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Abstract

In this paper, we give a complete description of left symmetric points for Birkhoff orthogonality in the
preduals of von Neumann algebras. As a consequence, except for C, `2

∞ and M2(C), there are no von
Neumann algebras whose preduals have nonzero left symmetric points for Birkhoff orthogonality.

2010 Mathematics subject classification: primary 46B20; secondary 46L99.

Keywords and phrases: von Neumann algebra, predual, Birkhoff orthogonality, symmetric point.

1. Introduction

In Banach space theory, there are various notions of generalised orthogonality relations
defined by using norm (in)equalities. Among them, the orthogonality relation by
means of nearest points is of particular importance. It is known as Birkhoff (–James)
orthogonality and is defined as follows.

Definition 1.1 (Birkhoff (–James) orthogonality). Let X be a Banach space and let
x, y ∈ X. Then x is said to be Birkhoff orthogonal to y, denoted by x ⊥B y, if
‖x + λy‖ ≥ ‖x‖ for each λ ∈ C.

A geometric meaning of x ⊥B y is that x is the nearest point to 0 in the line x + λy.
If x is additionally a unit vector, then x + λy becomes a tangent line to the unit ball at x.
Thus Birkhoff orthogonality is closely related to metric projections as well as support
functionals for the unit ball.

As a basic property of Birkhoff orthogonality, x ⊥B y implies that αx ⊥B βy for any
scalars α, β. However, the relation ‘⊥B’ is not symmetric in general, that is, x ⊥B y
may not imply y ⊥B x. In fact, it is known that if Birkhoff orthogonality is symmetric
in a Banach space X with dim X ≥ 3, then X is a Hilbert space (see, for example, [3]).
We refer to [2] for further information about Birkhoff orthogonality.
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Recently, instead of the global symmetry, some notions of local symmetry for
Birkhoff orthogonality were introduced and studied.

Definition 1.2 (Sain [11]). Let X be a Banach space and let x ∈ X. Then x is called a
left symmetric point for Birkhoff orthogonality if y ∈ X and x ⊥B y imply that y ⊥B x.

Definition 1.3 (Sain [11]). Let X be a Banach space and let x ∈ X. Then x is called a
right symmetric point for Birkhoff orthogonality if y ∈ X and y ⊥B x imply that x ⊥B y.

These notions have been widely studied, for example, in [4, 6, 11–14]. Moreover, in
[10], it was shown that left or right symmetric points for Birkhoff orthogonality in von
Neumann algebras have some characteristic properties. Namely, a norm-one element
A in a von Neumann algebra R is left symmetric for Birkhoff orthogonality if and only
if |A| is a central projection that is minimal in R, while A is right symmetric if and only
if it is an extreme point of the unit ball of R.

Thus it is natural to ask whether similar characterisations for left or right symmetric
points for Birkhoff orthogonality can be given in the preduals of von Neumann
algebras.

The aim of this paper is to give, as a partial answer, a complete description of left
symmetric points for Birkhoff orthogonality in the preduals of von Neumann algebras.
As a consequence, except for C, `2

∞ and M2(C), there are no von Neumann algebras
whose preduals have nonzero left symmetric points for Birkhoff orthogonality.

2. Preliminaries

We start this section with the following useful characterisation of Birkhoff

orthogonality.

Lemma 2.1 (James [7]). Let X be a Banach space and let x, y be nonzero elements of X.
Then x ⊥B y if and only if there exists an element f of X∗ satisfying ‖ f ‖ = 1, f (x) = ‖x‖
and f (y) = 0.

For a Banach space X, let BX denote the unit ball of X. Let R be a von Neumann
algebra and let R∗ be the predual of R (that is, the Banach space of all normal linear
functionals on R). For each element ρ ∈ R∗ with ‖ρ‖ = 1, let

{ρ} f = {A ∈ BR : ρ(A) = 1}.

We note that {ρ} f is a nonempty weak-operator closed face of BR.
A state ω of a von Neumann algebra R is said to be faithful if ω(A) > 0 for each

nonzero positive element A ∈ R. This property has a characterisation in terms of {ω} f .

Lemma 2.2. Let R be a von Neumann algebra. Then ω is a faithful normal state of R if
and only if {ω} f = {I}.
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Proof. Suppose that ω is a faithful state and that ω(A) = 1 for some A ∈ BR. Let
H = 2−1(A + A∗) and K = −2−1i(A − A∗). Then ‖H‖ ≤ 1, ‖K‖ ≤ 1 and A = H + iK.
Since ω is positive, it follows from ω(H) + iω(K) = 1 that ω(H) = 1 and ω(K) = 0.
Moreover, I − H ≥ 0 and ω(I − H) = 0, so that H = I. By a characterisation of extreme
points of the unit ball of a C∗-algebra (see, for example, [8, Theorem 7.3.1]), I is an
extreme point of the unit ball of R. Hence A = A∗ = I.

