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RANDOM DIRICHLET FUNCTIONS: 
MULTIPLIERS AND SMOOTHNESS 

W. GEORGE COCHRAN, JOEL H. SHAPIRO 
AND DAVID C. ULLRICH 

ABSTRACT. We show that if/(z) = J2 anZn is a holomorphic function in the Dirichlet 
space of the unit disk, then almost all of its randomizations Y ^®nZn are multipliers 
of that space. This parallels a known result for lacunary power series, which also has a 
version for smoothness classes: every lacunary Dirichlet series lies in the Lipschitz class 
Lip i/2 of functions obeying a Lipschitz condition with exponent 1 /2 . However, unlike 
the lacunary situation, no corresponding "almost sure" Lipschitz result is possible for 
random series: we exhibit a Dirichlet function with no randomization in Lip] /2. We 
complement this result with a "best possible" sufficient condition for randomizations 
to belong almost surely to Lip, /2. Versions of our results hold for weighted Dirichlet 
spaces, and much of our work is carried out in this more general setting. 

Introduction. The Dirichlet space CD of the open unit disc U of the complex plane 
is the set of holomorphic functions on U for which 

D(f) = jv\f'{z)\2dA(z)<^ 

where the measure dA is two-dimensional Lebesgue measure normalized so that 
A(U) = 1. If f(z) = Eanz

n then it is easily seen that D(f) = Y,n\an\
2. The Dirichlet 

space is a Hilbert space under the norm defined by: \\f\\2 = D(f) + 1/(0)|2. 
A multiplier of the Dirichlet space is a holomorphic function <f> on U such that the 

pointwise product (f>(z)f(z) G CD whenever / G CD. If <\> is a multiplier of CD, then by 
the closed graph theorem the multiplication operator M^'.f \—> <j>f is a bounded linear 
operator on CD. The study of such operators on CD and its various weighted generalizations 
has been attracting considerable attention; see for example [2], [7], [11], [12], and [15]. 

Since the constant function/(z) = 1 is in CD, every multiplier of CD must itself be in 
CD. An elementary argument using the continuity of point evaluation functionals shows 
that every multiplier must also be bounded on the unit disk ([6], Lemma 11, page 57). 
Beyond this, however, the multipliers of CD defy simple description. For example, there 
are bounded functions in CD that are not multipliers of CD. Indeed, there are functions in 
£>, continuous on U, that are not multipliers [15, Theorem 9]. 

There are two concrete characterizations of the multipliers of CD. One, due to D. 
Stegenga [14], involves a Carleson-type condition expressed in terms of logarithmic 
capacity. The other, due to Kerman and Sawyer [9], uses a Carleson-type maximal 
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function. However both characterizations can be difficult to use in practice. For example, 
it is not clear how one could use either criterion to decide if the magnitudes of the Taylor 
coefficients of a multiplier of <D must satisfy a condition that is stronger than the one that 
defines £>: T,n\an\

2 < oo. 
Our first result, Theorem 1 in § 1 below, shows that no stronger condition is possible: 

iff(z) = E anz
n is in the Dirichlet space, then the series £ ±anz

n is a multiplier of *D for 
almost every random choice of signs. In particular, for every Dirichlet function there is a 
multiplier with same sequence of "Taylor coefficient magnitudes. " So Taylor coefficient 
magnitude sequences behave no better for multipliers than they do for arbitrary Dirichlet 
functions. Theorem 1 also holds for more general randomizations of the coefficients off. 

Brown and Shields [3, Proposition 20], recently showed that if f(z) = E ^ n * is a 
Hadamard lacunary power series in <D (i.e., nk+\ /nk > A > 1), then / is a multiplier of 
(D, and in addition/ G lipj /2, the "little-oh" Lipschitz class with exponent 1 /2 . Noting 
that properties of lacunary series often have analogues for Rademacher series, Allen 
Shields suggested to us that these results might have random versions. We show that this 
analogy is correct for multipliers, but breaks down dramatically for Lipschitz spaces. 

