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DERIVATIONS FROM TOTALLY ORDERED
SEMIGROUP ALGEBRASINTO THEIR DUALS

T.D. BLACKMORE

ABsTRACT.  For a well-behaved measure i, on a locally compact totally ordered
set X, with continuous part ¢, we make LP(X, u¢) into a commutative Banach bimod-
ule over the totally ordered semigroup algebra LP(X, ), in such away that the natural
surjection from the algebra to the module is a bounded derivation. This gives rise to
bounded derivations from LP(X, u) into its dual module and in particular shows that
if uc isnot identically zero then LP(X, 1) is not weakly amenable. We show that all
bounded derivations from L1(X, 1) into its dual module arise in this way and also de-
scribe all bounded derivations from LP(X, i) into its dual for 1 < p < oo in the case
that X is compact and p continuous.

1. Introduction. A Banach algebra is said to be weakly amenable (WA) if all
bounded derivations from it into its dual module are inner. Weak amenability of L1-
algebrashasbeen considered by several authorsrecently. In[8], B. E. Johnson completed
some previous partial results of his by showing that L(G) is WA for all locally compact
groups. In [5], N. Groenbak described all bounded derivations from L1(R., w) into its
dual, showing that it is not WA for any weight w. In [3], the author considered the weak
amenability of ¢1(S) for several types of discrete semigroup S. In particular he showed
that for commutative Sthereis, at least often, a coincidencein Sbeing regular or not and
2%(S) being WA or not. These results perhaps suggest that whether an L -algebrais WA
or not is dependent on the algebraic properties of the underlying topological semigroup,
such as whether its elements are invertible or not, rather than any topological properties
of the semigroup.

Here we consider the weak amenability of LP-algebraswhose underlying semigroups
are totally ordered semigroups which are locally compact in their order topology. For
such asemigroup, X, we write M, (X) for the set of o-finite, regular, positive Borel mea-
sureson X and M (X) for the set of measuresin M..(X) which are supported on the whole
of X. For . € M«(X), with the order convolution defined below, L(X, 1) is a Banach
algebra, and if 4 isfinite, LP(X, 1) is a Banach algebrafor 1 < p < oo also (see [2]).
These algebras have been considered in [7], [11] and [2]. Now p € M.(X) hasa unique
decomposition, u = pc + pg, Where pc is continuous, pg is discrete and both are in
M. (X). In Section 3 we show that for each 1 < p < oo and iz € M (X), LP(X, 1) is WA
if and only if uc = 0 (where of course we assume p finite for 1 < p < oco). Here then
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the weak amenability of L1(X, 1) reflects the topological, not the algebraic, structure of
X. In his article in [10], Lau expressed an interest in the weak amenability of M(S) for
locally compact, semitopological semigroups S(Problem 24). Our resultsimply that if X
isdiscretethen M(X) isWA, and if thereis a non-discrete measure i in M (X) then M(X)
contains a subalgebrawhich is not WA (LY(X, 1)).

In Section 4 we go on to describe all bounded derivations from L1(X, 1) into its dual
and in Section 5 by a(necessarily inthecases1 < p < 00) different method we describe
all the bounded derivationsfrom LP(X, ) into its dual when X is compact and . continu-
ous. Thusthese sectionsdescribe fully the 1-dimensional cohomology group of LP(X, 1)
with coefficientsin LP(X, p)* for their respective cases.

2. Preliminaries. Our basic objects are totally ordered sets with their order topol-
ogy (as described in [9]), which is Hausdorff. For such sets we use the usual interval
notation. We shall require these sets to be order complete so that the compact subsets
are the closed and bounded ones and we have local compactness. With maximum mul-
tiplication these spaces become topological semigroups. We refer to such semigroups as
totally ordered semigroups. If X is atotally ordered semigroup and ;. € M (X) (defined
in the introduction) then, asin [2], the order convolution of two p-integrable functions,
f and g, isgiven by

2000 =00 | o du(+g() [ f(u)du(u).
Asnoted in the introduction it was shown in [2], that taking multiplication to be convo-
lution, L1(X, ) is a commutative Banach algebra and LP(X, ) is a Banach algebra for
1< p < oxoif (and only if) p isfinite. Thuswhen considering LP(X, i) for 1 < p < oo
we will assumethat . isfinite.