Conversely, assume that {ω} f = {I}. Let A ≥ 0 be such that ω(A) = 0. It may
be assumed that ‖A‖ = 1. Then 0 ≤ I − A ≤ I and ω(I − A) = 1, which implies that
I − A ∈ {ω} f . Thus A = 0. �

We also make use of the facial structure of von Neumann algebras given by Edwards
and Rüttimann [5]; see also [1].

Theorem 2.3 (Edwards and Rüttimann [5]). Let R be a von Neumann algebra and let
F be a weak-operator closed proper face of BR. Then there exists a partial isometry V
in R such that

F = V + (I − VV∗)BR(I − V∗V).

3. Left symmetric points

We now proceed to study left symmetric points for Birkhoff orthogonality in the
preduals of von Neumann algebras.

Lemma 3.1. Let R be a von Neumann algebra and let ρ be an element of R∗ with
‖ρ‖ = 1. If ρ is a left symmetric point for Birkhoff orthogonality in R∗, then {ρ} f is a
singleton, that is, there exists a unique extreme point V of BR satisfying ρ(V) = 1.

Proof. By Theorem 2.3, there exists a partial isometry V ∈ R such that

{ρ} f = V + (I − VV∗)BR(I − V∗V).

Put V∗V = E and VV∗ = F for short. If (I − F)BR(I − E) , {0}, then CI−ECI−F , 0,
where CI−E and CI−F are the central carriers for I − E and I − F, respectively. Using
[8, Proposition 6.1.8], we have two nonzero projections E0 ≤ I − E and F0 ≤ I − F
with E0 ∼ F0. Let W be a partial isometry in R with W∗W = E0 and WW∗ = F0.
Then W = (I − F)(F0WE0)(I − E) ∈ (I − F)BR(I − E). Take an arbitrary unit vector
x satisfying E0x = x, and let ω(A) = 〈(I − F)A(I − E)x,Wx〉 for each A ∈ R. Then
‖ω‖ = ω(W) = 1. Now let τ = 2−1(ρ + ω). Then ‖τ‖ = τ(V + W) = 1. Moreover, it
follows from V −W ∈ {ρ} f and

τ(V −W) = 1
2 (ρ(V −W) − ω(W)) = 0

that ρ ⊥B τ. However, since 1 is an extreme point of the unit disk D of C, if A ∈ BR
and τ(A) = 1, then ρ(A) = ω(A) = 1. Hence τ 6⊥B ρ by Lemma 2.1. This contradicts
the left symmetry of ρ. Thus (I − F)BR(I − E) = {0}, that is, {ρ} f = {V} and V is an
extreme point of BR. �
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It is well known that each normal functional ρ on R (that is, an element of R∗) can
be represented as ρ(A) = ω(V∗A) for each A, where ω is a positive normal functional
on R and V is a partial isometry that is an extreme point of BR (see [8, Theorem 7.3.2]).
Moreover, in that case, ω(A) = ρ(VA) for each A. In particular, ‖ρ‖ = ‖ω‖.

In what follows, for ρ ∈ R∗ and B ∈ R, we use the symbol ρB for the linear functional
A 7→ ρ(BA). The fact mentioned in the preceding paragraph can be stated as if ρ ∈ R∗,
then ρ = ωV∗ and ω = ρV for some positive ω ∈ R∗ and some partial isometry V .

The following fact is well known. A proof was included in [10, Theorem 4.7].

Lemma 3.2. Let R be a von Neumann algebra and let V be an extreme point of BR.
Then there exists an orthogonal pair P,Q of central projections with sum I such that
V∗VP = P and VV∗Q = Q.

For a normal functional ρ on a von Neumann algebra R, let ρ∗ ∈ R∗ be the normal
functional defined by ρ∗(A) = ρ(A∗) for each A ∈ R. We note that ρ 7→ ρ∗ is a conjugate-
linear isometry on R∗ and that (ρ∗)∗ = ρ.

Lemma 3.3. Let R be a von Neumann algebra and let ρ, τ be elements of R∗. Then
ρ ⊥B τ if and only if ρ∗ ⊥B τ

∗.

Proof. Simply note that ‖ρ + λτ‖ = ‖(ρ + λτ)∗‖ = ‖ρ∗ + λτ∗‖ for each λ. �

The following is an immediate consequence of Lemma 3.3.

