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A general space curve has only a finite number of quadrisecants, and it is rare for these to be bitangents.
We show that there are irreducible rational space sextics whose six quadrisecants are all bitangents. All such
sextics are projectively equivalent, and they lie by pairs on diagonal cubic surfaces. The bitangents of such
a related pair are the halves of the distinguished double-six of the diagonal cubic surface. No space sextic
curve has more than six bitangents, and the only other types with six bitangents are certain (4,2) curves on
quadrics. In the course of the argument we see that space sextics with at least six quadrisecants arc either
(4,2) or (5,1) quadric curves with infinitely many, or are curves which each lie on a unique, and non-singular,
cubic surface and have one half of a double-six for quadrisecants.
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1. Introduction

1.1. A non-planar non-singular irreducible curve in 3-dimensional complex
projective space has, in general, a finite number of quadrisecants. If the curve has order
n and genus g then their number is [7, p. 296], [12, p. 377]

q = ~k(n ~ 2)(" " 3)2(" " 4) " \9{nl " 7" + 13 ~ 9l 0)

To demand that one or more of these quadrisecants is a bitangent, having its four
intersections with the curve as two coincident pairs, imposes extra conditions which are
usually impossible to meet. Only exceptional curves possess bitangents, and their rarity
makes them interesting. We should say, at once, that there are curves with an infinity
of quadrisecants; for example, the intersection of a ruled surface with a surface of
order at least four has the generators of the ruled surface for quadrisecants (at least).
Then a finite number of these will touch the curve but, usually, none will touch it twice.

Space cubics and quartics have no quadrisecants. There is just one type of non-
singular space quintic with a finite positive number of quadrisecants; this is the quintic
of genus 0, which, by (1), has just one quadrisecant [12, p. 377]. It is possible for this
quadrisecant to be a bitangent; take a rational normal quintic curve in 5-space, take
the solid spanned by two of its skew tangent lines, and project from a general line in
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this solid so that both tangents project to a common bitangent. Interest thus turns to
space sextics.

Non-singular space sextics can be [12, pp. 93, 393] of genus 0, 1, 2, 3 or 4, when
the respective values of q are 6, 3, 1,0 and 0. One of the main purposes of this paper is
to obtain a non-singular sextic if whose six quadrisecants are all bitangents
(Section 2.1). In fact (Theorem 4) all such sextics are projectively equivalent. The
group of self-projectivities of Sf is the alternating group A5 (Theorem 4). A non-
singular space curve of order n and genus g has [2, p. 200], [12, p. 377] 4(n + 3p — 3)
stalls, points where the tangent plane has more than its statutory minimum 3-point
intersection. The 12 stalls of f? are its contacts with its bitangents (Theorem 1). In the
course of our discussion we shall see (Theorems 2, 3) that any space sextic with
infinitely many quadrisecants lies on a non-singular quadrie, and that any such curve
with at least six bitangents has exactly six, and is a (4,2) curve on the quadrie: by an
(a, P) curve on the quadrie we mean one of order cc + p which meets each generator of
one regulus of the quadrie in a points, and each generator of the other in P points; such
a curve, if non-singular, has [5, p. 16], [12, pp. 82, 122] genus (a— \)(P — 1). There
are (Section 3.4) non-singular (4,2) curves with six bitangents; they have genus 3.

1.2 The six bitangents of y are one half of the distinguished double-six of a
diagonal cubic surface D (Theorem 1). A pentahedron P of planes, no four concurrent,
has ten edges and ten vertices. Each edge contains three vertices. Each vertex, common
to three faces, is opposite to the edge common to the other two. The join of a vertex
to a vertex on the opposite edge is a diagonal. Altogether P has 15 diagonals, and there
is a unique cubic surface, the non-singular diagonal surface D, containing them [6,
p. 539], [9, pp. 199, 201]. D has 12 other lines which form its distinguished double-six,
5 [6, p. 543], which may be displayed as

a, a2 a} a4 as a6

b\ b2 b-i fc4 b5 b6

where each of these lines is skew to the other six lines in the same row or column,
but meets the other five lines. The tangent plane to D at a vertex of P contains the
three diagonals through that vertex; the ten vertices of P are Eckardt points of D [9,
p. 199]. If one takes the standard plane representation of a cubic surface by cubic
curves through six points At, A2,..., A6 not on a conic, then the neighbourhood of At