For definitions relating to Banach algebras not given here we refer the reader to [6].
The notion of weak amenability of a commutative Banach algebrawasintroducedin[1].
Suchan algebra, A, issaid to beweakly amenable (WA), if each bounded derivation from
A into any commutative Banach bimodule is 0. It was shown in the same paper that a
commutative Banach algebra, A, is WA if (and only if) all bounded derivations from A
into its dual module are zero. That isif each bounded linear map, D, from Ato A*, which
satisfies the derivation equality,

D(ab)(c) = D(a)(bc) + D(b)(ca),

is zero. Since this later characterisation has anatural extension to non-commutative Ba-
nach algebrasit is the way weak amenability is normally studied.

We note that the dual of LP(X, ) is L9(X, 1), where 1 < p < oo and %) + % =1, and
since we are only considering o-finite measures the dual of L(X, 1) is L(X, 1). The
o-finiteness also means that we are free to use Fubini’s theorem.
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3. Weak amenability of totally ordered semigroup algebras. We reiterate that
unless otherwise stated X is atotally ordered semigroup and 1, ac-finite (finite when we
areconsidering LP(X, ) for 1 < p < 00), regular, Borel measure supported onthewhole
of X. For such ameasure, 1, the measure of any u-measurable set can be approximated
from below by the measures of compact subsets. That isto say . is compact regular. We
begin this section by stating two results which are special cases of remarksgivenin[2].
For afixed measure n we use || - ||, to denote the normin LP(X, ) and for afixed p we
use|| - ||, to denotethe normin LP(X, p1).

PrROPOSITION 3.1. Iff € LP(X,p) for any1 < p < oo thenf € LY(X, i) and
IFll2 < p(X)3[IF |, where & + & = 1.
ProPOSITION 3.2. For1 < p<ooandf,g e LP(X, p),

./(mx) P gu) du(u) = ./(730,x) f(u) du(u) /HO’X) g(u) du(u).

As noted in the introduction a measure ;. € M. (X) has a decomposition, u = pc + pq,
where p¢ is continuous, pq discrete and both are in M. (X). We make LP(X, pc) into a
commutative Banach bimodule over LP(X, u). So for f € LP(X, ) and g € LP(X, puc) we
defineright and left actions,

o0 =0g0f( =009 [ f(Wdu(u).

Now

p p
et < [ 1909P( ()] due)) e
YA

He

i

o) [ fdu()

whereC = 1lifp=1andC = u(X)g if p > 1, by Proposition 3.1. Thus - and o are
bounded bilinear maps from respectively LP(X, u) x LP(X, uc) and LP(X, uc) x LP(X, w)
into LP(X, uc). Alsofor f,g € LP(X, 1) and h € LP(X, uc) we have by Proposition 3.2,

(Fxg)-he)= [ fWdu) [ o) du(h(

= )., T du@- MK =1 (@MY,
Similarly ho (f xg) = (hof) og. Finaly for f,h € LP(X, 1) and g € LP(X, pc),
(t-goht=[ (ol hu)duw)="f(@oh.

Hence LP(X, ) isin thisway a commutative Banach bimodule over LP(X, ).

Now leti: LP(X, u) — LP(X, uc) takethe equivalenceclasscontaining f to the equiv-
alenceclasscontainingf. Theni(f x g)(x) — (i(f) o g+ -i(g) ) (¥) = F(x)a()u({x}). Since
p({x}) > Ofor at most countably many x € X, wehavethati(f xg) = i(f)og+f -i(g) and
i isabounded derivation. If p isnon-zero it will be non-zero on a compact subset K of
X. The characteristic function of K isin LP(X, 1) and so i will be non-zero. This proves
one half of

https://doi.org/10.4153/CMB-1997-016-9 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1997-016-9

136 T.D. BLACKMORE

THEOREM 3.3. For atotally ordered semigroup X and i € M (X), with continuous
part uc, the totally ordered semigroup algebra LP(X, 1) isWAif and only if uc =0

ProOF. We need to provethat if u. = 0then LP(X, 1) isWA. Now if pc = Othen i
will be concentrated on the countableset P = {x € X : u({x}) > 0}. Thus, denoting the
point mass at X € X by x also, it is enough to show that D(x)(y) = O for all derivations
D from LP(X, ) toitsdual and al x,y € P. If x <y € P, thenxxy = p({x})y and
the derivation equality, gives that p({y})D(X)(27 = 0. Hence D(x)(z2) = O whenever
X <zeP.Puttingx =y >z € P givesthat D(x)(2) = 0for x > zaso. L]