Proposition 3.4. Let R be a von Neumann algebra and let ρ be an element of R∗.
Then ρ is left symmetric for Birkhoff orthogonality in R∗ if and only if ρ∗ has the same
property.

We need a technical lemma concerning the number of mutually orthogonal nonzero
projections in von Neumann algebras.

Lemma 3.5. Let R be a von Neumann algebra acting on a Hilbert spaceH . If I = E1 +

E2 + E3 + E4 + E5 for an orthogonal family of nonzero projections {E1,E2,E3,E4,E5}

in R, then there are no nonzero left symmetric points for Birkhoff orthogonality in R∗.

Proof. Let ρ be a nonzero normal functional on R that is left symmetric for Birkhoff

orthogonality in R∗. We may assume that ‖ρ‖ = 1. Then there is a normal state ω
of R and an extreme point V of BR such that ρ = ωV∗ and ω = ρV . In particular,
1 = ω(I) = ω(V∗V). We also note that {ρ} f = {V} by Lemma 3.1. From this, ω is
restricted to a faithful normal state of ERE, where E = V∗V . Indeed, if ‖EAE‖ ≤ 1
and ω(EAE) = 1, then ρ(VEAE) = 1 and {ρ} f = {V} imply that V = VEAE = VAE.
Thus it follows that E = EAE. Now Lemma 2.2 works, and ω is faithful on ERE. We
recall that a von Neumann algebra is countably decomposable if and only if it has a
faithful normal state (see [8, Exercise 7.6.46 (ii)] and its proof in [9]).

First, suppose that E = E1 + E2 + E3 for mutually orthogonal nonzero projections
{E1,E2,E3} in ERE. We may assume that ω(E1) ≥ ω(E2) ≥ ω(E3) > 0. Since each von
Neumann algebra E jRE j is also countably decomposable, there is a faithful normal
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state ω j on E jRE j for j = 1, 2, 3. In particular, ω′j(A) = ω j(E jAE j) defines a normal
state of R. Let τ = 4−1(ω′1 + ω′2) − 2−1ω′3 ∈ R∗. Then

‖τV∗‖ = (τV∗)(VE1 + VE2 − VE3) = 1.

Moreover, (τV∗)(V) = 0 implies that ρ ⊥B τV∗. On the other hand, if A is an element
of R satisfying ‖A‖ = 1 and (τV∗)(A) = 1, then ω′1(V∗A) = ω′2(V∗A) = −ω′3(V∗A) = 1.
By Lemma 2.2, it follows that E1V∗AE1 = E1, E2V∗AE2 = E2 and E3V∗AE3 = −E3.
Furthermore,

‖E jx‖2 ≥ ‖V∗AE jx‖2 = ‖E jV∗AE jx + (I − E j)V∗AE jx‖2

= ‖E jAE jx‖2 + ‖(I − E j)V∗AE jx‖2

= ‖E jx‖2 + ‖(I − E j)V∗AE jx‖2

for each x and j = 1, 2, 3, which implies that (I − E j)V∗AE j = 0 for j = 1, 2, 3. Since
V∗AE j = E jV∗AE j, it follows that

ρ(A) = ω(V∗A) = ω(V∗AE) = ω(V∗AE1 + V∗AE2 + V∗AE3)
= ω(E1) + ω(E2) − ω(E3) > 0,

which shows that τV∗ 6⊥B ρ, which is a contradiction.
Next, we consider the functional ρ∗ which is also left symmetric by Proposition 3.4.

Note that {ρ∗} f = {V∗}. Put F = VV∗. As shown above, the identity F = F1 + F2 + F3
never holds for mutually orthogonal nonzero projections {F1, F2, F3} in FRF.

Since V is an extreme point of BR, by Lemma 3.2, there exists an orthogonal pair
P,Q of central projections with sum I such that EP = P and FQ = Q. In particular,
P ≤ E and Q ≤ F. If I = G1 + G2 + G3 + G4 + G5 for some orthogonal family of
nonzero projections {G1,G2,G3,G4,G5}, then G jP , 0 or G jQ , 0 for j = 1, 2, 3, 4, 5.
Therefore

]{ j ∈ {1, 2, 3, 4, 5} : G jP , 0} ≥ 3, or
]{ j ∈ {1, 2, 3, 4, 5} : G jQ , 0} ≥ 3.

However, then either E or F must be the sum of three or more nonzero subprojections.
This is impossible. Thus, if {Eλ}λ∈Λ is an orthogonal family of nonzero projections in
R, then ]Λ ≤ 4. This completes the proof. �

We use the preceding lemma to prove the main result which gives a complete
description of left symmetric points for Birkhoff orthogonality in the preduals of von
Neumann algebras.

