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Abstract

For a real vector space V acted on by a group K and fixed x and y in V, we consider the problem of
finding the minimum (respectively, maximum) distance, relative to a AT-invariant convex function on V,
between x and elements of the convex hull of the K-orbit of y. We solve this problem in the case where
V is a Euclidean space and AT is a finite reflection group acting on V. Then we use this result to obtain an
analogous result in the case where AT is a maximal compact subgroup of a reductive group G with adjoint
action on the vector component p of a Cartan decomposition of Lie G. Our results generalize results of
Li and Tsing and of Cheng concerning distances to the convex hulls of matrix orbits.
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1. Introduction

In [LT2], Li and Tsing studied the distance to the convex hull of the orbit of a Hermitian

matrix under the conjugacy action of the unitary group. We begin by describing their

results. Let Hn denote the space o f n x n Hermitian matrices and let U(n) denote

the group o f n x n unitary matrices. Fix B e Hn. Denote by O(B) the orbit of B

under the conjugacy action of U(n), that is, O(B) = {UBU~l : U e U(n)}, and let

C(O(B)) denote the convex hull of this orbit. LetA(B) = (A.,(B),... , An(£)) bethe

eigenvalues of B arranged in nonincreasing order. Li and Tsing showed that, given

any unitary similarity invariant norm || • || : / /„->• IR (meaning norm that is constant

on orbits) and any A e Hn, one has

max{||A - X|| : X e C(O(B))} = || diag(A.,(A) - kn(B),..., Xn(A) -
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So this gives a formula in terms of eigenvalues for finding the maximum distance
(relative to || • ||) between A e Hn and elements in the convex hull of the orbit of
B. Li and Tsing also found a formula for the minimum such distance. It involves an
algorithm of at most n iterations starting with A.(A) and X(B).

Following the lead of Li and Tsing, Cheng studied in [C] the problem of finding
extreme distances to convex hulls of orbits in other matrix settings. Here is one such
setting he considered.

Let Cmxn be the space of m x n-matrices over C. Then there is an action of the
group U{m) x U(n) on Cmxn given by (U, V) • B = UB V*. Denote again by O(B)
the orbit of B e Cmxn under this action. Cheng found formulas similar to those of Li
and Tsing for the'extremes of [\\A - X\\ : X € C(O(B))}, where A, B e Cmxn and
|| • || is an invariant norm.

As another example, let £„(!&) denote the space o f n x n skew symmetric matrices
over K. Then the group On(K) of real orthogonal matrices acts on A^(R) by the rule
O • X = OXO'. Cheng found formulas for the extreme distances (relative to an
invariant norm) to elements in the convex hull of the orbit of a given B e £n(K), and
these formulas again resemble those for the other cases we have discussed. Additional
matrix settings were considered by Cheng and the findings were all similar.

Looking at the results of Li and Tsing and of Cheng, it is natural to ask whether
there might be a unified approach for studying these problems. The purpose of this
paper is to present such a unified approach.

We begin in Section 2 by considering a finite reflection group W acting on a
Euclidean space E. Given x, y e E and a ^-invariant convex function <p : E —*• K,
we compute the extremes of the set [(p(x — z) '• z e C(Wy)}. (See Theorem 2.13.)

In Section 3 we turn to the study of a reductive Lie group G, or more precisely,
an element (G, K, 9, B) of the Harish-Chandra class. The compact Lie group K
acts naturally on the vector space p, where 0 = t+p is the Cartan decomposition
of g = Lie G corresponding to 9. We use Kostant's convexity theorem as well as
a classical result of Berezin and Gel 'fand (both of which we extend to the case of
a reductive Lie group) to show that, for a K -invariant convex function <p : p -> R
and for x, y e p , the set {tp{x — z) : z 6 C(Ky)} has the same extremes as the set
[cp(J — z) : z € C( Wy)}, where x is the unique element in the intersection of the
orbit A"JC and a certain Euclidean space a c p (and similarly for J) and W is a finite
reflection group acting on a (W is the Weyl group of the pair (g, a)). The results of
Section 2 then apply to give these extremes. (See Theorem 3.12.)

In Section 3 we also generalize to the reductive Lie group setting a theorem of Li
and Tsing [LT1] concerning unitary similarity invariant norms on the set of n x n
Hermitian matrices as well as a characterization given by von Neumann [vN] of
unitarily invariant norms on Cmxn. (See Theorem 3.8, Example 4.1 and Example 4.3.)

Finally, we show in Section 4 that the results of Li and Tsing and the results of
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Cheng can all be recovered from our general results. In particular, we show that an
algorithm we obtain for finding the minimum of the set {<p(x — z) : z € C(Ky)}
generalizes these authors' algorithms.

2. Results for finite reflection groups

In this section, we obtain a means for computing the minimum and maximum
distances to the convex hull of an orbit under the the action of a finite reflection group.
The main result, Theorem 2.13, will be used in the next section to obtain an analog,
Theorem 3.12, pertaining to the convex hull of an orbit under the action of a compact
Lie group. We begin with some definitions and standard results from the theory of
finite reflection groups. (For more details, see [BGr, H2].)

Let £ be a (real) finite dimensional Euclidean space with associated inner product
(-,-). Given a nonzero element a of E, denote by sa : E —* E the reflection in the
hyperplane orthogonal to a: sa{x) = x — (x, a)a, where (x, a) := 2(x, a ) / (a , a ) .

Fix a root system $ c E. By definition, 4> is a finite set of nonzero vectors such
that, for each a € <t>,

(1) $ n ( R a = {a, - a } , and
(2) sa<t> = 4>.

Associated with <$> is the 'finite reflection group' W generated by the reflections sa

(a e cD).
Let Ei denote the K-span of <t> and let Eo denote its orthogonal complement in

E. Fix a simple system A = {au ..., an] c <t>. Then A is a basis for E\ such that
<J> = <t>+u(—<J>+), where <1>+ := [a € <I> : a — £ , a,o<; with a, > 0}. It is shown that
W is generated by {sa.}.

Let A.i,..., A.R € £ be the vectors satisfying (X,-, a,-) = Sy (Kronecker delta) (so
{A.,} is just the basis of £, dual to the basis {2a,/(a,, a,)} relative to the inner product).
The matrix ({a,, a,-)) is called the Carton matrix. It is the change of basis matrix from
{Xj} to {or,}: at = £ , («•> aj)^j• The off-diagonal entries of the Cartan matrix are
nonpositive, that is, (a,, a,) < 0 for i ^ j . Let (d,,) denote the inverse of the Cartan
matrix.

Set N = { 1 , . . . , n) and let I c. N. The set 4>, = <t> D span{a, : i e /} is a root
system in E with simple system A, = {a, : i e I}. Denote the associated finite
reflection group by W, and denote the inverse of the Cartan matrix ((a,, a, ) ) i ; 6 / by

Let -Sf be the collection of all subsets L of N for which there does not exist a
nonempty subset J C L satisfying (a; , ak) = 0 for ally € J,k € L\J. So L € J27 if
and only if <&L is irreducible in the sense of [BGr, p. 56].

A proof of the following result is sketched in [HI, p. 72, Exercises 7 and 8].
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L E M M A 2 .1 . (1) dn> 0 for all i,j e N.

(2) If Lei?, then djt > 0 for all i,j G L .

For / C N set

£- ( / ) = {x e £, : (x, A.,-) = 0 for all i <? I and (x, A.,-) < 0 for all i e / } ,

£+(/) = {* e £ : (x, ctj) = 0 for all ; e / and (x, a ;) > 0 for all; $ I}.

LEMMA 2.2. Letx e E andl C. N.

(1) x e E~{I) if and only ifx — J^iei a'a' w^ a< < ^4

(2) x € £+(/) if and only ifx = x° + J^j¥I bjXj with x° e Eo, b, > 0.
(3) (£- ( / ) ,£+( / ) ) = 0.

PROOF. Assume x e Ex. We will prove the lemma for this special case (with
x° = 0 in (2)); the general case will then follow. Since {a,} and {A.;} are both bases for
Ei, we can write x in the form £ , «!«, = x = £2, bjkj (a,, i>; e 1). Applying (•, A.,-)
yields a, = 2(x, A.,)/(a,, or,) while applying (•, ay> yields bj = (x,ctj). This proves
(1) and (2). Since (A.,, a,) = 0 for i^j, (3) now follows from (1) and (2). •

For* e £ a n d / c Â , set

*(/) =
ie/

where

|.<jc,a;) ( i e / ) .

It follows from Lemma 2.3 (1) below that x(I) is the orthogonal projection of A:
onto Ei = span 4>/( and hence c,y (x) is the ith coordinate of this projection relative to
the basis A/ of £/.