In §2 we show that if T,anz
n G £>, then the "randomization" f^iz) = £±a n z n will 

almost surely belong to Lip7 for all 7 < 1/2, but need not a.s. be in Lip, ,2. We show 
that if the function/ obeys the stronger condition Y,n(\ogn)\an\

2 < QQ9 then/^, G lipj /2 

almost surely, and this result is "best possible" in a very strong sense. For this we 
adapt methods of W. T. Sledd [13], P. L. Duren [5, Theorem 1], and Anderson, Clunie 
and Pommerenke [1, Theorem 3.7], who obtained similar regularity theorems involving 
spaces which include BMO and the Bloch space. Results like this also follow from work 
of J. P. Kahane [8, Theorem 3 of Chapter 7, Theorem 2 of Chapter 8]. 

In §3 we show that the random/1 acunary analogy for Lipschitz spaces breaks down in 
the worst possible way: there is a series T.anz

n in (D such that £ ±anz
n is in Lipj /2 for 

no choice of signs. 
All of our work generalizes to a familiar class of "weighted Dirichlet spaces." We 

emphasize this point of view in Sections 2 and 3, where it is of interest to note the connec­
tion between the strength of the weight and the Lipschitz smoothness of randomizations 
of functions in the space. 

1. Random Dirichlet functions are multipliers. Let en(uj) be a Bernoulli sequence 
of random variables on a probability space (T2, A, P). This means that the sequence is 
independent, and each en takes the values +1 and —1 with probability 1 /2 each. For a 
concrete example of such a sequence, take en to be the nth Rademacher function on the 
unit interval, with Lebesgue measure as the probability measure. 

Iff(z) = Yl anz
n is analytic in the unit disk U, let 

Mz)=f(z^) = Y,tn(u)anZ
n. 

n 

Since the series representing/ converges absolutely in U, the function/^•) is analytic in 
U for each LU £ £1. Furthermore if/ G (D then/,; G *D for each UJ e CI. 
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THEOREM 1. Iff G CD thenf^ is a multiplier of CD almost surely. 

The proof of this theorem uses Khintchine's inequality and a sufficient condition, due 
to Brown and Shields, for a function to be a multiplier of CD. We state these tools below 
as lemmas. 

LEMMA 1.1 (KHINTCHINE'S INEQUALITY [16, THEOREM V.8.4]). Let {an} be a se­

quence of complex numbers and let X(u) = £ en{u)an. Then for all 0 < p < oo, 

IWÎ (iD»IWL2(0) = (Ekl 2 ) 1 / 2 . 

The last equality above holds because the en's are orthonormal in L2(Q). 
For the Brown-Shields sufficient condition, we introduce the following standard 

notation: If/ is holomorphic in U, then for all 0 < p < oo and all 0 < r < 1 let 

Similarly let 
Mœ(f,r) = msix[f(reie)\. 

6 

LEMMA 1.2 ([3, PROPOSITION 19]). Let <j)(z) be a holomorphic function on U, and 

suppose that for some 2 < p < oo, Mp(<j)', r) G £2([0, 1], dr). Then <f> is a multiplier of 
CD. 

The lemma fails whenp = 2, since the condition that M2(^/, r) G L2(dr) says nothing 
more than that <j> is in the Dirichlet space. 

PROOF OF THEOREM 1. Let/(z) = Eanz
n be in the Dirichlet space, and let/^(z) = 

E ±anz
n be the randomization off. By the lemma above, it suffices to show that 

/ Mp(f„, r) dr < oo almost surely 

for some p > 2. In fact this is true for all 2 < p < oo. (The case p = oo is discussed in 
§2.) Fix 2 < p < oo. We will show that the expectation of JMp(f^ r)dr is finite, from 
which the result will follow. 

Using respectively: Fubini's theorem, Jensen's inequality, Fubini's theorem, and 
Khintchine's inequality, we obtain: 

«GC'ftcH-air ^ £]'"** 

r'r/**,..,. * . „ „ d9-\ 
•JCLTIK^IUS] 

2/p 
dr 
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< Q 
2/P 

dr 

--c , /X(E»V,|V-)^ 

= C „ / O ' ( E » ! I « J V " - J ) * 

" " * 

CO 1 

n=\ 2n ~ 1 

Theorem 1 can be generalized in two directions. One direction involves more general 
randomizations of the coefficients. 

COROLLARY 1. Letf(z) = Y.anz
n be in the Dirichlet space and letfu(z) = HXnanz

n 

where {Xn(uj)} is a sequence of independent complex random variables satisfying 
• E(|X„|2) < C < oo for all n; 
• — Xn has the same distribution as Xn. 