Theorem 3.6. Let R be a von Neumann algebra. If R∗ has nonzero left symmetric
points for Birkhoff orthogonality, then one of the following three statements holds.

(i) R = C, and each element of R∗ = C is left symmetric for Birkhoff orthogonality
in R∗.

https://doi.org/10.1017/S0004972718000849 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718000849


[6] Left symmetric points for Birkhoff orthogonality 499

(ii) R = `2
∞, and a nonzero ρ ∈ R∗ = `2

1 is left symmetric for Birkhoff orthogonality in
R∗ if and only if ‖ρ‖−1ρ ∈ {(a, b) ∈ C2 : |a| = |b| = 1/2}.

(iii) R = M2(C), and a nonzero ρ ∈ R∗ = (M2(C), ‖ · ‖1) is left symmetric for Birkhoff
orthogonality in R∗ if and only if ‖ρ‖−1ρ ∈ {A ∈ M2(C) : σ1 = σ2 = 1/2}, where
σ1, σ2 are the singular values of A.

Proof. Suppose that R∗ has nonzero symmetric points. Lemma 3.5 guarantees that if
{Eλ}λ∈Λ is an orthogonal family of nonzero projections in R, then ]Λ ≤ 4. Considering
the type decomposition for R, we know that R only has the type I portion. More
precisely, R must be the finite direct sum of type In algebras with n ≤ 4. Moreover,
the centre C of R is at most four dimensional. To see this, it is enough to consider a
maximal orthogonal family of minimal projections in C. As a consequence, the whole
algebra R is finite dimensional. This information allows us to improve Lemma 3.5.

Let ρ be a nonzero left symmetric point for Birkhoff orthogonality in R∗. Then
{ρ} f = {U} for a unitary operator U ∈ R since the set of extreme points of the unit ball
of a finite (dimensional) von Neumann algebra coincides with the unitary group. As
in the first two paragraphs of the proof of Lemma 3.5, I = U∗U cannot be the sum of
three or more nonzero projections.

We recall that the finite dimensional algebra R can be identified with the direct sum
of type I factors. However, by the preceding paragraph, the candidates of summands
are only C and M2(C). Thus R has one of the following forms: C, M2(C), C ⊕ C(= `2

∞).
In the other cases (that is, C ⊕ M2(C) and M2(C) ⊕ M2(C)), the identity I can be the
sum of three or more projections.

Now, let R = C. Then R∗ = C. If a, b are nonzero complex numbers, then a ⊥B b if
and only if ab = 0. Consequently, Birkhoff orthogonality itself is symmetric in C and
therefore (i) holds.

In the case of R = `2
∞, the predual R∗ is identified with `2

1. Namely, if ρ ∈ R∗ is
identified with (a,b), then ρ(c,d) = ac + bd for each (c,d) ∈ `2

∞. Suppose that ρ = (a,b)
is a nonzero left symmetric point for Birkhoff orthogonality in R∗. We may assume
that ‖ρ‖ = 1, that is, |a| + |b| = 1. To see |a| = |b| = 1/2, suppose to the contrary that
|a| , |b|. Since {ρ} f is a singleton, we note that ab , 0. Let sgn(c) = |c|/c for each
nonzero complex number c. Then (sgn(a), sgn(b)) ∈ {ρ} f . Putting

τ =

( a
2|a|

,−
b

2|b|

)
yields ‖τ‖1 = 1 and ρ ⊥B τ since τ(sgn(a), sgn(b)) = 0. However, max{|c|, |d|} ≤ 1
and τ(c, d) = 1 imply that ac/|a| = −bd/|b| = 1, which implies that c = sgn(a) and
d = −sgn(b). It follows that ρ(c, d) = |a| − |b| , 0, and hence we obtain τ 6⊥B ρ, which
is a contradiction. Thus |a| = |b| is necessary.

