, Carnap could try to challenge the inference from “our dispositions don’t pin down
ML as our metalanguage” to “we do not speak ML”. Maybe the way I presented the coordination
between natural and formal languages was too simple, or the assumption that dispositions can only
correspond to recursive inference rules is incorrect. I am happy to admit that theremay be room to
manoeuvre here, but remain skeptical until a concrete proposal is on the table. What I take to be
clear, however, is that Carnap’s actual response—namely to insist that we speakML as if this were
completely unproblematic—is not adequate, despite being frequently endorsed. Defenders of
Carnap need to say more.

5. Beth and model-theoretic arguments
5.a Varieties of nonstandard models

This last section will wrap up the paper by coming back to an exegetical question I set aside earlier:
namely whether the argument I presented is really Beth’s argument from nonstandard models
rather than my own. This is especially salient since Beth never explicitly mentions dispositions,
which played such a crucial role inmy reconstruction. I will give some reasons for thinking that Beth
must nevertheless have had a version of the argument against nonrecursive inference rules in mind.

It will be illuminating to approach this issue by comparing Beth’s objection to some othermodel-
theoretic arguments that are well-known. Let us first draw some explicit distinctions between
different kinds of nonstandard models. Taking ℕ to be the standard model of PA, there are
nonstandard models whose domain is isomorphic to ℕ but contains different objects:

ISOMORPHIC

A model which is isomorphic but not identical to the standard model.
Example: Interpreting PA in the sets of even numbers by mapping each number n to 2n.

If we just care about the truth and falsity of the sentences in the language of PA, it does not matter
whether we interpret the theory in ℕ or an isomorphic nonstandard model: the various models will
make the very same sentences true and false, a property which is called elementary equivalence. It is a
consequence of the Löwenheim-Skolem theorem that there are also models which are elementarily
equivalent to ℕ but not isomorphic to it. This brings us to the second kind of nonstandard model:

NONISOMORPHIC BUT ELEMENTARILY EQUIVALENT
Amodel which is not isomorphic to the standardmodel but nevertheless makes the very same
sentences true and false.
Example: Interpreting PA in an uncountable model via the upward Löwenheim-Skolem
theorem.

The third kind of nonstandard model is what Beth’s argument crucially relies on, namely one in
which a sentence of PA has a different truth value compared to the standard model:

TRUTH-SWITCHING

Amodel which is not isomorphic to the standard model and changes the truth value of some
sentence from those of the standard model.
Example: Interpreting PA in a model where ¬ConPA holds.

Not all philosophical uses of model-theoretic considerations rely on truth-switching nonstandard
models. At least one version of Hilary Putnam’s famous model-theoretic argument against
metaphysical realism, for instance, only requires the existence of isomorphic nonstandard models.
Putnam attacks a certain view about the relationship between language and the world, according to
which “THEWORLD” is in itself divided into discrete objects, which are in turn linked to the words
of our language by a reference relation (1977, 483f).
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The underlying picture, according to which there is some kind of one-to-one correspondence
between words and entities, is a natural one, but Putnam argues that it faces a serious problem.
Thinking about the situation model-theoretically, the metaphysical realist wants to say that THE
WORLD is in effect the intended interpretation of our best theory of the world. But as Putnam
points out, any theory which has a model at all has many:

Since the ideal theory T1 must, whatever other properties it may or may not have, have the
property of being consistent, it follows from the Gödel Completeness Theorem […] that T1

has models. (1980, 473)

More specifically, one can show that every consistent first-order theory has a model in the natural
numbers. And this seems to be an uncomfortable result for the metaphysical realist. For whatever
they may think about the structure of reality, it seems unlikely that it is purely mathematical. If this
is so, however, the metaphysical realist needs to answer the following question:Why exactly should
we think that the model of our best theory is THEWORLD rather than some purely mathematical
model, given that both make the very same sentences of the theory itself true?

I will not pursue this issue further here, as there is little temptation to interpret Carnap as a
metaphysical realist.10 But there is another kind of model-theoretic argument which also does not
require truth-switching nonstandard models but has in fact been ascribed to Beth, and we will turn
to it next.

5.b Skolem’s paradox

Right after describing Carnap*, Beth writes that “the above considerations […] are only variants of the
Löwenheim-Skolem paradox” (1963, 478). Ricketts has taken this reference very seriously, and
interprets Beth’s argument as being a version of what is usually called Skolem’s paradox (2004). In a
nutshell, the (alleged) paradox goes as follows: in ZFC, it is possible to prove that there are uncountable
sets. But, by the downward Löwenheim-Skolem theorem, we know that ZFC has countable models.
And one might worry that this result somehow undermines the claim that the sentence “there are
uncountable sets” expressed within ZFC actually means that there are uncountable sets (Tymoczko
1989). Analogously, so the suggestion, one could read Beth as worrying that the possibility of
nonstandard models somehow shows that we can’t really talk about the natural numbers using PA.