Thenf^ is a multiplier of <D almost surely. 

For example, these hypotheses are satisfied when Xn is uniformly distributed on the 
unit circle d U, or when Xn has a centered Gaussian distribution on the complex plane. 

PROOF OF COROLLARY 1. The proof follows from what Kahane calls the "principle 
of reduction" [8, Section 1.7]. Let {Xn} be a sequence of random variables as in the 
statement of the corollary and let {en} be a Bernoulli sequence independent of the X„'s. 
Let Yn = enXn. By the independence, {Yn} can be realized on a product probability space 
(Qi x£l2,&\ x&2,P\ x Pi) such that theXn's are defined on (Qi,.#i, P\) and the e„\s 
are defined on (Q27 -#2? Pi). Let Ei denote expectation with respect to P\. 

Let/(z) = E anz
11 be in the Dirichlet space. Then 

E ^ n l ^ l 2 ) <Cj2n\an\
2 < 00, 

so that 
Pi |o;i : Y,n\anXn(ui)\2 < 001 = 1. 

Let Q j denote the set in braces in the equation above. For each fixed u\ EQ',, Theorem 
1 implies that 

YJen{uj2)Xn{ujx)anf 

is a multiplier of D a.s.fT^]- By Fubini's theorem, 

Pil^i 'Yl ^n{^i)Xn{uj\ )anz
n is a multiplier of <D a.s. [P\ ] = 1. 
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In particular there exists a choice of ± signs such that £ ±Xn(Ld\)anz
n is a multiplier 

a.s. [P\]. Since — Xn and Xn are identically distributed and the X„'s are independent, it 
follows that YlXn(uj\)anz

n is a multiplier of <D a.s.[Pi ]. • 

The second direction of generalization involves weighted Dirichlet spaces. For each 
0 < a < oo, let (Da denote the set of holomorphic functions/ on U for which 

oo 

Da(f) = Y,na\an\2<œ. 

A straightforward computation with power series, using Lemma 2.4 below, shows that 
if/(z) = £ anz\ then for 0 < a < 2, 

Da{f)^ Jv\f'{z)\2{\-\z\)x~adA{z) 

(see, for example, [15], Lemma 2). These weighted Dirichlet spaces <Da form a monoton-
ically decreasing family of Hilbert spaces, with CD\ the original Dirichlet space *D, and CDQ 
the Hardy space H2. It is easy to see that the multipliers of the Hardy space are precisely 
the class of bounded holomorphic functions on U. However for the weighted Dirichlet 
spaces <Da with 0 < a < 1 the situation is just as complicated as it is for <D - <D\ (see 
[9], [14]). 

For a > 1 the situation reverts to simplicity. In this case the Hilbert space (Da is closed 
under pointwise multiplication ([15], Theorem 7), so every function in the space is a 
multiplier (and, as for the unweighted Dirichlet space, it is easy to see that conversely, 
every multiplier is in the space). Theorem 1 can therefore be regarded as a random 
substitute for this phenomenon when a = 1. We claim that the same kind of random 
substitute exists for each 0 < a < 1. For this we need a version of Lemma 1.2 for the 
spaces "Da. 

LEMMA 1.3. Let <j> be holomorphic in U, 0 < a < 1, and suppose that for some 
p > 2/a, 

f M2
p((j)\ r)(l - r)l~adr < oo. 

Then (j> is a multiplier of "Da. 

The proof of this lemma is very similar to the proof of Proposition 19 in [3], and 
we omit the details, except to say that one needs to show that for 0 < a < 1 the 
space ^ is contained in the Hardy space H2l{X~a) (either by fractional integration or by 
interpolation; note that <D\ = (D is contained in BMO by Hardy's inequality), and then 
one uses Holder's inequality as in [3]. 

Using this sufficient condition one arrives at the following theorem: 

THEOREM 2. Suppose thatf is in *Da (0 < a < I) andf^ is a randomization of the 
type considered in Corollary 1. Thenf^ is a multiplier of <Da almost surely. 
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PROOF OF THEOREM 2. Follow the proof of Theorem 1 to show that 

^(jX M2
p{(j)',r){\ - r)l-adr) < Q ^ » ^ 2 f ^ ( l - r)l~adr. 