4. Thebounded derivations from L(X, ) to L*(X, ). Asnoted in the prelimi-
naries, weak amenability isnormally studied by considering bounded derivationsfrom a
Banach algebrainto its dual. Following the construction givenin [1] the derivation from
LP(X, p) into LP(X, uc) displayed in the last section gives rise to bounded derivations
from LP(X, i) into its dua, L9(X, i), of the form,

DA(F)(@ = A(9-i(N) = [ AWM [ o) dua(W) duc()

for each A € LI(X, uc), f,g € LP(X, ).

In this section we show that all the bounded derivations from L1(X, 1) into L*(X, 1)
are of this form. Similarly to [8] we are able to write a bounded derivation as a double
integral.

Thus we start with an arbitrary bounded derivation D: L*(X, ) — L*°(X, ). Then
defining /\((f,g)) = D(f)(g) gives a bounded bilinear map from L1(X, u) x L*(X, u)
to C. This then ‘extends’ to a bounded linear functional (which we also denote A) on
LY(X, )®LL(X, ). Now by Grothendieck’swell-known result this tensor product isiso-
metrically isomorphic to LYX(X x X, u x p), so that A can be thought of as being in
L®(X x X, p X ). Then

D@ = A((F,9) = AT @) = [ [ A(61))T0I9) du() du(y).
Hencefor f,g,h € LY(X, p),
D+ Q) = [ f )., Mx)hO) 099() dha(w) du) du(y)
) / A% ) N)IOOT (1) dr(u) du(x) du(y)

and we have similar expressionsfor D(f)(g x h) and D(g)(f * h).
Now taking ¢ < d < a < b the derivation equality implies that

S MO [ [ A(6,)) I () () du(y) = O

for al f,g,h € LY(X, 1) (consider f, g, h vanishing almost everywhere outside of [a, b),
(c,d) and [d, @] respectively). Thus

(1) if u(d,a]) > 0then A((x,y)) = 0 almost everywhereon (c,d) x [a,b).
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We wish to show that this implies that A is zero ailmost everywhere on the set L =
{(x,y) € X x X : x < y}. In doing this we need to take care near the diagonal and so we
defineM = {(x,y) € L : (x,y) # (0} (note we are using (x, y) to denote a point in X x X
and aninterval in X), and N = {(x,y) € L : (x,y) = 0 and u({y}) > 0}. We note that
these setsare measurableand that L\ (MUN) hasmeasure zero. It isstraightforward using
(2) to find an open neighbourhood of each point of M and N on which A is zero aimost
everywhere. For example take (x,y) € M such that thereisu € (x,y) with (x,u) # 0,
say v € (x,u). Then if (x,v) and (v, u) are empty we have p({v}) > 0 and we can take
(c,v) x (v, u) (or [x,V) x (v,u) if xis minimal) as our neighbourhood. If (v, u) # () then
u([v,u]) > 0 and our neighbourhood can be taken to be (c,v) x (u,b). Finaly for this
example if (x,v) # 0takew € (x,V), thenv € (w,u) so that u([w,u]) > 0 and our
neighbourhood can be taken to be (¢, w) x (u, b).

The existence of such neighbourhoods of each point and the compact regularity of
then meansthat A is zero almost everywhere on L which implies that

@ Sy M) (X9) A9 du(y) = O
and so
©) DO = | [, M0y)Fay) du() ducy)

= J oy MO)FOI8Y) diy) du(9).

Next taking f, g and h to be zero outside of [a,b), [d, a] and (c, d] respectively, the
derivation equality together with (2) and the easy fact that if 1({x}) > OthenA(x,x) = 0
imply that

St ety S0 )G CON(Y) () () )
= ‘/(c,d] ‘/[m /[d,a] A((x 1)) () ()h(y) dya(U) da(x) dya(y)
and so defining A((y, u,x)) = A((x,y)) — A((x ), we have
(4) K((y, u,x)) = 0 almost everywhereon (c,d] x [d, a] x [a,b).

