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Abstract

Several papers have highlighted the potential of network science to appeal to a younger audience of high
school children and provided lesson material on network science for high school children. However, net-
work science also provides a great topic for outreach activities for primary school children. Therefore,
this article gives a short summary of an outreach activity on network science for primary school chil-
dren aged 8-12 years. The material provided in this article contains presentation material for a lesson of
approximately 1 hour, including experiments, exercises, and quizzes, which can be used by other scientists
interested in popularizing network science. We then discuss the lessons learned from this material.
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1. Introduction

Network science has proven a highly valuable tool in many fields of applications in the previous
years, ranging from social media networks to the brain or epidemic spreading. This wide applica-
bility of networks makes it a highly valuable resource for outreach activities for any audience, as it
is virtually always possible to find a networking application that appeals to the intended audience.
Several resources for outreach material on network science exist, often focusing at a younger audi-
ence. These materials enable other scientists to reach out to, for example, school children in their
own neighborhood without much preparatory work. Most existing materials focus on children in
high school (Klimm & Maier, 2020; Cramer et al., 2015; Harrington et al., 2013; Sayama et al.,
2017). The described outreach events usually consist of a presentation, followed by exercises on
various network science-related topics, such as disease spreading or centrality, with pen and paper
or even in Python (Klimm & Maier, 2020).

However, network science can be a very suitable topic for primary school children as well.
Indeed, network science has several applications in areas close to small children’s interests, and
graphs are easy to visualize, making it a more tangible topic than many other mathematical top-
ics. However, most existing material for older children often contains more mathematical details
than children of primary schools have learned. Indeed, most children at this age have not learned
the concept of a variable yet and are not yet able to read and understand even simple equations.
Furthermore, the younger age of the participants makes it necessary to stick to shorter lessons,
containing more interactive moments than for older children.

This commentary shows that these hurdles are not too difficult to overcome when adjusting
the content of such materials and provides lesson material intended for primary school children.
These materials form a 1-hour, prepared lesson plan that can be used by other network scientists
interested in popularizing their field.
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Figure 1. The network on which we applied Dijkstra’s algorithm. The left upper building represents the school, and the right
bottom building represents home. The numbers next to the roads indicate their lengths. The aim was to find the shortest
path from home to school.

In particular, the material was developed for two 1-hour classes at the NEMO Science museum
in Amsterdam, the Netherlands. The science museum provides such children’s lectures every
month, with topics from all sciences. Earlier topics of children’s lectures included, for example, the
ages of stars in the universe, whether robots can have feelings or how bees cooperate all children
aged 8-12 years are welcome at these lectures.

In Section 2, we discuss these materials and the topics we discussed during these classes, and
we describe the interactive moments that consisted of exercises, experiments, and quizzes. In
Section 3, we evaluate to what extent they were successful or might need further improvements.
All material including slides, exercises, and experiments are described in this commentary and are
available at (Stegehuis, 2021).

2. Contents

The material focused on choosing the fastest route through a network. To make the topic close
to the children’s own world, we related the topic to finding the shortest route from your home to
your school. We then chose three topics from network science and graph theory that fit well to
this topic: Dijkstras algorithm (how to find the shortest route from home to school from a map?),
the Braess’ paradox (how to find the shortest route from school to home when there is traffic?),
and the traveling salesman problem (how to find the shortest route with intermediate stops?). All
three main topics contained some interactive elements, which we will describe below.

2.1 Dijkstra’s algorithm

After first explaining the general concept of a network, we provided all children with a network
of roads of a city, on which a home and a school were portrayed. All edges in the network were
weighted with the length of the road, as in Figure 1. First, all children were asked to find the
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Figure 2. The first network for the Braess’ paradox we drew on the ground. The edge weights denote the travel times along
the specific road segment. Here, N is the number of cars that take the road segment. Thus, in the upper left road segment,
the travel time is equal to the number of cars that pass the segment.

shortest route from school to home by themselves. Afterward, we discussed the results. Who
thought they had the shortest route? And how certain were they?

Then, we discussed what algorithms are and together ran Dijkstra’s algorithm on pen and paper.
We explained the algorithm while going through the steps together. The same map that the chil-
dren already had was now on a large flipover. Together, we calculated through Dijkstra’s algorithm.
The children could together look for the vertex on the map with the lowest number so far and cir-
cle it with red. Then, we checked the neighbors of this vertex with the lowest value. Finally, we
showed an interactive simulation of Dijkstra’s algorithm on the Ducth city of Briel (Fitzner, 2021),
where one child could choose a destination point, and the simulation ran the algorithm to find the
shortest route to it. The children were particularly impressed with this simulation and had many
questions on how this could work so fast in an actual computer.