Since, despite its name, Skolem’s paradox is not usually regarded as a genuine paradox, this
analogy would make Beth’s argument easy to defuse.11 The correct response to this, however, is not
to dismiss Beth’s argument as ineffective, but rather to set aside his comparison to Skolem’s paradox
as misleading. For consider how, in his reconstruction, Ricketts describes the case of Carnap and
Carnap*:

One logicianmight understand the arithmetic in the informal syntax language standardly; the
other might understand it non-standardly. This divergence need not be manifest in their use of
the sentences of the informal syntax language. […] Having read our Skolem, we observe that
we can state transformation rules in two different ways, one corresponding to the standard
model of arithmetic, another corresponding to a non-standard model.We may suppose that
each group of transformation rules demarcates the same formulas of the object calculus as true.
(2004, 194; my emphasis)

This scenario is certainly in keeping with the Löwenheim-Skolem theorem, for it only proves the
possibility of what I called nonisomorphic but elementarily equivalent nonstandard models. But,

10See Button (2013) for a comprehensive discussion of Putnam’s model-theoretic argument.
11See Bays (2014) for an overview of the most common philosophical responses.
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much more importantly, it does not match Beth’s own description of the case, in which the
difference between Carnap and Carnap* ismanifested in their attitudes towards certain sentences,
such as ConPA. My interpretation, which relies on the possibility of truth-switching nonstandard
models, thus makes better sense of the crucial part of Beth’s paper than that of Ricketts.

While these considerations support the exegetical accuracy of my reading, they do not suffice to
fully dispel the worry I raised earlier on: namely that, unlike me, Beth nowhere explicitly talks about
dispositions and their correspondence to nonrecursive rules. It is possible to alleviate this concern in
an indirect way, however, since an otherwise very puzzling passage makes sense once it is read in
light of my interpretation. After discussing other aspects of Carnap’s philosophy, Beth comes back
to the topic of strong metalanguages toward the end of his paper:

In the first place, such a language, which may be calledM, should enable us, as pointed out by
Church, to state the necessary directives for the concrete manipulation of certain physical
objects, namely, the signs of the object language. This implies that Mmust contain the means
of expression for a certain version of elementary arithmetic or of a suitable general arithmetic.
Moreover, this part ofM,whichwill be calledM1,must be understood in accordance with strict
usage. This demand, however, strongly restricts the development of M1, the language of
elementary syntax, into a means of expression, called M2, for theoretical syntax; this follows
from our discussion [of Carnap and Carnap*]. (1963, 499f)

HereM1must be some version of arithmetic in order to encode claims about syntax, and Beth seems
to say that there is no problem with understanding M1 in accordance with strict usage. But prima
facie this is quite mysterious, for the incompleteness theorems also apply to very weak theories of
arithmetic such as Robinson arithmetic, and so they too will have truth-switching nonstandard
models.12 And Beth’s definition I cited in section 3.a suggested that strict usage requires pinning
down one particular model, which still seems to be a problem even for M1.

On my own interpretation of Beth’s argument, however, this passage is not that surprising. For
there is a clear sense in which Robinson arithmetic is less problematic than Carnap’s ML. Since
Robinson arithmetic has finitely many axioms and recursive inference rules, there is no deep puzzle
about how we could have dispositions corresponding to this theory and thus use it as a metalan-
guage. As I have argued at length already, this is not so forML. This fact provides some evidence for
my hypothesis that considerations about linguistic dispositions are relevant to Beth’s notion of
“strict usage” after all, even though some creative exegesis was required to tease this out.

The upshot of this section can be described as follows: Despite being called the argument from
nonstandard models, there are both systematic and exegetical reasons to interpret Beth’s objection
in a way that makes it more similar to the underdetermination arguments of Quine and Kripke
rather than the model-theoretic arguments of Putnam and Skolem. One further advantage of this
reading is that worries about anachronism can be set aside. After all, in Logical Syntax, Carnap still
rejected semantic notions such as truth and reference, and hence a model-theoretic conception of
logic seems quite alien to this syntactic outlook.13 This would be an additional challenge for
interpretations of Beth along Ricketts’s lines, but does not affect the problem of dispositions
corresponding to nonrecursive rules that I stress.

12Beth will have known about this since he was one of the proofreaders of the influential Undecidable Theories by Tarski,
Mostowski, and Robinson (1953, ix), in which this result is proofed.

13It has been convincingly argued, however, that what Carnap describes as syntax is effectively semantics in disguise, since his
definition of analyticity for language II is a variant of a semantic truth-definition à la Tarski (Coffa 1987; Koellner 2009). Soon
after Logical Syntax, Carnap openly embraced semantic notions, and later presentations of his view include model-theoretic
ideas, such as the specification of an intended interpretation for an object language (1963, 900f). For a discussion of the
continuities and differences between Carnap’s syntactic and semantic period see Ricketts (1996) and Goldfarb (1997).
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Presumably this will not convince everyone, and some might object that there is now too little
model-theory in my reconstruction. But as it stands, I regard my reading of Beth as being in good
shape because it is coherent, effective, and fits most of the original text.

6. Conclusion
I think that my investigation of Beth’s argument illustrates a more general point about Carnap’s
philosophy. The description and development of formal languages, with a focus on their rules, takes
up a lot of space in Carnap’s books and papers. Remarks on what it means to adopt and use such
languages and how they relate to natural language more generally, however, are very rare. This lack
of interest may partly explain why Carnap did not engage more fully with Beth’s argument, for if we
restrict our attention to the formal systems as such, everything seems fine. It is then also no surprise
that those of Carnap’s contemporaries who rejected the sharp distinction between formal systems
and natural language—namely Neurath14 and Quine15—found themselves at odds with Carnap,
but struggled to get their objections across. I hope that my discussion has shown how valuable it can
be to ask the questions that Carnap himself preferred to set aside. While it would be nice if the
principle of tolerance on its own could dissolve all the challenges Carnap’s philosophy of math-
ematics faces, thanks to Beth we now know that the situation is not that simple.
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