LEMMA 2.3. Letx e £ a/u/ / c N

(1) (x - *( / ) , or,) = 0 for all i e /.

[0, i $e /.

PROOF. (1) Let i e / . From the definitions of x(I) and d'jk, we obtain

(x - x(/) , or,) = (x,oti) - ^ d}k(x,otj){ak, a,)

,a;)5y = 0 ,
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whence (x —x(I), a,) = 0.
(2) Let i € N. Applying (•, X,) to the definition of x(I), we get

Since {ak, A.,) = 8ik(ak, a*)/2, the claim follows. •

Next, we describe an algorithm that will play a key role in the remainder of the
paper.

ALGORITHM 2.4. Letx e E and setx0 = x, 70 = <f>. Suppose x n and /*_! (it € N)
have been defined. If (xk-Uoti) > 0 for all /, then the algorithm ends. Otherwise,
choose Ik c N such that Ik I> h-\ and

(1) c-'(**-i) < 0 for all / € Ik, and
(2) c/4(*t-i)<0foraUie/*\/*-i .
Then setxk - xk^ - xk.x(Ik).

We need to show that such an Ik always exists. Assume (JC*-I> at) < 0 for some
/ and set Ik = /*_, U {/}. By Lemma 2.3 (1), (jtM,aj) = 0 for all i e 4_i. In
particular, / £ Ik_u so that / t D 7t_i. We also have

Since J^ > 0 for all / and d\\ > 0 by Lemma 2.1, conditions (1) and (2) of the
algorithm are satisfied.

We point out that one can always use the lk described in the preceding paragraph and
this is perhaps the easiest choice. In the algorithm, we have allowed some flexibility in
the choice of Ik mainly so that we will be able to recover some results in the literature
(see Section 4).

Note that the algorithm terminates in n or fewer steps since 70 C 7; C 72 C • • • C
I, CAT.

THEOREM 2.5. Ifx e E, then there exist 7, c N, x~ e E~{IX), andx+ e E+(IX)
such that x =x~ +x+. Moreover, Ix, x~, andx+ are uniquely determined by x.

PROOF. Let x e E. As pointed out, the above algorithm applied to x terminates
with, say, xt. Then (x,, a,) > 0 for all j . Moreover, by Lemma 2.3 (1), (x,, or,) = 0
for ally € I,. Thus*, e E+(It). For each i, we have

k=\
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If i & /„ then i g Ik for each k, whence (x — x,, A,) = 0 by Lemma 2.3 (2). On
the other hand, if i e /, = DkIk, then i € Im\Im-i for some m, so using the equation
above and then Lemma 2.3 (2) and the choice of the /*, we get

Also, it is easy to see that xk-\ and xk have the same component in Eo for each k, so
JC — x, e E\. Therefore,x — x, € E~(I,).

Settingx+ =x,,x~ = x — x, and/* = /„ we have*" € E~{lx),x
+ e E+(IX) and

x = x~ + x+, as desired.
To prove uniqueness, suppose we have/, / ' c N,** e E±(I),x±l € E±(I'), with

x~ +x+ = x = x~' + x+l. From Lemma 2.2 we get

ie/ JY/ I6/'

with a,-, a(' < 0 and bj ,b'j > 0 where the four sums are x~, x+ - x°, x~', and x+' — x°,
respectively (x° denoting the component of x in £0).

First assume / n / ' = </>. Letj € / and apply (•, aj) to both sides of (*) to get

ie/

where Cj — J^ter a'Mt'ai > + &/ - 0 (since (a,, a;) < 0, i: ^ 7). It follows that

for all i e / . By Lemma 2.1 (1), J', > 0 for each i, j e /, so we get at > 0 for each
i 6 / , which is a contradiction unless / = (j>. Similarly, we get a contradiction unless
/ ' = </>. Thus / n / ' = (f> implies I = <p and / ' = 0.

Now return to the general case and set 7 = {i e / n / ' : a, < a\} and J' = [i e
/ n / ' : at > «;}. By rearranging terms in (*), we obtain

i€K j#K ieK' j#K'

where K = (/\/') UJ,K' = (7'\7) U 7',

fa,, i e / \ / ' , (a;, i € / ' \ /

[a,;-a|, /6 7, \a\-a,, ieJ',

and where fy = 0 if j e / , 6J = 0 if 7 € /'. The previous paragraph applies to give
K = (j> = K'. This in turn implies 1 = 1' and a, = a\ for all i. Hence (*) becomes
]L,Y/ bjfy = Ylj#r b'j^j • Since the set [Xj : j e N] is linearly independent, we have
bj = b'j for all7. Therefore, we have shown that / = /', x~ = x~' and x+ = x+> and
have thus completed the proof of uniqueness. •
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For future reference, we record the following consequence of the proof of Theorem
2.5.

COROLLARY 2.6. Let x e E and suppose Algorithm 2.4 applied to x terminates
with the element x, of E. Then x+ — x,, x~ = x — x,, and Ix — I,. In particular, x, is
independent of the choices made in the algorithm.

Se t£ + = £+(0) = {x € E : (x ,a , ) > Oforall;}. By Lemma 2.2, x e £+ifand
only if x = x° + £ \ bs\, withx° e Eo, bj > 0. According to [H2, p. 22], E+ is a
fundamental domain for the action of W on E, that is, for each x € E, the orbit Wx
intersects E+ in precisely one point, which we denote by 3c.

We obtain a partial order on E by putting x •< y if (y — x, Xj) > 0 for all j , or,
equivalently, y — x = £,. a;or, with at > 0. For the proof of the following lemma, see
[H2, p. 22].

LEMMA 2.7. Ifx e E, then x <x.

For the next lemma, we need a few notions, which we state here in sufficient
generality to be applicable in the next section as well. Let V be a real vector space. A
subset C of V is convex if tx + (1 - t)y e C for all x, y e C, 0 < t < 1. If X c V,
then the convex hull C(X) of X is the intersection of all convex subsets of V containing
X. It is easily seen that, if X is finite, then C(X) = { J2xexa*x '• Ha* = M1 ^
function <p : V ->• 1 is convex if <p(f;c + (1 - t)y) < t<p(x) + (1 - 0<P()0 for all
x, v € V, 0 < t < 1. If V is acted on by a group G, then a function <p : V -> R is
G-invariant if <p(gx) = <p(;t) for all g G G, x € V.

PROPOSITION 2.8. Letx,y e E. The following are equivalent:

(1) Jc-cy.
(2) <p(jc) < <p(y) for every W-invariant convex function cp : E -*• IR,
(3) x

PROOF. The equivalence of (1) and (3) is proved in [Ko, Lemma 3.3] in the case
<t> is a set of 'restricted' roots; the proof carries over to this setting. (2) and (3) are
equivalent by [AB, p. 599]. D

Given x,y e E, define yx = x — (x — y)+ and note that yx = v + (x — y)~ as
well, since x — y = (x — y)~ + (x — y)+ . Here, the superscripts + and — refer to
the notation in Theorem 2.5. In view of Corollary 2.6, Algorithm 2.4 can be used to
compute yx.

PROPOSITION 2.9. Ifx, y e E+, then yx is the unique element ofE satisfying

(1) y, €C(Wy)nE+,
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(2) x - yx € E+, and
(3) (x-yx,yx-y)=O.

PROOF. Let x, y e E+. First we show that yx satisfies the three properties.
(1) If j € / := Ix-y, then (yx,aj) = (*,<*,) - ((JC - y)+,aj) = (*,«,•) > 0

since x e E+ and (x - y)+ e E+(I). Similarly, ifj g I, then (yx, a,) = (y, a,) +
(t* - >0~> ocj) = (y, ay) + £i6 /((* - y)~. *«)(a./. «/> > 0 where we have used that
aJ = £,<«;' a')ki> (* - y)~ e E~O), y € E+ and (aJ> «i) ^ ° for» e L Therefore,
(yx,<*j) > 0 for ally implying yx € E+.

For any j we have (yx — y, Xt) = ((* — y)~, X,) < 0 since (x — y)~ € E~(I).
Thus yx < y. From Proposition 2.8 and the previous paragraph, we conclude that
yx € C(Wy).