2.2 Braess paradox

The second topic on finding the shortest route was related to the question: “what happens when
school gets out, and all children want to go home at the same time?” In other words: how do we
choose the shortest way home when there is a possible traffic delay? This relates to the graph-
theoretical Braess paradox, where adding more roads can make traffic worse.

To let the children figure this out by themselves, we enacted Braess’ paradox live in an exper-
iment. We taped two types of road onto the floor, as shown in Figure 2. As children in this age
category usually have not learned the concept of a variable yet, we made the example containing
a Braess paradox as simple as possible. For example, whereas typical examples of the Braess para-
dox make travel times more realistic by having its travel time 10 + N/100, for example, when 100
cars are there in total, we stuck to just using N as travel time and made the maximal value of N
sufficiently small to give easy computations. In this way, we could explain the variable N by just
saying that “if eight people choose this road, it will take them eight minutes,” and “if two people
choose this road, it will take them two minutes.” This was something that all children in this age
group seemed to comprehend well.

Then, 10 children were invited to enact the Braess paradox live. They were asked to stand in
line behind one another. Then, one by one, they could choose one of the two roads and stand
still halfway the road so that everyone could see which road they had taken. After all 10 children
had chosen the roads, some children in the audience calculated how long the children that took
the bottom road had to travel and how long the children that took the top road had to travel.
We then asked some children who were enacting the Braess paradox if they would like to make a
different choice. For example, if we just calculated that the children that took the top road had to
travel for 23 minutes and the others had to travel for 17 minutes, some of the children who took
the top road wanted to switch. Then, they could switch roads and children in the audience again
calculated how long everyone had to travel. This process continued until all children were satisfied
with their choice (so five at the bottom road and five at the top road). In this setting, all children
chose a road that took 20 minutes.
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Figure 3. The second network for the Braess’ paradox we drew on the ground.

Figure 4. The network example for the traveling salesman
example. The goal was to find the shortest route, starting from
the boat with the presents, then visiting all houses to deliver the
presents. The red route is the shortest one, but how many routes
are possible from the boat to these four presents?

After that, we presented the situation where an extra road on the middle was added in the same
way (see Figure 3). Children could again pick their favorite road, and afterward we checked if there
was a shorter route for them. Now, all children took the N-roads and the new road so that now all
children chose a road that took them 21 minutes.

We then discussed why this is weird and how this is possible and showed some examples of
the Braess paradox in reality. The concept of the Braess paradox seemed to be quite easy to grasp
for some of the children but more difficult for others. However, all children participated very
actively in the afterward discussion on what to do with roads that are not necessary for improving
traffic.

2.3 Traveling salesman problem

The final topic of the class covered the traveling salesman problem. Here, we related it to the topic
of visiting all favorite attractions in a theme park, or Santa Claus having to deliver presents to
many homes. We quickly turned to the problem of counting how many possible routes there are
to deliver all presents and then return home. There were two quizzes, one asked to compute all
possible routes for a small number of nodes, as shown in Figure 4. In this example, the children
could actually compute the correct answer of 24. The second quiz was about how many routs
exist to visit 20 nodes. Here, most children got very excited, as some very large numbers appeared
as options. We then computed together how long a computer that would be able to compute 10°
such routes in a second would take to compute the length of all possible routes. We ended with the
millennium problems of the Clay Mathematics Institute that were introduced at the beginning of
the new millennium in 2000, These included seven important unsolved mathematical problems,
of which the P versus NP problem is one. The person who solves one of these problems gets
awarded one million dollars. For the purpose of this children’s lecture, we only stated that by
solving the traveling salesman problem or by showing that this is not possible, one million dollars
can be won and did not get into the generality of the P versus NP problem.
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3. Discussion

In general, the presented topics that are a very small selection of topics from network science
proved to be a suitable topic even for young children aged 8-12 years. Even though there is quite
some mathematical content behind these topics, the children grasped the meaning of the content
quite easily and figured out the answers to most of the interactive questions quite independently.

The children who attended the lecture were extremely enthusiastic and had many questions.
In fact, during any moment in the two classes, there was always at least one child with a raised
hand, wanting to share something. These questions/remarks were not always related to the content
material, but it shows that at this age group, there is a large enthusiasm for learning something
new. To be able to still finish in time, we stated at the beginning of the class that children could
always raise their hands, but that it would not always be possible to answer all questions during
the class, but that children could always ask their questions later. This turned out to be useful, as
there were definitely too many questions to cover during the class. An alternative method would
be to run such a class with more teachers and discuss children’s questions in smaller groups to
be able to answer all of them or to discuss them together. Questions that were asked ranged from
“Can we use a pen in my favorite color on the flip over now?” to “What if my house is adjacent to
a road which is not necessary to improve traffic? How would you then get home?” to “Can we not
use drones instead of cars to solve the traveling salesman problem? In that case, we do not need to
use roads anymore.” These questions led to some small discussions on how this would change the
problems we discussed.