Again considering separate casesit is straightforward, using (4), to find an open neigh-
bourhood of each point of {(y,u,x) € Xx X x X :y < u < x} onwhich A iszero almost
everywhere.

Thus using the compact regularity of 1 again we get

Sy g MO U X)F @GN dia(W) du(y) dr() = O
for all f,g,h € L1(X, ) which implies that

) Sy o NG X)FG) (W) diy) = O

https://doi.org/10.4153/CMB-1997-016-9 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1997-016-9

138 T.D. BLACKMORE

for amost al x € X. Let R be the set of measure zero for which (5) does not hold
for x € R Then for x ¢ R thereis a set R, of measure zero for which whenevery
(—00,%) \ Re, iy K((y, u,x))f(u) du(u) = 0. Thenforx ¢ R,y € (—00,X) \ Ry, thereis
aset Ry of measure zero for which whenever u € (y,X) \ Ry, A((y, u,X)) = 0, that
isA((xY)) = A((x ).

We now define A from X to C, ameasurable bounded almost everywherefunction. We
first defineit on X \ R and for now assume that X has not got aminimal element. Then
p((—00,%)) > Ofor all x € X\ Rand thereisyy € (—00,X) \ R with ([yx, X)) > 0. For
x € X\Rput A(9) = A((x, ¥x)) and Uy = {u € (—o0,X)\R: A(U) # A((x,U)) }. ThenUy
is measurable and we show that it has measure zero. TakeK to be acompact subset of Uy
which then has aminimal element k and amaximal element k'. Since 11((—o0,k)) > 0
thereisy € (—oo, k) \ R (so that 1i((y,x)) > 0). Thenwe have

A((x W) = A((xy)) for al u € (y,X) \ Ry

and

A1) = A((x, ) for all u € (v, %) \ Ry,

Taking Ux € (¥, %) N (Yx, X) \ (Riyx U Rixy,)) GivVesA(x) = A((X, Ux)) = /\((X, Y)) and thus
AX) = /\((x, u)) for al u € (y,X) \ Ry and so certainly for u € [k k'] \ Rxy). ThusK
and hence Uy has measure zero. Associating with X its element in L*°(X, 1) then gives

Je Jes g MD)W du) ) = [ [ MFRISY) dua) dha(x)

forall f,g € LY(X, w).

If X hasaminimal element, X’ say, then put X’ = X\ {x'}. If u({x'}) = OthenX’ hasno
minimal element so that A can be defined asabove on X’ and extended to X arbitrarily. If
X issuchthat u({x'}) > Othendefine A by A(x) = A((x,X)). Sincex’ ¢ R foranyx € R
wehave A(x) = A((xy)) forall'y € (X, %)\ Ryx) and hencefor all y € (—00,X) \ Ry).

Thus (3) together with the fact that A((x,x)) = 0if p({x}) > O impliesthat

DY) = [, ., AR RIF) du(y) dia(¥).

Finally again using the derivation equality, thistime with functions f, g and h vanish-
ing outside of {a}, {a} and [c, a) respectively, it can be seen that if u({a}) > O then the
mapy — /\((a, y)) is zero almost everywhere on compact subsets of (—oo, a) and hence
on (—oo, a). Thus

Je o M9 (00) diy) o) =

where 4 isthe discrete part of u. Thus we have,
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THEOREM 4.1. For X a totally ordered semigroup and i € M (X), the bounded
derivationsfrom L1(X, 1) into L=(X, 1) are of the form

DY) = [, [ ., ARG duy) dhrc()
where A € L>(X, p).

REMARK 4.2. Reversing the order of integration in the statement of Theorem 4.1
givesthat D(f)(y) = Jiy,00) AX)f(X) dpc(X) for aimost all y. Thus D maps L(X, p) into the
space of bounded continuous functions from X to C.

5. The bounded derivations from LP([0, 1], m) into its dual for 1 < p < oo.
Throughout this section m will denote Lebesgue measure on [0, 1] and we write dx for
dm(x). We denote the monomial x — X" by x", so that 1 = x°. In this section we de-
scribe the bounded derivations from LP([0, 1], m) into its dual, L9([0, 1], m), for all rele-
vant p. This gives as a corollary the bounded derivations from LP(X, ) into its dual for
all compact X and continuous .. Central to the last section was that to a bounded linear
map T from L(X, ) into L°(X, ) is associated a A € L>®°(X x X, u x ) for which
T(E)(@) = xS A ))F(Igy) du(x) du(y), for all f,g € LX(X, ). For p > 1 nosim-
ilar map may exist for bounded linear maps from LP(X, p) into its dual. It is finding a
map to play the role that \ played in the last section that is the main problem here. We
proceed with a series of lemmas. In the statements of these D is a bounded derivation
from LP([0, 1], m) into L([O, 1], m).