The integral on the right hand side is the beta function j5{2n — 1,2 — a). From the beta 
function inequality (Lemma 2.4 of §2 below), 

P(Zn - 1,2 - a) < Can * 2 a < Can
a~2 

{In — \y~a 

for n > 1. So the expectation above is smaller than Cp,a Y,na\an\
2, which is finite since 

/ is in 2)a. Thus the sufficient condition in Lemma 1.3 is satisfied almost surely. • 

2. Smoothness of random Dirichlet functions. "Smoothness" in this section is 
expressed by Lipschitz conditions. For 0 < 7 < 1 we denote by Lip7 the class of functions 
holomorphic on U for which there exists a constant M < oo such that \f(z) — /(w)| < 
M\z — vv|7 for all z, w G U. Clearly each such function extends continuously to the closed 
unit disc, on which it obeys the same modulus of continuity estimate. If, in addition, 
7 < 1 and for every e > 0 there exists 6 > 0 such that \f(z) ~/(w)| < e|z — vv|7 whenever 
\z — w| < 6, (a condition that is non-trivial only as z and w approach the boundary), then 
we say/ G lip7. 

The connection between Lipschitz classes and the Dirichlet space comes from the 
following result of Hardy and Littlewood, which ties the boundary smoothness of a 
holomorphic function to the growth of its derivative. 

LEMMA 2.1 ([4, THEOREM 5.1, P. 74]). Suppose/ is holomorphic on U and 0 < 7 < 
1. Thenf G Lip7 if and only if 

Moo0
f,,r) = o ( ^ ; ) 1 " 7 (r—1-). 

The corresponding result for lipa holds as well: just replace "big-oh" by "little-oh" in 
the growth condition. 

To observe this theorem in action, we turn to the work of Brown and Shields, who, 
in the course of proving that lacunary Dirichlet functions are multipliers, showed [3, 
Prop. 20] that each such function obeys the growth condition 

/ o
1 M ^ , , r ) ^ r < ( X ) . 

From this, and the fact that the sup-norm mean M^if^ r) increases with r, it follows 
easily that 

( 1 \ 1 / 2 

M00if',r) = o[j---J . 

Along with Lemma 2.1, this last estimate allowed Brown and Shields to conclude that: 
Every lacunary series in the Dirichlet space belongs to lipi/2-
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The goal of this section is twofold: We show that this last result does not have a 

"random" analogue, but that the slightly stronger hypothesis T,n\ogn\an\
2 < oo does 

imply that/^(z) G lip! /2 almost surely. Moreover, this sufficient condition is best possible 

in a very strong sense. 

We present this material in the more general setting of weighted Dirichlet spaces in 

order to emphasize how containments between the original spaces control smoothness 

of the resulting randomizations. The statements above represent the special case a = 1. 

THEOREM 3. Let 0 < a < 2 and letf(z, u) = Z e ^ o ^ z " , where {en} is a Bernoulli 

sequence of random variables. 

(a) If Y,na\ogn\an\
2 < oo, then almost surely 

Consequently ifa>0 then almost surely fu{z) G lipa/2-
(b) On the other hand, given a sequence cn \ 0, one can choose coefficients an > 0 

such that £ cnn
a \ogn\an\

2 < oo, but with 

/ 1 x l - a / 2 
Moo(X, r) ^ Ol J , almost surely. 

Consequently ifa>0 then almost surely f^iz) ^ Lip a /2 . 

Note that part (a) of this theorem shows that iff G £>a, then almost surely f^ G Lip7 

whenever! < a / 2 , while part (b) shows that this conclusion does not extend to 7 = a / 2 . 