The level of the content material seemed to be appropriate for most children who attended the
class. The experiment with the Braess paradox went very smoothly, even though at these ages,
children have not even learned to concept of a variable yet. Still, when explaining the meaning
of the variable N in the Braess paradox, most children quickly saw what the correct result would
be, and the experiment only took a few iterations to converge to the correct answer. Some 7-year-
old children were also present at one of the classes, and they had more trouble in understanding
the material. Still, these children asked many questions and remained active throughout the class.
Specifically, the example in Dijkstra’s algorithm requires the children to be able to sum several
numbers together. In the Dutch educational system, learning how to calculate typically starts at
the of age 6 years, which explains why 8-year-olds in this particular setting were better equipped
to understand and join in on the part about Dijkstra’s algorithm.

Dijkstra’s algorithm would probably have been easier to grasp on a smaller network example,
but in that case it would have been too easy for the children to find the shortest route by them-
selves. To make this part of the class quicker, one could do only the first steps together and prepare
a second flipover with the finished algorithm on it to show the final results.

Furthermore, the traveling salesman problem could also have been replaced with an application
of finding Hamilton tours in a network, where they have to check if there is any tour that passes
through all nodes and crosses each edge only once. In application, this could be similar: visiting
all attractions of a theme park, while also visiting its beautiful lanes only once. This can be made
more tangible also to younger children, by physically giving them a drawing of a network, and
some buttons and ropes or so that can be put on the nodes edges. Then, they can remove each
node and edge when they visit it, to see whether they are able to go through the entire network or
if they get stuck. This is a more tangible exercise than in the current version of the lesson when
the traveling salesman problem was covered.

In this particular age group, it is even more important than for high school students to keep
them as active as possible, as the attention span of such young children is quite short (Moyer and
von Haller Gilmer, 1954; Donnelly & Lambourne, 2011). We therefore started with some jumping
around to make it easier for the students to sit still afterward for some time. After the first two
topics, we repeated this. This turned out to be quite useful, because after 45 minutes, some children
found it difficult to keep concentrated. Other sources of distraction could of course also be used,
such as watching a short video, taking a small break or by including a more creative component
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at that time instead (such as drawing the most beautiful network you can think of) (Geri et al.,
2017). Furthermore, we created many small interaction moments, some on topic, and some less so
where we discussed what the children knew or thought about the topic in general. Some examples
of such questions are in Appendix A, but it is not difficult to generate many more such questions
from any given presentation slide.

Finally, this experience leads us to believe that many other network science-related topics can
be easily presented to a younger audience as well. Examples close to this topic is the seven bridges
of Konigsberg by Euler, or Hamiltonian tours or cycles, where it is easy to make small puzzles
for children to find such possible tours themselves. Other topics from a different perspective of
network science that could be introduced to young children include simple examples of influence
maximization. Here, one could show visualizations and include games where one has to draw
the network connections such that a process can spread on the network?. Other topics include
centrality (who is the most important character in a movie) or network visualization. We therefore
encourage other mathematicians and network scientists to use and/or adapt this material for their
own purposes, or to share their own material, as has often been done with lesson material for older
children (Klimm & Maier, 2020; Cramer et al., 2015; Harrington et al., 2013).

Data availability statement. The materials described in this manuscript are available online (see references).
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Appendix A. Examples of small interaction questions

These are some examples of small questions that can be used to activate the children throughout the class. Many more possible
options for questions can of course also be used.
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o What do you think mathematics is?

» Why could it be important to find the shortest route?

o Which city is pictured here?

» What would you do with a road that turned out to bad for traffic?

o Why could it be important to find the shortest route through many points?
« Do you know the name of these large numbers?

Appendix B. Provided material

The lesson material provided at (Stegehuis, 2021) contains
» Powerpoint slides that were used during the class. The slides themselves do not contain a lot of text, but the comments
in the file describe the storyline for all slides in the presentation.

A pdf of the network that was used to discuss Dijkstra’s algorithm that can be printed out for all children to draw their
shortest route on.

Additional material needed for the class is

« A flipover (or some other large sheet of paper) with the same network as the one in the pdf file, and colored markers
to enact Dijkstra’s algorithm together
« Tape or some other material to draw the road networks of Figures 2 and 3 on the ground for the children to walk on.
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