LEMMA 5.1. For I,n € No, D(X)(x") = B1p(1)(x*n).

n+l
PrROOF. The proof is a straightforward proof by induction on|. ]
For the rest of this section if f € LP(X, 1), then F will denote the function x +—
Ji=oo F(U) duu(u) andif f isequal almost everywhereto adifferentiable function then we
denote the derivative of the differentiable function in the equivalence class containing f
by f’.

LEMMA 5.2 For polynomialsf and g, D(f)(g) = D(1)((fG)').
Proor. Wehaveforl € Ngandr € N,

DE)((¢)) = rDE) ) = (1 + DD = D)),

Thus for a polynomial g we have D(x')(g') = D(1)((Xg)') — g(OD(1)((X)'). Since a
polynomial h can bewritten asthe derivative of another polynomial g for whichg(0) = 0
we get D(x')(h) = D(1)((x'H)’). The result follows since D, D(1) and differentiation are
linear maps. ]

LEMMA 5.3. Define ) by ¢(X) = xD(1)(X). Then there exists § € L9([0, 1], m) such
that v is equal almost everywhere to a function, o, for which o(x) = J36(u)du and
o(l) =0.

PROOF.  Weshow that any function, ¢, satisfying | ¢ (U)f’(u) du < K||f ||, for some
K € R and al polynomials f, satisfies the conclusion of the lemma. Under the initial
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condition on ¢, f — J3 ¢ (u)f’(u) du is abounded linear functional on the polynomials,
which then has a continuouslinear extension to afunction, ¢ say, in L9([0, 1], m). Hence

1 , 1
/0 o(U)f'(U)du = /0 H(U)f(U)du

for all polynomialsf. Put | equal to the absolutely continuous function given by 1(x) =
J3 ¢(u) du. Integrating by parts gives,

@) = [ o@f@du+ [ Wdu= [ (o +1W)W)dy,

for al polynomials f. Since changing a polynomial by a constant does not effect its
derivative we get then that 1(1) = O and

[ e @du= [ (~1)f(wdu

for all polynomialsf. Hence ¢ (u) = —I(u) = Jg —&(u) du.

We now need to show that ¢ as defined in the statement satisfies the condition
given on ¢ above. This follows since Lemma 5.2 and the product rule give D(f)(1)
= D(1)((xf)’) = D(1)(xf")+D(1)(f) for all polymonialsf so that }fol D(L)(u)uf’(u) du‘ <
2/|D][ [Iflp- .

LEMMA 5.4. For polynomials f and g, there exists a A such that D(f)(g) =
J3 A(u)f (U)G(u) du and AG € L9([0, 1], m).

PROOF. Let ¢ and o be asin the statement of Lemma 5.3. Define ¢(x) = o(x)/x for
x € (0,1] and let ¢, be the restriction of ¢ to [%, 1]. Then ¢, is absolutely continuous
and so we can integrate by partsto get,

© J ont916) (90 = on(WIWG — a1 (F)(3) — [} orwrc0ax.

n
Now ¢n(1) = 0 for each n and writing G(x) = xh(x) for some polynomial h we have
on(DF()G(E) = o(2)f(2)h(2) — 0. Also since each ¢, is differentiable almost ev-
erywhere on [r—l] , 1], ¢ isdifferentiable almost everywhere on [0, 1], and the product rule
givesa’(X) = x¢’(X) + ¢(x) for amost all x € [0, 1]. Now ¢’ and ¢ can both be regarded
aselements of L9([0, 1], m) and so x — X¢'(X) can also, and in particular it isintegrable.
Thensincefhisbounded, f§ ¢’ (X)fG(x) dx = J& ¢(X)xf (X)h(x) dx is finite and so the RHS
of (6) convergesto it. Similarly the finiteness of J3 #(x)(fG)'(X) dx will ensure that the
LHS of (6) will convergeto it. Hence we have