The proof of part (a) of Theorem 3 follows closely that of the main theorem in Duren's 

paper [5], while the proof of part (b) follows that of Theorem 3.7 in Anderson, Clunie 

and Pommerenke [1]. For the sake of completeness, we present these arguments in some 

detail. Both rely upon the following fundamental estimate, due to Salem and Zygmund, 

of the size of the L°° norm of a random trigonometric polynomial: 

LEMMA 2.2 ([10, THEOREMS 4.3.1, 4.6.1, 4.9.9]). For ek(co) a Bernoulli sequence of 

random variables, consider the random Fourier series fu(Q) = Z)e^(o;)Q^, and let 

sn(oj, 6) be the n-th partial sum offu. Let 

( n 2 W 2 

On' lk«||2= (Z}k*| 

(a) There are constants Cu, depending on UJ but not on n, such that almost surely 

\\sn(v,')\\oo<Cu(logn)l'2an. 
(b) If in addition { Q } satisfies the regularity condition 

" |4 const, f^, 2 \2 

k=l n Kk=\ J 

then the opposite inequality holds: almost surely there are positive constants C'u such 

that ||5w(a;, -)||oo ^ Cj\o%ri)xl1onforn sufficiently large. 
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The proof given below of part (a) of Theorem 3 uses two other well-known inequalities 
which we list below for easy reference. 

LEMMA 2.3 (HILBERT'S INEQUALITY). For any sequence {bj} of complex numbers, 

| OO OO 1 I OO 

LEMMA 2.4 (BETA FUNCTION INEQUALITY). For x > 1 and a > 0, let 

P(x,a) = £f-\l-t)a-ldt. 

Then 

P(x,a)<Ca—, 
xa 

where Ca is a constant that depends only on a. 

We omit the proof of Hilbert's inequality, and instead refer the reader to [4, Corollary 
to Theorem 3.14, p. 48]. As for the beta function, it is well-known that (3(x,a) = 
r(x)V(a)/T(x + a), where T(z) is the gamma function. The desired inequality now 
follows from Stirling's formula. 

PROOF OF THEOREM 3. (a) Let/W(z) = E ±anz
n with 

^na\ogn\an\
2 < oo. 

Notice that 

where z = re . Let 

and let 

zf'UJ(z) = Y:^)nanr
nein\ 

l 

Sn(oj,0) = J2ek(Lu)kake
ike, 

k=\ 

n 
(72

n= ||5n(Lc;7-)||L2[0,27r] = E / : 2 |^ | 
k=\ 

By Lemma 2.2, there is an exceptional subset E C Q, of probability zero, such that for 
every u G Q\E, there is a constant C^, depending on UJ but not on n, such that 

max \Sn(uj, 0)\ < C^Gnfiogn. 
u 

For the rest of the proof of part (a) we fix a point uo £ E. For this particular UJ we are 
going to show that/L G lipa/2-

The first thing to note is that Sn is related to/^ by the formula 

OO 

^(z) = (l-r)J2Sn(cojy. 
n=\ 

https://doi.org/10.4153/CJM-1993-012-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-012-6


RANDOM DIRICHLET FUNCTIONS 263 

So for each 6 E [0,2TT], 

oo 

and so 
oo 

A M / » < CM - r^cjndogn)1^2/1-1. 

Now by the beta function inequality, 

jQ (1 -r)'-atAfoo(/i,r)]2dr < C 2 ^ (1 - r)3- a[5># I(log«)1 /V-1] rfr 

oo oo r\ 

= <Z'£Y;(<Tjyfaj)(<Tkyfak) (1 - ^ " V ^ 2 dr. 
j=\ k=l J{) 

OO OO / 1 \ 4~a 

Using respectively the fact thatj + k > 2y/]y/k, and Lemma 2.3, we see that the 
expression in the last line above is less than or equal to 

°° °° 1 ((Tjy/^fj\(aky/i^k\ ^ ^CTJlQgk 

Recall that a\ = Ej "2|<3«|2, so since 0 < a < 2, 

OO Jl -ailogk _ °° l o g * / * 2 | |2\ 

°° 2| | 2 / ° ° log* \ 

^ 2 ,2Cl0g« 
< 5 > \an\ —^r 

Cj2nalogn\an\
2<oo. 

(In the second line of this display we estimate the sum that involves (logk)/k3 a by an 
integral.) We conclude that 

jJ1( l -r)1- a[M0 0(f : ?r)]2Jr<cx) 
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To show that/^ £ lipa/2> notice that since M^if', r) is an increasing function of r, 

j\l-s)l-a[M00fas)]2ds > lMœ(f^r)]2 j\\-s)l-ads 

(I _ r\2-a 
= [ M o o ( / » r ~ 

2 — a 

But the left-hand side tends to 0 as r —-> 1, so 

Mc oCD-0(—J 1 \l-«/2 

If a > 0, then by Lemma 2.1,/^, G lipa/2> as promised. 