(2) We have x - yx = (x - y)+ e £+(/) c £+.
(3) We have (x - yx, yx - y) = ((x - y)+, (x - y)~) = 0 by Lemma 2.2 (3).
Now assume z e E satisfies the three properties (with z in place of yx). Since

z e C( Wy) D £ + , Proposition 2.8 implies z < y. Therefore, z - y = £ , € / a,a, for
some I C. N and a, < 0, which is to say z — y € E~(I) (Lemma 2.2 (1)). Since
x - z e E+, we have x - z = u° + £,. bjkj with u° e £0, *; > 0. Now

- ^a,*,(o! , , a,) = ^ a,^(A.;, a,-) = (x - z, z - >) = 0,

where we have used that (A.y-,a,-) = (Xy,a,)(a,, a,)/2 = <5,;(a,, a,)/2. Since (a,,
a,) > 0 for each i, we conclude that fc; =0forall j 6 / . This says that * - z € £+( / )
(Lemma 2.2 (2)). Finally, x—y = (z — y) + (x — z) so the uniqueness part of Theorem
2.5 says x — z = (x — y)+, implying z = x — (x — y)+ = yx. D

LEMMA 2.10. Ifx e E, thenx+ e C(Wx).

PROOF. First, we observe that x° € C(Wx) for any x e E, where x° is the
component of x in Eo. To see this, let x e E. Then J 6 £ + , implying J =
x° + YLj bj^ =x° + Y,ij bjdjiUi, with bj > 0 (Lemma 2.2 (2)). Since djt > 0
(Lemma2.1 (1)), we have J >- x° =x°. Therefore, Proposition 2.8 gives x° € C(Wx).

Now to prove the lemma, let x e E, If j e I := Ix (notation as in Theorem
2.5), then (x+, <xj) = 0 (since x+ e E+(I)), so saj (x

+) = x+ - (x+, a ;)a ; = x+. It
follows that W, fixes x+. Therefore, x+ = 0 + x+ = (x-)° + x+ G C(W,*-) +x+ =
C(W,x- +x+) = C(W,(x~ +x+)) c C(Wx). (Here, CO 0 is the component of
x~ in the orthogonal complement in E of the span of 4>;, so the previous paragraph
applies to give (x~)° e C(W,x~).) D

LEMMA 2.11. Letx, y € E and assume x < y.
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(1) Ify € E+ and I C N, then x - x(I) x y.
(2) x+<y+.

PROOF. (1) Assume y e E+ and let i e I c N. From Lemma 2.3 (2), we have

), A,) = c,£4<*,«*),
kel

where c, = (a,, a,)/2. We can write x — y in the form x — y = V . e;a; and we find
that ej = (x — y, kj)/cj < 0 by applying (•, kj) to both sides. Since y € E+ and
d'ki > 0 (Lemma 2.1 (1)), we get

, A-,) > ct V 4 {*, ak) -CiY\ 4 (y- «*>
kel *e/

^•4(a;'a*)

- ci ? . eJdiM. «*) = c< XI e > 5 y = (^ - v- *••).

where the second inequality is due to the fact that (a,, at) < 0 for j ^ k. Hence,
(x(I), kj) > (x - y , kj) for each / € / . On the other hand, if/ ^ / , then (x(/), A.,) = 0
by Lemma 2.3 (2). We conclude that

(x -x(I)-y,kj) = (x -y,kj)- (x(I),kj) < 0,

for each /, which says that x — x(I) -< y.
(2) Since y~ 6 E~(Iy), we have (y - y+, kj) = (y~, kj) < 0 for each /. Hence

y -< y+, implying x -< y+ as well. Using the notation of Algorithm 2.4, we get
from (1) that xk •< y+ for each k. By Corollary 2.6, x+ equals the terminal vector x,
produced by the algorithm applied to x. Hence, x+ -< y+, as desired. •

On W is defined a length function (relative to A). There is a unique element
of maximal length, which we denote by w0 (called the longest element of W) [H2,
Section 1.8].

LEMMA 2.12. Ifx, y e E+ andz e C(Wy), then x — yx < x — z < x — woy and
woy = -C^y).

PROOF. Let x, y e E+ and z € C(Wy). By Proposition 2.8 and Lemma 2.7, we
havez < y, implying x—y -< x—z. Using Lemma 2.11 (2), we get x—yx = (x—y)+ -<
(x - z)+ = x - Zx- But Lemma 2.10 implies x - zx — (x - z)+ e C(W(x - z)), so
that x - yx < x - zx < x — zx -< x — z by Lemma 2.7 and Proposition 2.8.

https://doi.org/10.1017/S1446788700036648 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036648


340 Randall R. Holmes and Tin-YauTam [10]

For the other inequality, we first remark that a + b -< a + b for every a, b e E.
Indeed, if a, b e E, then there exists w e W with w(a + b) = a + b, so that
a + b = wa + wb •< a + b (Lemma 2.7). Next, since z € C( Wy), we have
-z e C( W(-y)). Thus, ^ z -< ^ by Proposition 2.8. Putting this together with the
remark above, we get x — z -< x + ^ z < x + ^ y . Now ^ y e W(—y), implying
—C-y) € Wy n - £ + . Since W acts simply transitively on the Weyl chambers
and w0E

+ = —E+ [H2, Section 1.8], we conclude that —C-y) = woy. Hence,
x — z <~x -\—y = 3c — woy. •

Before stating the main result of the section, we remind the reader that, given
x, y € E, Algorithm 2.4 can be used to compute the element yx of E (in at most
n = | A| steps). More precisely, the algorithm applied to x — y terminates with the
element x — yx (see remarks before Proposition 2.9).

THEOREM 2.13. Let x, y e E, write x = wx with w e W, and let<p : E -* Rbe a
convex W-invariantfunction.

(1) The set [<p(x — z) • Z € C(Wy)} has minimum <p(x — y~T); this minimum is
attained when z = w~y~j.
(2) The set {<p(x — z) '• z € C(Wy)} has maximum <p(x — wo~y)', this maximum is

attained when z = ww^y.

PROOF. From the W-invarianceofqsandthe W-stability of C(Wy) we get {cp(x—z) :
z 6 C(Wy)} = {(p(x~ — z) : z e C(WJ)}, so we may assume x,y € E+ (so
that x = x, y = y, and w = 1). By Proposition 2.9, x — yx e E+, and by
Lemma 2.12, x — woy — x + ^ y e E+, so Proposition 2.8 and Lemma 2.12 give
<p{x — yx) < <p(x — z) < <p(x — woy) for every z € C(Wy). Since yx e C(Wy) by
Proposition 2.9, and obviously woy € C(Wy), the result now follows. •

In general, the minimum of [<p(x — z) : z € C(Wy)} can be attained at more than
one z € C{Wy) and this is true for the maximum as well. However, by slightly
strengthening the assumptions on <p we can obtain uniqueness in the case of the
minimum. Let V be a real vector space. A convex function cp : V —> R. is strictly
convex if <p((x + y)/2) < (<p(x) + cp(y))/2 for all x, y 6 V with <p(x) = <p(y) and

COROLLARY 2.14. Letx,y e E and write x = wx with w e W. Ify : E - • 1 is
a strictly convex W-invariant function, then wy~T is the unique element of C(Wy) for
which

(p{x - wyx) = min{<p(x - z) : z e C(Wy)}.

In particular, wy- is the unique element ofC(Wy) for which the above equation holds
for every convex W-invariant function q> : E —> IR.
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PROOF. Let <p : E —>• OS be a strictly convex W-invariant function. Assume <p
attains a minimum at both a and b in the convex set A := x — C(Wy). Using the
fact that (a + b)/2 e A and then the convexity of q>, we get <p(a) < (p((a + b)/2) <
((p(a) + tp(b))/2 = <p(a) so that the inequalities are in fact equalities. Since cp is
strictly convex, we conclude that a = b. This, in conjunction with Theorem 2.13,
proves the first statement.

Let <p be the norm on E induced by the inner product: <p(a) = V(a> a). Then <p is W-
invariant (since W is generated by reflections, which are orthogonal transformations),
<p is convex (as is obviously any norm), and <p is strictly convex (by the parallelogram
law). Therefore, the second statement follows from the first and Theorem 2.13. •

3. Extension to reductive Lie groups

We begin this section with a discussion of those parts of the theory of reductive Lie
groups that will be needed to state and prove our results. The definition of 'reductive
Lie group' varies from author to author. For us, a reductive Lie group will be a member
of the so-called Harish-Chandra class, which we now describe (see [Kn, p. 384]).

DEFINITION 3.1. The Harish-Chandra class 3tf consists of 4-tuples (G, K, 9, B),
where G is a Lie group, K is a compact subgroup of G, 6 is a Lie algebra involution
of the Lie algebra g of G, and B is a nondegenerate, Ad(G)-invariant, symmetric,
bilinear form on g such that

(1) g is reductive (meaning, g = gi+j, where gi = [g, g] and 3 is the center of g),
(2) g = E-i-p (called the Carton decomposition), where t = Lie K is the +1-

eigenspace and p is the — 1-eigenspace under the action of 9,
(3) t and p are orthogonal with respect to B, and B is negative definite on t and

positive definite on p,
(4) the map K x exp p ->• G given by multiplication is a surjective diffeomorphism,
(5) for every g e G, the automorphism Ad(g) of g, extended to the complexification

gc of g is contained in Intgc, and
(6) the analytic subgroup Gi of G with Lie algebra gt = [g, g] has finite center.