corresponds to the points of the line a, and the conic 3St through all the Aj apart from
A{ corresponds to bt [1, pp. 189-191], [6, p. 214], [7, pp. 480-489], [12, pp. 124-128].
Corresponding to the ten Eckardt points of D are [4], [9, pp. 197, 214] ten Brianchon
points of the hexagon H with vertices At,..., A6, i.e. non-vertex points of concurrence
of three of its edges. The geometry of H was explored in [3]. In particular [3, p. 283],
it was shown that there is a conic # that has double-contact with each 38{. To this there
corresponds (Section 2.1) a rational sextic curve on D with the ft, for bitangents. This
was how £f was initially discovered. In fact, there is (Theorem 1) a unique (irreducible)
sextic curve with the bt for bitangents: call this Sf henceforth. The group of
projectivities of P is the symmetric group Zs, and this is the group of D. Its subgroup
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A5 fixes each half of 5 and thus ¥. The coset Z5 \ As interchanges the halves of 5, so
there is (Theorem 1) a unique sextic curve ¥ with the a, for bitangents.

In the course of the proof of the projective equivalence of all non-singular rational
sextics with six bitangents, we shall see that such a sextic lies on a unique cubic surface
(Theorem 2), which must (Theorem 3) be a diagonal surface with one half of its
distinguished double-six for the bitangents. Thus (Theorem 4) rational sextics with six
bitangents occur in related pairs on diagonal cubic surfaces, and ¥ and ¥ are such a
related pair. One of the 72 families of twisted cubics on D consists of those having the
six fo, for chords [1, p. 175], [12, p. 126]. The members of this family J2" each meet ¥
in two points, and there are two members of !F through each Eckardt point that touch
¥. The 20 such points of contact on ¥ are (Theorem 1) its intersections with its mate
¥: the twisted cubics on D touching ¥ at these points and having the a, for chords
pass in pairs through the Eckardt points.

1.3 There is a unique quadric, the Schur quadric Q of 5, that has the a,, fc, for six
pairs of polar lines [1, p. 161], [10, p. 147]. Q meets the b: in their points of contact
with ¥, and the a, in their points of contact with ¥ (Section 2.1). There is a pencil of
curves on D which have 3-point (at least) contact with Q at each of its 12 intersections
with the six bt. All but four of the curves of this pencil are irreducible non-singular 18-ics
of genus 10. The four exceptional curves are: (i) ¥ counted thrice; (ii) Bring's sextic that
is the intersection of Q and D; (iii) a rational 18-ic with each Eckardt point for double
point, and whose tangents at each Eckardt point are those of the two members of J5"
through that point that touch ¥; (iv) the set of six twisted cubics of !F that pass through
the contact points of ¥ with the six b{. (Section 2.3). Bring's curve is the canonical sextic
of genus 4 that has the largest collineation group [5, p. 539], Because it is
symmetrically related to ¥ and ¥ we see that Bring's curve has 12 of the twisted cubics
on D touching it inflexionally twice (Section 2.3).

1.4. As we have already mentioned some of our arguments are valid if we treat
the six bitangents as quadrisecants. They show (Theorem 3) that any space sextic curve
with six or more quadrisecants is either a (4,2) or a (5,1) curve on a quadric, or is on
a unique non-singular cubic surface and has the lines of one half of one of the double-
sixes for its quadrisecants.

2. The pair of non-singular sextics with six bitangents on a diagonal cubic surface

2.1 Let D be a diagonal cubic surface. We take its representation in a plane n as
described in Section 1.2. We shall make use several times of the fact [1, p. 191],
[12, p. 124] that to an irreducible curve of order n in n which has the base points
At, A2, ...,A6 as points of respective multiplicities / , , / 2 , . / . 6 there corresponds an
irreducible curve on D of order

3« - ; . , - ;.2 - ;.3 - ;.4 - ;.5 - ;.6; ( 3 )

here we allow the possibility '/., — 0.
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All hexagons with 10 Brianchon points are projectively equivalent [3, p. 275]. Such
a Clebsch hexagon H has associated with it a non-singular conic # that has [3, p. 283]
double-contact with the conic through the vertices of H other than At. Thus <€ has
double contact with all the 38,. Moreover [3, p. 281] ^ contains none of the At. Hence,
by (3) and (2), # corresponds to a sextic curve y on D with each fr, for bitangent.
As <i? contains no A{ the correspondence from ^ to y is biregular on their sets of
points. Hence y is non-singular and rational with #. One could, alternatively, note
that through any point of ^ there pass cubic curves of n through all the At that do not
touch # at this point; correspondingly there are planes through any point of Sf having
intersection multiplicity 1 at that point.