PROOF OF (b). Let {cn } be a sequence of positive constants, decreasing monotonically 
to 0. Choose integers {nk} (as in [1, Theorem 3.7]) which initially satisfy: 

• nQ = 1; 

• nk > 2nfc_i for & = 1,2, . . . ; 
• £(c„,) l / 2 < oo. 

Define an > 0 by a\ = 1 and 

2 1 

" X = —; 7 = ("*-i <n< nk). 
nklognky/c^ 

Then 
oo oo nk oo 

E c" f lnna log n < X; <V, log n* £ naa2
n < J2 y/c^ < oo. 

n=l k=\ n=nk_\+\ k=\ 

We will apply Lemma 2.2 to the Cesàro means of the partial sums of/^. Let 

ftk / j \ 

7 = 1 v nkJ 

Let crn = ||^n||2. Since nk > 2nk^\, 

L</< 

4 42 V 2 / nk\ognk^/c^ 

So 
GnkyJ\ognk > CXkn[l"a/2\ 

where Â  = (cnjt_, ) - 1 / 4 . Note that Xk —-» oo as k —» oo. 
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Furthermore, 

E ( l - ~ )j4al<(nk-nk-l)ni-2°- ' 
;=«t^+iV nk! n2

k(lognk)
2cni 

A 
nk 

< C^. 

In addition to the three original requirements placed on the sequence {n^}, let us 
further demand that it grow fast enough so that 

E (I-^)V«;>E(I-^)4A;. 

Thus 
^ 7 , 4 4 4 - - * J2d - ^ ) 4 A ; < 2c-
j=\ nk nk 

By Lemma 2.2 (see also [1, Lemma 3.3]), there are constants C^ (independent of/:) 
such that 

max \sn,(uj,6)\ > CuXkn~a/ 

for k sufficiently large, almost surely. But since {snk\ are Cesàro means of the partial 
sums of y£(z), 

max | snk (OJ, z) | < 4 max \ffe) |. 
\z\=l \z\=\-\/nk 

Letting rk = 1 — l/nh one has 

/ 1 x 1—a/2 

M X ^ ) > ^ A -T3— ) 

Since Â  —> oo, 

as |z| —> 1, almost surely. Again it follows from Lemma 2.1 that if a > Othen/^ ^ Lipa/2 

almost surely. • 

3. £ ±anz
n G Lipa/2 for no choice of signs. According to the work of the previous 

section, there are functions £ anz
n G £>a such that for almost every choice of signs, 

£ ±anz
n fi Lipa /2. In this section we show that more is true: 

THEOREM 4. Suppose 0 < a <2. Then there exists a function £ flnz
w E £>a i'wc/i f/zaf 

/or every choice of signs, £ ±awzw £ Lipa/2-

Since every lacunary series in CDa belongs to Lipa/2, the functions of Theorem 4 
cannot be lacunary (see Section 2). However the example produced in the proof is a 
"lacunary sum of lacunary polynomials." 

l-a/2 
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PROOF OF THEOREM 4. For any "sign sequence" e = ek, each of whose terms is +1 
or —1, and any holomorphic function/(z) = E^nZ*, write fe(z) = J2£nanz

n. Our example 
will be built from the functions 

gN(z) = N-^2-^2j:z2N+2J ( t f = l , 2 , . . . ) . 

which are easily seen to form a bounded orthogonal sequence in <Da. Thus if {Nk} is 
any strictly increasing sequence of positive integers, and {ak} any square summable 
sequence of complex numbers, the series E akgN

 W1U converge in <Da. In particular this 
is true of the function 

oo J 

k=\ K 

where Nk = 2k. This is the function that will occupy our attention for the rest of the 
section. 

We are going to show that for any sign sequence e, the function / does not be­
long to Lipa /2. To clarify the main points of the argument, we first consider only the 
"unperturbed" function/. 