Conversely, suppose that ρ = (a, b) and that |a| = |b| = 1/2. In this case, sgn(a)a =

sgn(b)b = 1/2. If ρ(c, d) = 1, then c/sgn(a) = d/sgn(b) = 1, that is, c = sgn(a) and
d = sgn(b). This shows that {ρ} f = {(sgn(a), sgn(b))}. If τ = (a′, b′) ∈ R∗ and ρ ⊥B τ,
then τ(sgn(a), sgn(b)) = sgn(a)a′ + sgn(b)b′ = 0. From this, it follows that

τ =

(
a′,−

sgn(a)a′

sgn(b)

)
.
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We note that ‖τ‖ = 2|a′|. Since

τ(sgn(a),−sgn(b)) = 2sgn(a)a′,
ρ(sgn(a),−sgn(b)) = |a| − |b| = 0,

one obtains τ ⊥B ρ and therefore ρ is left symmetric.
Finally, assume that R = M2(C). For each A ∈ M2(C), let ‖A‖1 = σ1 + σ2, where

σ1, σ2 are the singular values of A. In this case, R∗ is isometrically isomorphic to
(M2(C), ‖ · ‖1). Moreover, if ρ ∈ R∗ is identified with A ∈ M2(R), then ρ(B) = tr(AB)
for each B. Now let ρ be an element of R∗ identified with A ∈ M2(C). Suppose that
‖A‖1 = 1 and that the singular values σ1, σ2 of A are mutually distinct. Let U,V be
unitary matrices satisfying UAV = diag(σ1, σ2). Then we have ρ(VU) = tr(AVU) = 1.
Let A′ = U∗diag(1/2,−1/2)V∗ and let τ(B) = tr(A′B) for each B. Then ‖A′‖1 = ‖τ‖ = 1
and τ(VU) = tr(A′VU) = 0, which implies that ρ ⊥B τ. On the other hand, if ‖B‖ ≤ 1
and τ(B) = 1, then

tr(A′B) = tr(U∗diag(1/2,−1/2)V∗B) = tr(diag(1/2,−1/2)V∗BU∗) = 1.

Putting V∗BU∗ = C = (ci j) yields 2−1(c11 − c22) = 1. Since |ci j| ≤ ‖V∗BU∗‖ ≤ 1 for
each i, j, it follows that c11 = −c22 = 1, and hence V∗BU∗ = diag(1,−1). This shows
that ρ(B) = tr(AVdiag(1,−1)U) = σ1 − σ2 , 0. As a consequence, τ 6⊥B ρ, that is, ρ
is not left symmetric. In other words, if ρ = A is a left symmetric point for Birkhoff

orthogonality in R∗, then A only has the singular value 1/2 of multiplicity two.
For the converse, let A ∈ M2(C) be such that σ1 = σ2 = 1/2, and let ρ(B) = tr(AB)

for each B. Suppose that ρ ⊥B τ, where τ ∈ R∗ is identified with A′. We may
assume that ‖τ‖ = ‖A′‖1 = 1. By Lemma 2.1, there exists a B ∈ M2(C) such that
tr(AB) = 1 and tr(A′B) = 0. Let U,V be unitaries such that UAV = diag(1/2, 1/2) =

I/2. Then, as in the argument about V∗BU∗ in the preceding paragraph, we have
B = VU. From this, tr(A′VU) = 0. We take a pair of unitaries U′, V ′ satisfying
U′A′V ′ = diag(σ′1, σ

′
2), where σ′1, σ

′
2 are the singular values of A′. It follows that

tr(AVU) = tr(U′∗diag(σ′1, σ
′
2)V ′∗VU) = tr(diag(σ′1, σ

′
2)V ′∗VUU′∗) = 0. We shall show

that tr(V ′∗VUU′∗) = 0. Put V ′∗VUU′∗ = W = (wi j). Since W is also unitary,

0 =

〈
W

(
1
0

)
,W

(
0
1

)〉
=

〈(
w11
w21

)
,

(
w12
w22

)〉
= w11w12 + w21w22.

This shows that (w12, w22) = w11
−1w22(−w21, w11) unless w11 = w22 = 0. If w11 =

w22 = 0, then tr(W) = 0. In the case of w11w22 , 0, since |w11|
2 + |w21|

2 = 1 and
|w12|

2 + |w22|
2 = 1, we have |w11| = |w22| > 0. It follows from tr(diag(σ′1, σ

′
2)W) =

σ′1w11 + σ′2w22 = 0 that σ′1 = σ′2 = 1/2. Thus 0 = tr(diag(σ′1, σ
′
2)W) = tr(W)/2, that

is, tr(W) = 0, as desired. Now, τ(V ′U′) = tr(A′V ′U′) = 1 and

ρ(V ′U′) = tr(AV ′U′) = tr(U∗V∗V ′U′)/2

= tr(U′U∗V∗V ′)/2 = tr(V ′∗VUU′∗)/2 = 0

show that τ ⊥B ρ. Hence ρ is a left symmetric point for Birkhoff orthogonality inR∗. �

We conclude this paper with the following open problem.
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Problem 3.7. Can we characterise right symmetric points for Birkhoff orthogonality
in the preduals of von Neumann algebras?
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