If (G, K, 9, B) e Jf, then G is called a reductive Lie group.

Note that (5) is automatically satisfied if G is connected, for then Ad(G) = Intg C
Intgc.

EXAMPLE 3.2. Let G be a (connected) semisimple Lie group with finite center, let
B be the Killing form on g = Lie G, let 9 : g —> g be a Lie algebra involution such that
the form B$(x, y) := — B(x, 9(y)) is positive definite (called a Cartan involution), let
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g = t-j-p be as in Definition 3.1(2), and let K be the analytic sui , • ,! G with Lie
algebra t. Then (G, K, 0,B)eJ4? [Kn, p. 385].

EXAMPLE 3.3. Let G be a closed linear group of real or conj atrices closed
under conjugate transpose inverse (X i-> (Z*)"1), given as the jn zero locu^
of some set of real-valued polynomials in the real and imaginai} of the mamx
entries, and satisfying Definition 3.1 (5). Let 9 be negative CL Je transpose
(x i-*- —x*), let K be the intersection of G with the unitary group, let B{x, v) =
ReTrOty). Then (G, K, 6,B)eJf [Kn, p. 385].

For the remainder of this section, we fix (G, K, 6, B) e Jf ai the notation
of Definition 3.1.

Among the Abelian subalgebras of g that are contained in p, chc maximal one
a (referred to as a maximal Abelian subspace of p). For a e a* (- ul space of a),
set

ga = {x € g : [h, x] = a(h)x for all h e a}.

If 0 ^ a 6 o* and ga -^ 0, then a is called a (restricted) root of the j. air (g, a). The
set of roots will be denoted E. We have g = Qo+j^a€z8a-

We view a as a Euclidean space by taking the inner product to be the restriction
of B to a. The map a* ->• a that assigns to each X € a* the unique iement xk of a
satisfying X(x) = B(x,xk) for all x € a is a vector space isomorphisi i. We use this
isomorphism to identify a* with a, allowing us, in particular, to view Z as a subset of
o. The set $ = {a e E : ^a £ E} is a root system in a in the sense of Section 2,
called the reduced root system of the pair (g, a). Its associated finite reflection group
W is called the Weyl group. Clearly, W is generated by the reflections sa (a e E). As
in Section 2, fix a base A for the root system 4>. Then A determines a fundamental
domain a+ (= E+ of Section 2) for the action of W on a.

We now describe another way to view the Weyl group W. Use juxtaposition to
represent the adjoint action of G on g: gx = Ad(g)(x) (g e G, x € g). Set
NK(a) = {k 6 K : ka c o} and ZK(a) = {k e K : kx = x for all x e a}. Then the
action of K on g induces an action of the group NK(a)/Zfc(a) on a. There exists an
isomorphism \}r : W —> NK(a)/ZK(a) that is compatible with the two actions on o,
or more precisely, for which wx = \j/(w)x (w € W, x G a) [Kn, 7.32]. We use the
isomorphism \Jr to identify these two groups. Note in particular that, given x e a, we
have Wx = NK(a)x c Kx.

The following result is well known for the case of semisimple G. For the reader's
convenience, we supply the short proof in our more general setting.

LEMMA 3.4. Ifx e p, then |ATJC n o+| = 1.
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PROOF. Let x e p. Since p = AT a [Kn, 7.29], there exists some k e K for which
kx € a. Suppose also k'x G o (k' € A') and write kx = a, k'x = a' (a, a' 6 a).
Exponentiating the equation k~xa = x = k'~la' gives k~l(expa)k = Jfc'^Cexpa')^'
[Kn, 1.90]. According to [Kn, 7.39] we then have expa' = n(expa)n~l = exp(na)
for some n € W. Since the exponential map on a is injective [Kn, 1.104, 7.31],
we conclude that a' = na. Thus, we have shown that Kx D a = Wa. Hence,
|JCxna+| = | W a n a + | = |{a}| = l. •

Given x e p, we denote the unique element of Kx n o+ (which Lemma 3.4
guarantees) by x. If x e a, then the proof of Lemma 3.4 shows that J is the unique
element of Wx f~l a+, so this notation is consistent with that in Section 2.

We will require two classical results from the theory of Lie groups-one due to
Kostant and the other due to Berezin and Gel'fand. These are both statements about
semisimple Lie groups and hence not general enough to be immediately applicable to
our situation. Therefore, we provide extensions to the case of a reductive Lie group.
(See Theorem 3.6 and Theorem 3.9.)

Let a± denote the orthogonal complement in p of a and let it : p —• o denote the
orthogonal projection of p onto a (where orthogonality is relative to the form B). As
a consequence of the next lemma, n is independent of the choice of B (provided, of
course, B satisfies Definition 3.1).

LEMMA 3.5. a± = [I, a].

PROOF. First, we remark that, since B is Ad(G)- invariant, it is ad(g)-invariant as
well, which means B([x, y], z) = —B(y, [x, z]) (x, y,z e fl). Indeed, for any t € U.
we have B(Ad(exptx)(y), z) = B(y, Ad(exp tx)~l(z)) = B(y, Ad(exp(-tt))(z)),
so differentiating and putting t = 0 gives the indicated identity (see [Kn, p. 55]).

Let* e t, y e a. For any z e a, we have B([x, y], z) = B(x, [y, z]) = B(x, 0) =
0, since a is Abelian. Since [x,y] ep (Definition 3.1 (2)), we have [x, y] G ax. Thus,
[t, a] c oj..

Let a e E and let x e ga. First, x + Ox e t (see Definition 3.1 (2)). Choose
ha e a with a{ha) ^ 0. According to [Kn, 6.40 (c)], Ox € g_a (the result is
stated for semisimple g, but the proof is valid for reductive g, as well), so yx<a :=
a(ha)x - a(ha)0x = [ha, x + Ox] e [I, a].

For each a e E, let Ba be a basis for ga. The set [yx,a : a e E+, x e Ba] is clearly
linearly independent (where E+ is the set of those nonnegative linear combinations of
A that are contained in E). Hence, dim[E, a] > 5ZaeE

+ dimga.
On the other hand, the Iwasawa decomposition gives g = 6-j-a+n, where n =

5ZaeE+ fl<" fr°m which it follows that dimcij. = dimn = ]C<*ei:+ duri0a- Therefore,
[E, a] = cij., as desired. •
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The next result is commonly referred to as the 'Convexity Theorem'.

THEOREM 3.6 (Kostant). Ifx e p, then n(Kx) = C(Wx).

PROOF. First assume G is semisimple. By Lemma 3.5, n is independent of the
choice of B, so we may assume B is the Killing form on g (Example 3.3 and [Kn,
p. 386]). In this case, the theorem is the well-known result proved by Kostant in [Ko].

Now let G be arbitrary once again and let x e p. Since Kx = KJ, we may assume
x € a. The centralizer in K of a meets every connected component of K [Kn, 7.33],
so denoting this centralizer by M, we have K = K°M, where K° is the connected
component of K containing the identity element. Therefore, Kx = K°Mx = K°x.

Write tu pi, Oi (respectively, to, po, cio) for the intersections of f, p, o with
gi (respectively, 3) (notation as in Definition 3.1). Using [Kn, 7.19e, Example 1
on p. 385], we see that (G\, K\,0\, B{) e Jf, where G\ is as in Definition 3.1,
K\ = exp^) , and 9\ and B\ are the restrictions to gi of 9 and B, respectively. The
Cartan decomposition of 0i determined by 8\ is gi = l\+p\ and at is a maximal
Abelian subspace of pi [Kn, p. 393]. We have I = to+tup = P0+P1, fl = flo+Oi, and
do = po [Kn, 7.28]. By [Kn, 4.48], K° = expt = expE, exp60. Since (exp^)* = x
[Kn, 1.93], we have K°x = Kix.

Now[t, a] = [$!, O! ], and so it follows from Lemma 3.5 that, for any y = yo+y\ e p
(yi € pi), we have n{y) = y0 + n^yi), where ity is the orthogonal projection of pi
onto cii relative to B\. Write x = xo + Xi with xt € a,. According to [Kn, p. 394],
Wx = xo + W\X\, where W\ is the Weyl group associated with the reduced root system
of the pair (gi, di).