For this proof it is convenient to replace the Hardy-Littlewood inequality employed 
in the previous section (Lemma 2.1) by a similar result that uses Cesàro means in place 
of restrictions to circles (i.e., Abel means). For/(z) = Hanz

n, let GN(J) denote the N-th 
Cesàro mean off: 

Then for 0 < 7 < 1, 

/ G L i p 7 4=^ \WN(ff)\\oo = 0(Nl~1) (tf—oo), 

where || ||oo is the norm of L°°(d U) ([16, Chapter VII, Example 14, p. 296] or see the 
paragraph at the end of the last section for the implication we are going to use). 

In what follows, the symbol C, with or without subscripts, will denote a positive 
universal constant, which may nevertheless change from line to line. When divided 
by z2 , both g'N and (T3.2N(gf

N) become Hadamard lacunary polynomials, so by Sidon's 
theorem [16, Chapter VI, Theorem 6.1, p. 247] the L°° norm of each is bounded below 
by a constant multiple of its £1 coefficient norm (the sum of the magnitudes of its Fourier 
coefficients). Since the lx coefficient norm is clearly an upper bound for the L°° norm, 
we have 

(1) C, VN • 2^al2)N < Wg'Jn < C2VN • 2(i~a^N. 

As for <73.2N(gJv), observe that if the integer y is in the "Fourier support" of g#, so 
that j < 2N+1, then the/'1 Cesàro coefficient multiplier for <J3.2N is 1 — J^J, which lies 
between 1 and 1/3. Thus 

ÔIISNIL < 11̂ 3-2̂ (̂ )11, < ll^lln 
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where || • ||, denotes the v coefficient norm. Thus the reasoning of the last paragraph 
yields 

(2) C, vft • l"-"!™ < |k3.2«(^)||oo < C2VN- 2(l~a/2)N. 

Fix a positive integer K; for simplicity of notation let us temporarily write a instead 
of C73.2%. Since 2Nk > 3 • 2NK for k > K, (this is where the definition Nk = 2k first plays 
a role), we see that a(gN ) = 0 for all k > K. Thus 

k=\ K 

from which follows 

Ik l̂loo > ^H^)lloo - E1 l̂k(4)lloo-

By (2) above, the first term on the right side of the last inequality is bounded below by a 
(universal) constant multiple of K~l y/Wic • 2(1_a/2)/v*. An upper bound for each term of 
the second sum is its £J coefficient norm, so 

h(g'Nt)\\oo < cVNk • 2< 'W 2 ^ (1 < k < K). 

Using this information in the least sophisticated way, we obtain 

lk(f)IU > G/r 1^-^ 1-" / 2^ 

= K~xVN^-^~al2)NK{Cx-C2'o(\)). 

Since C\ > 0, this implies that rr^~al2)\\an{f,)\\OQ —> oo as n runs through the subse­
quence {3 • 2NK}. The characterization of Lipschitz classes that was given above now 
shows that/ ^ Lip«/2-

What about the perturbations/ of/? The arguments just given depended only on the 
magnitudes of the Taylor coefficients of the polynomials gN, so the estimates obtained 
for these polynomials hold as well for each of their perturbations (gN)e- Since different 
polynomials gN involve distinct powers of z, we have / = T,k~l(gN )e for any sign 
sequence e. Thus the proof that/ ^ Lipa/2 proceeds exactly as it did for/. • 

ADDED IN PROOF. Professor J. M. Anderson has pointed out to us the following facts: 
(a) A known result on fractional integrals asserts that T.anz

n belongs to lipi/2 if 
and only if Y.n~x^an E A*, the "Little Zygmund Class." It follows that the question 
of whether or not random Dirichlet functions are a.s. in lipj i2 is equivalent to one 
raised in Anderson's paper [1] with Clunie and Pommerenke, and answered by them in 
Theorem 3.7 of that paper. 

(b) This question also appears as Question 17 in A. L. Shields's survey article Cyclic 
vectors in Banach spaces of analytic functions\ which appeared in the book Operators 
and Function Theory, S. C. Power, éd., Reidel 1985. 
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(c) Although we assert in §2 that the sufficient condition £(ralogn)\an\
2 < oo for a 

random power series E^„a„zn to a.s. belong to lipi/2 *
s best possible "in a very strong 

sense," there is in [1] a result equivalent to the fact that the stronger condition: 

SUP 2 (k\ogk)\an\
2 < oo 

n 2"<fc<2"+1 

is also sufficient. 
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