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Abstract

We give a simplified version of the proofs that, outside of their isolated vertices, the complement of the
enhanced power graph and of the power graph are connected and have diameter at most 3.
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1. Introduction

Graphs arising from groups have become an important topic in the last fifteen years
(see for example [4–6, 8]). In this note, we give a simplified proof of the following
results.

THEOREM 1.1. Let G be a finite group. Then, outside of its isolated vertices, the
complement of the enhanced power graph of G is connected and its diameter is at
most 3.

COROLLARY 1.2. Let G be a finite group. Then, outside of its isolated vertices, the
complement of the power graph of G is connected and its diameter is at most 3.

The problem of the connectedness of the complement of the enhanced power graph
was posed in [2, Question 20]. We are aware of two distinct solutions of this problem:
[1, Proposition 3.2] and [7, Theorem 1.6], both also showing that the unique connected
component of such a graph has diameter at most 3. Our proof identifies the largest
independent set of the complement of an enhanced power graph, and exploits its
properties to show connectedness and bounded diameter. We would also like to point
out that [1] predates [2], but their contribution has remained unnoticed because their
name for the complement of the enhanced power graph is different.

The connectedness of the complement of the power graph is proved in [2, Theorem
9.9], while [2, Question 19] asks whether or not its diameter is bounded, and an answer

© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical
Publishing Association Inc. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

1

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972724001382
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 31 Jul 2025 at 20:33:24, subject to the Cambridge Core terms of use,

http://dx.doi.org/10.1017/S0004972724001382
https://orcid.org/0000-0002-1638-5254
https://orcid.org/0009-0000-9169-0024
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog?doi=10.1017/S0004972724001382&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0004972724001382
https://www.cambridge.org/core


2 M. Barbieri and K. Rekvényi [2]

in the affirmative has been given in [7, Theorem 1.5]. The novelty of our proof of
Corollary 1.2 is that it is an easy consequence of Theorem 1.1.

We conclude this introduction by pointing out that both bounds in Theorem 1.1 and
Corollary 1.2 are sharp. Indeed, for two distinct primes p and r, the complements of
the power graph and of the enhanced power graph of Cpr × Cp2 have diameter 3 (see
[7, Lemmas 2.6 and 3.3]).

2. Proof of Theorem 1.1

Let G be a finite group. The enhanced power graph of G is defined as the
(undirected) graph ΓEP(G) of vertex set G, where two vertices are declared adjacent
if they are contained in a common cyclic subgroup of G. We are interested in its
complement, which we denote by CΓEP(G).

PROOF OF THEOREM 1.1. Let G be a finite group and let g ∈ G be an element of
maximal order. (In choosing g, we have already used the finiteness of G.) Observe that
cliques in ΓEP(G) are in one-to-one correspondence with maximal cyclic subgroups
of G (see [2, Proposition 2.4]). It follows that independent sets in CΓEP(G) are in
one-to-one correspondence with maximal cyclic subgroups of G. In particular, 〈g〉 is
an independent set of maximal size in CΓEP(G), and hence, all the elements h ∈ G
which are not powers of G are adjacent to g.

Let g� be a power of g and suppose that g� is not an isolated vertex (that is, it is not
contained in every maximal cyclic subgroup of G). Then, there exists a maximal cyclic
subgroup C ≤ G such that g� � C. If we denote by h� a generator of C, g� and h� are
adjacent. Therefore, g� is part of the connected component that contains all the h ∈ G
which are not powers of g. This proves that CΓEP(G), outside of its isolated vertices,
has exactly one connected component.

We now focus on the upper bound on the diameter of the connected component
of CΓEP(G). Observe that our proof already shows that the diameter is bounded from
above by 4, and the vertices that might meet the maximal distance are distinct powers
of g. Aiming for a contradiction, we suppose that, for some integers a and b, ga and gb

are at distance 4. We suppose that

ga ∼ ha ∼ g ∼ hb ∼ gb

is a path of minimal distance connecting ga and gb. We point out that for i ∈ {a, b}, hi
is the vertex adjacent to gi built in the previous paragraph. By minimality of this path,
ha and hb are not adjacent. By the definition of CΓEP(G), 〈ha, hb〉 is a cyclic subgroup
of G and, for i ∈ {a, b}, by construction, hi generates a maximal cyclic subgroup of G.
Therefore,

〈ha, hb〉 = 〈ha〉 = 〈hb〉 .

It follows that ga is adjacent to hb and gb is also adjacent to ha. Hence, ga and gb are
at distance 2, which is a contradiction. This proves that the diameter of CΓEP(G) is at
most 3. �
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3. Proof of Corollary 1.2

The adjective enhanced suggest that there exists an original version of the power
graph. Indeed, for a finite group G, the power graph ΓP(G) is defined as the graph on
the vertex set G such that two elements are declared adjacent if one is a power of the
other. We denote its complement by CΓP(G).

REMARK 3.1 [3, Theorem 2.12]. For any prime p and for any positive integer m,
ΓP(Cpm ) is complete. The converse is also true: if ΓP(G) is complete, then G is a cyclic
p-group. Indeed, this follows from the fact that the series

Cpm ≥ (Cpm )p ≥ · · · ≥ (Cpm )pm−1 ≥ 1

contains all the subgroups of Cpm . Hence, CΓP(Cpm ) contains no edges.

PROOF OF COROLLARY 1.2. By construction, ΓP(G) is a subgraph of ΓEP(G), and
hence the complement of the power graph CΓP(G) contains CΓEP(G) as a subgraph. We
need to focus our attention on those isolated vertices of CΓEP(G) that have neighbours
in CΓP(G). In the proof of Theorem 1.1, we have shown that all isolated vertices in
CΓEP(G) are powers of an element of maximal order g.

Aiming for a contradiction, we suppose that there is an integer � such that g� is
contained in a connected component of CΓP(G) that does not contain g. It follows that
g� is not adjacent to any h ∈ G − 〈g〉. In particular, g� is a power of every element of
the group that is not a power of g. If two distinct primes divide the order of G, say p
and r, then g� lies both in a Sylow p-subgroup and a Sylow r-subgroup, because g� is a
power of both a p-element and an r-element. The only element with this property is the
identity, and thus g� = 1 is an isolated vertex. Therefore, G is a p-group, for a suitable
prime p, and the neighbourhood of g� is contained in 〈g〉. Since g is a p-element,
by Remark 3.1, CΓP(〈g〉) has no edges. Hence, g� is an isolated vertex, which is a
contradiction. This shows that CΓP(G), outside of its isolated vertices, has a single
connected component.

We now focus on the diameter of CΓP(G). Since CΓP(G) is a subgraph of CΓEP(G),
Theorem 1.1 implies that if two vertices are at distance 4 in CΓP(G), then they are
distinct powers of g. Aiming for a contradiction, suppose that, for two suitable integers
a and b, ga and gb are at distance 4 in CΓP(G). Let

ga ∼ x ∼ y ∼ z ∼ gb

be a path of minimal distance connecting ga and gb. By definition of CΓP(G) and by
the minimality of the path, we have

ga � 〈x〉, gb � 〈z〉, x ∈ 〈z〉.

It might happen that z ∈ 〈x〉 is true instead: in this case, we just swap a with b and x
with z. Therefore, 〈x〉 is a subgroup of 〈z〉. Hence, gb cannot be an element of 〈x〉, and gb

and x are adjacent, against the minimality of the chosen path. This final contradiction
completes our proof and our note. �
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We observe that the above proof actually never uses the assumption that ga and gb

are powers of g.
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