Assembling these results and using the special case of the theorem discussed in the
first paragraph, we obtain

n{Kx) = n(Kix) = n(x0 + #1*1) =xo

= C(x0 + Wxxx) = C(Wx) = C(WJ),

as desired. •

Next, we generalize a theorem of Rais [R] (which was rediscovered by Lewis [L,
Theorem 4.3]).

THEOREM 3.7 (Rais). A K-invariantfunction <p : p —> R is convex if and only if its
restriction to a is convex.

PROOF. That the first condition implies the second is clear. Now let <p : p -> 1
be a Af-invariant function and assume <p\a is convex. L e t * , y e p , 0 < f < 1, and
set z = tx + (1 — t)y. Since <p is K- invariant, we may assume that z € a. We have
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<p(z) = <p(n(z)) = <p(tn(x) + (1 - t)n(x)) < t<p(n(.x)) + (1 - t)<p(n(y)). Now
x € Kx, so Theorem 3.6 says n(x) € C( Wx). Moreover, since cp is AT-invariant, <p\a

is W-invariant, so Proposition 2.8 applies to give <p(jt(x)) < <p(x) = <p(x). Similarly,
<P(x(y)) < <P(y)- Hence <p(z) < t(p(x) + (1 — t)(p(x), as desired. D

From this theorem of Rai's, we easily obtain a result that generalizes a theorem of
Li and Tsing on unitary similarity invariant norms [LT1], as well as a theorem of von
Neumann on unitarily invariant norms [vN]. (See Example 4.1 and Example 4.3.)

THEOREM 3.8. Let <p : p -*• U. be a function. Then <p is a K-invariant norm if and
only if there exists a W-invariant norm \/f : a —> K such that <p(x) = \jr (T) (x € p).

PROOF. First suppose <p is a AT-invariant norm and set rj/ = <p\a. Then xfr is clearly
a W-invariant norm and for any x € p, <p(x) = <p(x) = i{f(x~).

To prove the converse, suppose there exists a W-invariant norm x/r : a —• R such
that <p(x) = \//(x) (x € p). Then (p is clearly AT-invariant, so it remains to be shown
that <p is a norm. For any x e p, we have <p(x) = ir(x) > 0 and <p(x) = 0 if
and only if f (x) = 0 if and only if x = 0 if and only if x = 0 . Next, let x € p,
O ^ r e K. Then Tx = krx = rkx for some k e K. Since kx = r~lTx e a, we have
(p(rx) = \jf(7x) = iff (rkx) = \r\\Jr(kx) = \r\tjf(T) = | r |^ (*) . Finally, by Theorem
3.7, <p is convex, so (using the previous step) ^<p(x+y) — <p(^x+^y) < ^<p(x)+^<p(y)
for any x, y e p , and the triangle inequality follows. •

Now we generalize to the case of a reductive Lie group the other classical result
we require.

THEOREM 3.9 (Berezin-Gel'fand). Ifx,y e p, then x~+~y ex + C(WJ).

PROOF. First assume G is semisimple. Then the theorem follows from [BGe,
Theorem 3, p. 235]. Indeed, that theorem says x + y = (1, x + y) — (1, JC)(1, y) €
C(x + Wy) = x + C{ Wy) (x, y € p), where the pairs are viewed as elements of
G = K x p, and p is viewed as a subset of G via the injection j h > ( l , x ) ( i e p).

Now assume G is arbitrary once again and let the notation be as in the proof of
Theorem 3.6. We will make a series of observations that will allow us to easily
reduce to the special case above. First note that for any x,y e g and z e j , the
ad(0)-invariance of B (see proof of Lemma 3.5) gives

B([x, y], z) = B(x, [y, z]) = B(x, 0) = 0,

so that 0[ is orthogonal to 3 relative to B. Hence, a = Oo+O! is an orthogonal direct
sum.
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Next, it is easy to see that any root of the pair (g, o) is zero on do and that restriction
to O! maps <t> bijectively onto the reduced root system <t>! of the pair (gu di) [Kn,
p. 393]. Recall that we identify o* with a by mapping X e o* to the unique xk e a for
which X = B(xk, •), and hence view <I> as a subset of a. For any a € <J>, x € do, we
have B(xa, x) = a(x) = 0, implying 4> is contained in the orthogonal complement in
o of do, which is di according to the previous paragraph. An easily seen consequence
of this is that <t> is precisely the copy of 4>i in d] (the copy being given by the
identification d* —>• di induced by B{).

The Weyl group W fixes do elementwise (since O is orthogonal to do), and restriction
to d] defines an isomorphism W —> W\ where Wj is the Weyl group associated with
<J>!. We clearly have d+ = do + a*, where a* is the fundamental domain for the action
of Wi on di corresponding to the base Ai :— A of 4>i.

Let z e p. By [Kn, 7.29], z € Kx<x. Using this, together with the remarks above
about the Weyl groups, we find that z = kz = Zo + kzi for some k e K{. Hence
kti = z — Zo 6 a+ n pi = d̂ ", implying kz\ = Zi, where zi is the representative in dj"
of the K\ -orbit of Z\. We conclude that z = Zo + z i.

Now we can finish the proof by using the special case of the first paragraph. For

any x, y € p, we have x +y = x0 + y0 + xx +y\ e x0 + y0 + x~{ +
x + C(yo+ W1yD=I+C(W(y0 + yi-))=x + C(Wy). D

The second part of the following corollary was proved in [T] for the case of
semisimple G.

COROLLARY 3.10. Let x, y e p.

(1) x -y <x —y.
(2) x + y <x+y.

PROOF. (1) Using Theorem 3.9, we have x = y + (x-y)ey + C(Wx - v).
Therefore, x — y € C( Wx —y) and the result follows from Proposition 2.8.

(2) Using Lemma 2.7 and then (1), we obtain x + y — y ~< x + y — y <x. The
inequality follows. •

REMARK. The inequalities in the corollary can be viewed as generalizations of the
classical triangle inequalities of real analysis: | |JC | — |y|| < \x — y\ and |JC + y\ <
1*1 + \y\ (x,y € K). Indeed, if G = 5L(2, C), K = SU(2), 6 : x M- -X*,
B = Killing form, d = {[Q °r] • r e K}, then 4> is irreducible of type Ai in d,
which identifies with R. The Weyl group consists of the identity map and negation,
so if we choose d+ = R+, then x — \x\ and also x •< y if and only if x < y
(x, y € d). Thus, for any x, y e d c p, we can apply the corollary to obtain the
triangle inequalities.
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We will require the following easy corollary of Theorem 3.6. Given X c p, we
denote by X the set {J : x € X}.

COROLLARY 3.11. If x e a, then

C(Kx) = C(Kx) Da+ = C(Wx) f lo + = C(Wx).

PROOF. Let x e a. We have

C{Kx) c C(Kx) n a+ (using the AT-stability of C(Kx))

c 7r(C(A7x)) n o+ (since 7r fixes a pointwise)

= C(n(Kx)) D a+ (since ^ is linear)

= C( WJC) D a+ (by Theorem 3.6)

c

<zC{Kx) (since Wx c AT*).

Since the first and last expressions are the same, the containments must be equalities.

•
We are now in a position to prove an analog of Theorem 2.13 in our reductive Lie

group setting. In the statement of the theorem, yr has the same meaning as in Section
2 (definition before Proposition 2.9) with E = o, E+ — o+, and so forth, and w0 is the
longest element of the Weyl group W. (See also the comments before the statement
of Theorem 2.13.)

THEOREM 3.12. Let x, y e p, write x = kx with k € K, and let (p : p -»• K be a
convex K-invariant function.

(1) The set {<p(x — z) : z € C{Ky)} has minimum (pQc—y~j); this minimum is attained
when z = k~yY.

(2) The set [<p(x — z) : z 6 C(Ky)} has maximum <p(J — w0Y)', this maximum is
attained when z = kwoy.

PROOF. AS in the proof of Theorem 2.13, we may assume x, y € a+ (so that J = x,
y = y, and k = 1). We have

min{<p(x -z):ze C(Ky)}

— z) : z e C(Ky)} (using A'-invariance of <p)
- z) : z € C(Ky)} (Corollary 3.10 (1) and Proposition 2.8)

(x — z) : z € C(Ky)} (straightforward)

> min{<p(x -z) : ze C(Wy)} (Corollary 3.11).
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Similarly, we have

max{<p(x — z) : z e C(Ky)}

-z):ze C(Ky)}

< max{(p{x + ^z) : z e C(Ky)} (Corollary 3.10 (2) and Proposition 2.8)

+z):ze -C(Ky)}

- z) :ze C(Wy)}.