1 1
D(f)(9) = D)((1G)) = [ 0)(E) () dx = [ o' ()fG(4) dx.
Thuswe put A = —¢’. We know that x — x¢’(x) isin L9([0, 1], m) and so again writing

for a polynomial g, G(x) = xh(x) for some polynomial h, we get that A\G < L9([0, 1], m)
for each polynomial g. ]
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Now for a Borel measurable function )\, a sufficient condition that

™ D@ = [ ARG dx

defines a bounded derivation from LP([0, 1], m) into L9([0, 1], m) is that thereisK € R
such that for all g € LP([0, 1], m), AG € LY([0, 1], m) and || AG||q < K]|g]|,. We denote
the set of all such Borel measurable A by L(p). In extending Lemma 5.4 to apply to all
f,g € LP([0, 1], m) we show that A being in L (p) is also a necessary condition for (7) to
define a bounded derivation.

THEOREM 5.5, For 1 < p < 0o, amap D fromLP([0, 1], m) into itsdual isa bounded
derivation if and only if thereis A € L(p) with

D()(@) = [ A0F() [ aly) dyce
9=l Jo VY
for all f,g € LP([0, 1], m).
PrROOF. The'if’ part follows from the discussion before the statement. So we start
with D, a bounded derivation from LP([0, 1], m) into L9([0, 1], m) and let A be as in the

statement of Lemma 5.4. Now for a sequence of polynomials (f,) converging to f in
LP([0, 1], m), we have for polynomialsg,

|./01>\(X)G(x)(fn(x) —109) x| < [|AG]lq [fa — |y — O

so that D(f)(g) = J3 A(})f (X)G(x) dx for all f € LP([0, 1], m) and polynomialsg.

We next show that AG € L9([0, 1], m) for al g € LP([0, 1], m). Sofix g € LP([0, 1], m)
and et (gn) beasequenceof polynomialstendingto g. Now for| € N, [} |A\(X)|9 dx < oo,
so that for f € LP([0, 1], m), '

1
A 09( 609 — Gr)

1
< J; INf ] dx lgn — gllp — O

asnh — oo. Therefore putting fi = fX[Tl 1 and I, (f) = S A(X)f (X)G(x) dx, we have
’ I

D(i)(@) = Jim D)@ = lim [ AR (Gn() dx = IyF).

Thus, sincef; tendsto f in LP([O, 1], m), it follows that I;(f) tends to D(f)(g) as| — oo.
Now I; is a bounded linear function on LP([0, 1], m) with norm (1 [A(})G()|? dx)%.
Thus the Banach-Steinhaus theorem together with Fatou's Iemmalgives that A\G €
L9([0, 1], m). It then follows that I;(f) will converge to J3 A(X)f (X)G(X) dx for each f €
LP([0, 1], m). Finally [|G]q < [|D] [|g]lp and A € L(p). .

In[2] it was shown that if X isacompact totally ordered semigroup and p a continu-
ous measurethen LP(X, 1) isisomorphicto LP([0, 1], m). Thus, for such X and 1, defining
L(X, 1, p) to be the set of Borel measurable functions A for which AG € L9(X, 1) and
|IAG|lq < K]||g||p for someK € Rand al g € LP(X, 1), we have an immediate generali-
sation of the theorem.
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COROLLARY 5.6. If X isa compact totally ordered semigroup and p a continuous
measure in M (X) then for 1 < p < oo the bounded derivations from LP(X, 1) into
L9(X, ) are of the form

DG = [ AR [ 90 duty) du)
for some A € L(X, u, p).

We finish by remarking that L(X, 1, 1) can be identified with L>(X, 1) and so we
have another proof of the results of the last section in the case that X is compact and
continuous. (Therolethat thefunction whichisidentically 1 playedin this section means
it isnot likely that the techniques used here could be used to prove the results of the last
section in their full generality.) A more intrinsic description of L (p) in the casesp > 1
does not seem as tractable. Certainly x — )\(x)x%l being in LY([0, 1], m) is a sufficient
condition on A for it to bein L (p) and x — A(x)x%|+‘ beingin LY([0, 1], m) for eache > 0
is a necessary condition for \ to bein L(p). Whether more than this can be said we do
not know.
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