On the other hand, {<p(x - z) : z e C(Ky)} 2 [<p(x - z) : z e C(Wy)} (since
Ky 2 Wy), so the inequalities above are in fact equalities. The theorem now follows
from Theorem 2.13. •

COROLLARY 3.13. Let x,y € p and write x = kJ with k e K. If <p : p ->• 0& is
a strictly convex K-invariant function, then KyT is the unique element of C(Ky) for
which

<p(x - k%) = min[<p(x - z) : z e C(Ky)}.

In particular, ky^ is the unique element of C(Ky) for which the above equation holds
for every convex K-invariant function cp : p —> R.

PROOF. The proof of the first statement is the same as that for the corresponding
statement in Corollary 2.14. The norm <p on p induced by the inner product B is
^f-invariant by the Ad(G)- invariance of B, so the second statement also follows as
before. •

Finally, we apply some of our results to a useful special case. Let U be a compact
connected Lie group with Lie algebra u. We can view U as a subgroup of some
unitary group U(n) < GL(n, C) by the Peter-Weyl theorem, and in turn view u as a
subalgebra of gl(n, C). Let u c = u-i-iu (/ = V--T) be the complexification of u and
let if- be the analytic subgroup of GL(n, <C) with Lie algebra uc. Define 6 : uc —>• uc

by x + iy H> X — iy (x, y e u). Let B be the Killing form on u extended to uc

by setting B{x + iy, u + iv) = B(x, u) - B(y, v). Then (Uc, U, B,B) € 3V [Kn,
p. 404, Examples 1 and 3 on p. 385, Remark on p. 380]. The corresponding Cartan
decomposition of uc is uc = 6-i-p, where t = u and p = iu. If t is a maximal Abelian
subalgebra of u, then a = it is a maximal Abelian subspace of p. Clearly, u and p are
isomorphic as modules for K = U. The following result can now be easily verified.

COROLLARY 3.14. The statements Theorem 3.7, Theorem 3.8, Theorem 3.12, and
Corollary 3.13 remain valid if K,p, a are replaced by U, u, t, respectively.

The version of Theorem 3.7 given in the corollary was proved by Atiyah and Bott
in [AB, Proposition 12.16].
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4. Examples

In this final section, we show how our general results can be used to obtain results
of Li and Tsing [LT2] and results of Cheng [C] that involve a set JK of matrices, an
equivalence relation ~ on ̂ , and a ~-invariant norm || • || on M'. For various choices
of J( and ~, these authors solved the problem of finding, for fixed X, Y e Jt, the
extreme values of ||Z — Z\\ as Z ranges through the convex hull of the equivalence
class of Y. Here we take their choices for jfl and ~ one at a time and show that in
each case, there exists (G, K, 9, B) e Jif such that (in the notation of Definition 3.1)
M — p and ~ is given by congruence under the adjoint action of K. (Actually, in
Example 4.4 we need to use a group slightly larger than K in order to obtain the stated
equivalence relation, and in the last Example 4.6, we use instead the adjoint action of
a compact Lie group on its Lie algebra (which plays the role of ^ ) as in Corollary
3.14). Since || • || is convex and Af-invariant, our main result, Theorem 3.12, then
applies to give the aforementioned extreme values. We show that our findings are in
agreement with those in the literature.

Besides the one on extreme values, there are other results in the papers of Li and
Tsing and by Cheng that can be recovered by using our general results. We discuss
a few of these in the first example and leave to the interested reader the similar
verifications in the remaining examples.

For each example (save the last), we specify G and K, and take 9 to be negative
conjugate transpose and B(x,y) = cReTr(ry) (c, an appropriate real constant)
appealing to Example 3.3 for justification that (G, K, 9, B) is in JV. The adjoint
action of K on p in each case is given by Ad(£)(x) = kxk~l (k e K,x e p).

EXAMPLE 4.1. ^ is the set of n x n Hermitian matrices and ~ is unitary similarity:
X ~ Y if and only if X = UYU* for some U € U(n) (cf. [LT2], [C, type (I), p. 170]).

Let G = GL(n, C) and K = U(n). We have fl = fl[(/i, C), ! = u(n) (= algebra
of skew Hermitian matrices), and p = set of n x n Hermitian matrices. We may take
as maximal Abelian subspace a of p the set of n x n real diagonal matrices, which
we identify in the obvious way with W = [x = (x\,... ,xn) : xt e R}. Let B be
given by B(x, y) = ReTrQcy). Then restriction of B to a yields the standard inner
product: B(x, y) = £i*,;y, (x, y € a). The (reduced) root system <t> of the pair
(0, a) is irreducible of type AB_j. Viewed as a subset of o, as usual, <P spans {x e o :
J2t Xi = 0), which has as orthogonal complement the line {(c,. . . , c) : c € R}. For a
base A of <t>, we may take the set {a{,..., an_i}, where or, = e, — ei+i ({eu ..., en]
being the standard basis of R"). The Weyl group W associated with <J> identifies with
the symmetric group En on { 1 , . . . , n] via ax = (JC^D, . . . , xaM) (a in W on the left
and in £„ on the right, x € o). The fundamental domain for the action of W on o
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determined by A is o + = {x e a : xx > • • • > xn}.

First, we apply Theorem 3.8 in this setting to recover Theorem 4.1 of Li and Tsing
in [LT1]. Let Hn denote the set of n x n Hermitian matrices. A norm || • || on Hn

is unitary similarity invariant if ||C/A(/~'|I = 11̂ II for all A € / / „ , £ /<= U(n). A
function 0 : K" -> K is Schur convex if <&(x) < <&(y) whenever x e C(Lny), where
the action of En on W is as described above. Li and Tsing's result states that, for
every unitary similarity invariant norm || • || on Hn, there exists a Schur convex norm
$ on W such that ||A|| = 4>(A.(A)) for each A <= Hn, where X(A) is the n-tuple of
eigenvalues of H arranged in nonincreasing order. In the notation of this example,
we have p = Hn, and a unitary similarity invariant norm on p is the same as a K-
invariant norm. By Proposition 2.8, a W-invariant norm on R" is a Schur convex
norm. Therefore, Li and Tsing's result follows from Theorem 3.8 after we note that
\(A) = A (A e Hn).

Next, using the fact that the longest element u>0 of the Weyl group sends a, to - a n _ ;
and fixes ( 1 , . . . , 1), one easily checks that w^x = {xn, ...,xx)(x e a). Therefore,
Theorem 1 in [LT2] follows from Theorem 3.12 above.

Now we consider Theorem 3 of [LT2]. Our aim is to show that, for suitable choices
of the sets Ik, Algorithm 2.4 coincides with the algorithm of Li and Tsing. Let x € a
(corresponding to an arbitrary choice of A € R" in their Step 1). To avoid confusion
with coordinate notation, we denote the element of a obtained in the rth step of our
algorithm by x(r) instead of xr.

First, observe that our algorithm ends with x(r) if and only if x(
k
r) — JC^, =

(x(r\ak) > 0 for all k, the same as in Li and Tsing's algorithm. Suppose our al-
gorithm does not end with x{r~l). Then JC^T/' - x(

k~
n = (xir~l), a*-,) < 0 for some

k > 1. Let 1 < j < k < I < n be such that

where the first (respectively, last) member is ignored if j = 1 (respectively, / = n).
Set / , = /r_i U 7, where J = {j,... ,1 — 1}. We need to show that Ir satisfies the

two conditions of Algorithm 2.4. If b € M := Ir\J,ih&nb e 7r_i, so (x(r~l),ab) = 0
by Lemma 2.3(1), implying b ^ j' — 1, /. It follows that (cti,ab) = Ofor i € J,b € M.
Since Ir = J U M (disjoint union), we get d'^ = 0 if {b, i) $. (M x M) U (7 x J).
Therefore,

bel, beJ

which, according to Lemma 2.1 and the choice of k, is nonpositive for every j and
negative for i € Ir\Ir-\ (since then i, k — 1 e J € JC). This shows that the two
conditions are satisfied.
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From the preceding paragraph, we get

aeJ

If i < j or i > /, then (aa, et) = 0 for all a e J, implying x\r) = (x(r), e{) =
(x(r~l), et) = xlr~l). Next, [aa : a € J} is a base for a root system isomorphic to
the irreducible root system of type A,_y. By consulting [HI, p. 69], we find that
dk_h,_i = (k-j)/(l-j + 1). Therefore,

x{ = (x(r\ e,) = x,r + <//_u_,(.*(r~1), a*-i)

where we have used that x(
b
r~l) = x(

k~l
l) for 7 < b < k, and x%~l) = x(

k
r~1) for

k < b < I. Now, if j < i < I, then x,(r) - *£?, = (x(r), a,) = 0 (Lemma 2.3
(1)), that is, x\r) = x\+v Putting this together with the last computation, we get
x\r) = (l-j + I)-1 Ylb=. xl

b
r~l) fory < 1 < /. We showed earlier that*,w = xf'X)

for i < j or i > I, so this finishes the proof that our algorithm coincides with that of
Li and Tsing.

The reader should now have no difficulty in verifying that Theorem 3 of [LT2]
follows from Theorem 3.12(1) above. (Setting* — A andy = B, we have x = k(A),
k = U, kyT = Bm. Note that the algorithm applied to x — y terminates with
(J — y)+ =x—yY according to Corollary 2.6.)

Next, we show how Theorem 2 in [LT2] can be proved using Proposition 2.9 above.
For this, we need the following observation.

Let u e a+, v € a and assume v >• 0. Then (u, v) — 0 if and only if there does
not exist 1 < k < n such that $2,-_, u, > 0 and uk > uk+i.

PROOF. Since v >- 0, we have 1; = YllZl akak = YllZl a*(e* ~ ek+\) with ak > 0.
Hence, for 1 < 1 < n, we have u, = (a, — a,_i) (defining a® = 0, an = 0). Thus,
H*=i v< = HLi(a> ~ a ' - i) = <*k > 0 (I < k < n). Also, since u e a+, we have
uk - uM >0(l<k<n). Now (ii, v) = £,. u,v, = ZlZl [(«* - «t+i)(E?-i "<)]•
where the second equality uses the fact that £?=i u, = an = 0. Therefore, the claim
follows. •

We now claim that Proposition 2.9 implies the following statement.

Ifx, y € o+ and z e p, then z = yx if and only if
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(1) zeC(Ky)na+,
(2) xk - zk > xk+i - Zt+i (I < k < n), and
(3) there does not exist 1 < k < n such that 5^i=1 y* > H.=i Zi and xk — zk >

Xk+l — Zk+l-

PROOF. We intend to apply Proposition 2.9 with E = o, E+ = o+, etc., as in the
discussion before Lemma 3.4. First, Corollary 3.11 says C(Ky) Da+ = C( Wy) D a+,
so (1) agrees with Proposition 2.9(1). Next, we have already observed that u e a+ if
and only if uk > uk+1 (1 < k < n), so (2) agrees with Proposition 2.9(2). Finally,
assuming (1) and (2), we have z -< y (Proposition 2.8) and x — z e o+, so the previous
statement applies with v = y — z and u = x — z to finish the proof. •

Now, with the aid of Corollary 3.13 concerning uniqueness in the case of a strictly
convex function (which || • ||2 is), it is not hard to see that the above statement is
equivalent to Theorem 2 in [LT2] (with x = A, y = B, z = B', yx = B). (Actually,
we get only the special case of that theorem with U = I, but the general case follows
immediately.)

Finally, we indicate how the key Lemma 1 of [LT2] follows from our results. First,
the set R" is the same as our o+. Next, Li and Tsing write x -< y (x, y e R") to
mean that x is 'majorized' by y. It is well known [MO] that this is equivalent to
saying x € C{~Lny) = C(Wy). Now A in the lemma is the terminal element of the
algorithm applied to x — y, which is (x — y)+ = x — yx (Corollary 2.6), whence
y' = yx. Therefore, parts (a) and (b) of the lemma follow from Proposition 2.9 (1),
part (c) from Proposition 2.9 (2), and part (d) from Lemma 2.10.

EXAMPLE 4.2. J% is the set of symmetric n x n matrices over R and ~ is orthogonal
similarity: X ~ Y if and only if X = OYO' for some O e O(n) (cf. [C, type (II),
p. 170]).

Let G = GL(n, R) and K = O(n). We have g = gl(n, R), t = so(n) (= algebra
o f n x n skew symmetric matrices over R), and p = set of symmetric n x n matrices
over R. The discussion in Example 4.1 now carries over verbatim to this setting.
(Cheng already pointed out in [C] that the results in [LT2] are valid for the M and ~
of this example.)

EXAMPLE 4.3. jf( is the set Cmxn of m x n matrices over C and ~ is unitary
equivalence: X ~ Y if and only if X = UYV for some U e U(m), V € U(n) (cf.
[C, type (III), F = C, p. 171]).

Let G = U(m, n) = {g € GL(m + n, C) : g*Im,ng = /„,.„}, where /„,,„ = ft _°J
(I, = txt identity matrix). Let K = {[Q °] : U e U(m), V e U(n)}. (Since the
unitary group is connected, so is K, and hence so is G by [Kn, 1.122]. Therefore
Definition 3.1 (5) is satisfied.) We have g = u(m,n) = {[£ b

d] : a e u(m),d e
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uOO, b e Cmxn}, t consists of those matrices in g with b — 0 and p those with
a = 0 = d (see [Kn, p. 314]). We identify p with Cmxn via [°. £] ^ b. With this
identification, the adjoint action of k = [" °] e K on b becomes Ad(£)(i) = Ub V*,
so the corresponding equivalence relation is unitary equivalence, as desired.

For the remainder of the discussion, we assume m > n (the other case being
similar). We may take a = {x = YH=i x'ea '• a> € "̂ ) — ^-mxn which we identify with
K" via x i->- (JCI, . . . , xn). Let B be given by B(x, y) = | ReTr(xy). Then restriction
of fi to a yields the standard inner product on R". The reduced root system <t> of the
pair (g, o) is the irreducible root system of type Bn if m > n and of type Cn if m = n.
We may take A = {ati,..., an], where a, = et — ei+i (1 < i < n) and an is en or 2en

according as m > n or m = n. Then a+ = {JC e a : X\ > • • • > xn > 0}.
The Weyl group W associated with <I> consists of all mappings a —*• a of the

form x i-> (e i^d) , . . . , ^^(n)), with e, = ±1 and or e En, so the symmetric gauge
function <p : o -*• R referred to by Cheng is ^-invariant (and convex since it is a
norm).

Arguing as in Example 4.1, we see from Theorem 3.8 that a function || • || : Cmxn —•
US is a norm and is constant on equivalence classes relative to ~ (a so-called unitarily
invariant norm) if and only if there exists a symmetric gauge function <J> on K" such
that \\X\\ = <t>(s(X)) for all X e Cmxn, where s(X) is the w-tuple of singular values
of X arranged in nonincreasing order. This is a theorem of von Neumann [vN].

The longest element w0 of the Weyl group is negation, so Theorem 2 (a) (IF = C)
of [C] follows from Theorem 3.12 (2). The other results of [C] in the setting of this
example that are analogs of the results of Li and Tsing discussed in Example 4.1 are
obtained similarly. We comment only on the algorithm in the case m > n (the case
m = n being similar).

Since the vectors au ..., an_i are the same as those in Example 4.1, we can apply
the algorithm just as in that example to produce from x e a the vector *(r) with
x\r) > • • • > x^\ This corresponds to repeating Step 3 of Theorem 1 in [C] up to the
point where the algorithm passes to Step 4.

If x[r) = (jc(r),an) > 0, then our algorithm stops, as does Cheng's. Assume
otherwise and let k be the least index for which x^r) < 0. Let J = {k,..., n] and set
/r+i = Ir U J. Arguing as in Example 4.1, we get for any i € Ir+i,

and if / 6 Ir+i\J, then dj'*' = 0 for ally € J. If i e J, then

i — k+l, j <n,j >i

j -k + 1, j <n,j < i

(i-k+ l)/2, j = n
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[HI, p. 69], and a straightforward computation gives c''+'(x(r)) = Yl)=kxi < 0-
Therefore, conditions (1) and (2) of Algorithm 2.4 are met. The terminal element of
the algorithm is *( r + 1 ) ; it satisfies x\r+l) = (x ( r + 1 \ et) = (x(r), et) = x\r) for all i i J,
while *,(r+I) - jc£t° = (xlr+1\a,) = 0 (k < i < n) andx<r+1) = (x<r+1\a(1) = 0,
implying x(

k
r+i) = x ^ = • • • = x<r+1) = 0 just as in Step 4 of Cheng's algorithm.

This shows, in light of our earlier remarks, that Theorem 1 of [C] is a special case of
Theorem 2.13.

EXAMPLE 4.4. M is the set iRmxn of m x n matrices over R and ~ is orthogonal
equivalence: X ~ Y if and only if X = UYV for some U e O(m), V € 0{n) (cf.
[C, type (III), F = R, p. 171]).

It w o u l d b e n i c e j u s t t o le t G = O(m, n) = {g e GL(m + n , R ) : g'Im,ng = Im,n]
and proceed in a manner analogous to Example 4.3. Unfortunately though, O(m, n)
does not always satisfy Definition 3.1(5) (for instance, when m = n). Therefore, we
instead let G = S0{m, n)° (= identity component of the group SO(m, n) of those
elements of O(m, n) having determinant 1). Set K = {[o °] : U e S0(m), V e
SO(n)]. Then g, t, p, and a are the intersections with g l(m+n, R) of the corresponding
spaces in Example 4.3. Assume m > n (the case m < n being similar). If m > n,
then the reduced root system 4> of the pair (g, a) is <t> = {±e, ± e,- : i ^ j} u {±e,}
(signs read independently here and below), which is of type Bn, and taking A =
{et — e,+i(l < i < n), en] we have o+ = {x e a : x{ > • • • > xn > 0}. If m = n,
then <I> = {±e, ± e; : / ^ y }, which is of type Dn, and taking A = {<?, - e,+1(l < i <
n), en-\ + en], we have a+ = {x e a : A:, > • • • > xn-i > \xn\).

Let /iT' = {[o °] : U 6 O(m), V € O(«)}. Then K' = KD, where D is the
set of diagonal matrices with diagonal entries ± 1 . Let K' act on p by conjugation,
thus extending the action of K. Under this action, D stabilizes a and identifies with
the group of reflections in a of the form x t-*- (eixu ..., enxn) (e, = ±1). Clearly,
the group W generated by W and D is the finite reflection group associated with
the root system 4>' = {±e, ± e, : i =£ j} U {±e,} which is of type Bn. The set
A' = {e, — e,+i(l < i < n), en] is a base for <!>' and the corresponding fundamental
domain for the action of W on a is a+' = {x e a : xt > • • • > xn > 0}.

Given x € p, it is easy to see that the orbit K'x intersects a+> in a unique element,
which we write as ~x . From Lemma 2.7, we have x -<' J1 (x 6 o), where <' is the
partial order on o induced by A'.

We claim that Theorem 3.12 is valid with K,~x,y, w0 replaced by K',x~',yr, w'o
(= longest element of W), and with ~y'r computed relative to A'. Indeed, assuming
x, v e a+', we have, as in the proof of Theorem 3.12,

min[<p(x -z):ze C(K'y)} = rmn{<p{x - z) : z € C(K'y)}

> min{(p(x -1) : z € C(K'y)}
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= min \<p(.x - z) : z <= C(K'y) J ,

where the arguments are as before except with the additional observation that <p(x —
zO 5 <p(x - z) since x — ~z <' x — z (see Proposition 2.8). Now using Theorem 3.6,
we obtain

jt(K'y) = Jt({J Kdy\ = \Jn(Kdy) c (j C(Wd^) C C(W'y),
\deD J deD deD

so the argument in the proof of Corollary 3.11 applies to give C(K'y) c C(W'y).
Therefore, min{<p(x - z) : z e C(K'y)'} > min{<p(x - z) : z e C(W'y)} and the rest
of the proof can be completed as before. The statement involving the maximum is
proved similarly.

Since the root system $ ' is of type Bn, the argument in Example 4.3 applies to
show that Cheng's algorithm is the same as ours. The other main results of Cheng in
this case also follow from ours.

EXAMPLE 4.5. Jt is the set of symmetric n x n matrices over C and ~ is unitary
congruence: X ~ Y if and only if X = UYU' for some U e U(n) (cf. [C, type (IV),
p. 171]).

Let G = Sp(n, R) = {g € SL(2n, R) : g'Jn,ng = /„,„}, where /„,„ = [ \ '$],

and let K = {[_", *] : a, b e R n x n ,a + ib e U(n)}. We have g = {[* _*,] :
a,b,c € VLn*n,b' = b,c' = c], t = {[_", *] G g : a' = -a,V = b), and
P = {[* - J e 0 : a' = a, fc' = 6}. The map [_"„ *] h^ a + ifc identifies /iT
with U(n) and p with the set of symmetric n x n matrices over C, and with these
identifications, congruence in p under the adjoint action of K is precisely unitary
congruence. For a, we can take {diag(xi, . . . , xn, —X\,..., — *„)}, which identifies
with K" in the obvious way. The reduced root system $ of the pair (g, a) is of type
Cn. Therefore, an argument very similar to that given in Example 4.3 for the case of
the root system Bn shows that Cheng's algorithm for this example and ours coincide.

EXAMPLE 4.6. ^ is the set of n x n skew symmetric matrices over C and ~ is
unitary congruence (cf. [C, type (V), F = C, p. 171]).

Let G = SO*(2n) = [g e SU(n,n) : g'Ln,ng = LnJ, where Ln,n = [,° '$],

and K = {[£ £ ] : ! / € £/(«)). We have fl = j[_a
5 *] : a' = - a , b< = -fej , t

consists of those matrices in g with b = 0, and p those with a — 0 (see [Kn, p. 367]).

Identifying K with U(n) via Q 77 \ *-*• U, and p with the set of n x n skew symmetric

matrices via l0^ £ i->- ft, we see that congruence in p under the adjoint action of K

is precisely unitary congruence. For 0, we may take all matrices l ° 5 £ with b of the
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form Y}?™Xi(ev-i,2i - e2i,2i-i) (*, e R), which we identify with Rl"/2] by sending
the indicated matrix to (x\,..., X[nm)- Here we take B(x, y) = \ ReTr(;ry), so that
restriction of B to a yields the standard inner product on Rl"/2]. Then the reduced
root system <I> of the pair (a, o) is of type Cn/2 if n is even and of type B(n-i)/2 if n is
odd. Therefore, the comparison of Cheng's algorithm with ours given in Example 4.3
applies here as well.

EXAMPLE 4.7. J( is the set o f n x n skew symmetric matrices over R and ~ is
orthogonal similarity (cf. [C, type(V), F = R, p. 171]).

For this last example, we will use the version of Theorem 3.12 given in Corollary
3.14 (with a minor adjustment). Let U = SO(n)°. Then u = so(n), which is the set
ofnxn skew symmetric matrices over R. Note that congruence in u under the adjoint
action of U is orthogonal similarity. We may take t = { X^,2 1 xi(eu-\,ii ~ £21,21-1) :
xt € R} identified with R[n/21 by sending the indicated matrix to (JCI, . . . , x[nm). If
n is odd, then the reduced root system $ of the pair (u, t) is <J> = {±e, ± e, : i ^
j} U {±e,} (signs read independently here and below), which is of type Bn, and taking
A = {e, - e,+1(l < i < n), en) we have t+ = {x G t : xx > • • • > xn > 0}.
If n is even, then 4> = {±e, ± e, : i ^ j], which is of type Dn, and taking
A = {e,-e,+i(l < i < n), en-i + en}, wehavet+ = {x e t : xx > • • • >xn.x > \xn\}.

Let U' = O(n). Then U' = UD, where D is the set of diagonal matrices with
diagonal entries ± 1 . Now D stabilizes t, so it makes sense to form the group W
generated by W and D. W is a finite reflection group associated with the root system
$ ' = {±et ±ej : 1! ^ j} U {±e,} which is of type Bn. The set A' = {et - e,+1(l <
i < n), en] is a base for 4>' and the corresponding fundamental domain for the action
of W on t is t+/ = [x € t : xx > • • • > xn > 0}. Given x € u, denote by x1 the unique
element of t+/ C\ U'x. Arguing as in Example 4.4, we see that the version of Theorem
3.12 given in Corollary 3.14 is valid with all notation replaced by the corresponding
primed notation. Therefore, Cheng's results follow from ours just as in the earlier
examples.

REMARK. Our reason for considering the group K' in Example 4.4 and the group
[/' in Example 4.7 was that we were interested in recovering Cheng's results. Of
course, we get new results by considering the actions of just K and U. For instance,
in Example 4.4 we see that if ^ is the set Rmxn o f m x n matrices over R and
~ is special orthogonal equivalence (X ~ Y if and only if X = UYV for some
U € S0(m), V € SO(n)), then the results of Cheng apply unchanged to this setting
if m ^ n (for then <!> is of type Bh where / = min{m, n}), while new formulas are
required if m = n (for then 4> is of type Dn). In the latter case, the longest element w0

of the Weyl group W acts on a by the rule WQX = (—xx,. . . , —xn_u (— l)n+lxn), so
the statement about the maximum in Cheng's Theorem 2 (a) (F = R) changes slightly
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in this setting if n is odd. Also, if m = n, then Cheng's algorithm in Theorem 1
must be changed to handle this setting. It is not too difficult to see that by making
appropriate choices for the sets Ik in Algorithm 2.4, one can produce an algorithm that
bears some resemblance to Cheng's, but we feel that to include such an algorithm here
would serve no real purpose since, for instance, the algorithm arising from the natural
choices given after Algorithm 2.4 would be easier to implement on a computer (and,
once implemented, would require only a change of Cartan matrix to be applicable to
settings with other root systems).
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