The points of contact of ^ and 38n say (/,-, Vit are the points of contact of 08 it and
<g, with their tangents «,-, vt from Ax [3, p. 283], [4, §1.5]. The composite cubic curve
consisting of u, and ^ , meets # four times at {/, and twice at V{. This is a cubic through
the A-,. It corresponds to a plane meeting y four times at a contact with ft,. The conies
that are the residual intersections of D with the planes through ft, cut ft, in pairs of
points of an involution whose double points are parabolic points of D [1, p. 211], [10,
p. 149]. Such conies correspond in n to the lines through A, (since their planes
correspond to cubics through the At with 8$, for a component) which cut ^ in an
involution with U,, V, for double points. Thus the points of contact of y with its
bitangents are stalls of y and parabolic points on D. Thus they are on the Schur
quadric Q of 5 [10, p. 151].

2.2. It is time to go beyond the straightforward translation of known facts in n
and to prove

Theorem 1. Let D be a diagonal cubic surface with pentahedron P. Let 5 be the
distinguished double-six on D whose halves are the six lines a{ and the six lines bj, where
a, is skew to bj. Then:

(i) there is a unique irreducible sextic curve ya having the lines a, for bitangents, and
a unique sextic curve yb having the lines bjfor bitangents;

(ii) ya and yb are non-singular rational curves on D, and have the diagonals of P for
chords;

(iii) the contacts of' y'a(yb) with the a,(ft,) are all its stalls;
(iv) y'„ and yb have 20 points of intersection, which are the points of contact of

ya{yb) with the pairs of twisted cubics on D through the Eckardt points with the a,(ft;)
for chords that touch ya(yb).

Proof, (i) We show, first that if F is a sextic with the b, for bitangents then its
correspondent F* in n is a conic. Since F meets D in, counted with multiplicity, at least
24 points it does lie on D, and so is a space sextic! Let Z5 be the group of P, and let
p be an involution in Y.5\A5. Then [6, p. 541] p is a harmonic inversion with an Eckardt
point for centre. Since the a,- are skew at least one of them, say ak, is not in the fixed
plane of p and so is moved by p to an intersecting line c. Since E5 is [6, p. 540], [9, p.
201] the group of P and D, the involution p must fix <5. By the intersection properties
of (1) c must be a bj. Hence p interchanges the two halves of S. Thus pF is a sextic with
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the at for bitangents. Its correspondent Jf in % must have A-, as a point of multiplicity
Hi > 4: at this stage of our argument it is conceivable that a bitangent meets pT in
further points. Suppose that Jf has order n. Then, by (3),

6 = 3 n - ( / i , + . . . + / i 6 )<3n-24 , (4)

so that n > 10.
A twisted cubic on D with the b, for chords corresponds [12, pp. 126, 127] to a line

of n through no Ait and a twisted cubic with the a, for chords to a quintic curve with
the A{ for double points. Since p interchanges these two types of twisted cubic its
correspondent p' in n is a Cremona transformation with quintic homaloids. Also, p*
takes the set of fundamental points A, to the set of conies SB). Hence p* Jf has order 5n
and contains SSt as a component of multiplicity nt. The residual of these components,
which is F*, has order

5 n - 2 0 i , + . . . + | i 6 ) = 12-n ,

by (4). Since lines in n correspond to lines, conies or twisted cubics on D [12,
pp. 125, 126], we must have n < 10. It follows that n = 10 and that F* has order 2; as
claimed.

P has double contact with the $&-,. We now show that it must be <€. Since it is
possible for a set of conies to all have double contact with a pair of conies it is
inevitable that we must use the special geometric features of H (see Section 1.2). If
F*(x) is a quadratic form of F* then there is a linear form L*(x) such that $?, has for a
quadratic form

*,(*) = r*(x) + [Z,(x)f. (5)

If we subtract, for ;' / i, SS^x) from ^,(x) we see that [L;(x)]2 - [L,(x)]2 = 0 is a line pair
of the pencil containing 3St and 38,. Since these conies meet in the four vertices of H
other than Ait Ajt this is a genuine line pair, and the lines L,, L, corresponding to L,(x)
and Lj(x) are distinct and meet in a diagonal point of the quadrangle ^, n ^ .

Co-ordinates may be chosen so that the vertices of H are (l,±;',0), (0,1, ±,/) and
(±;',0,1) where ;'2 =7'+ 1 [3, p. 274]. The quadrangle with the first four of these for
vertices has for diagonal points (0,1,0) and (l,0,±j2). The last two are [3, p. 274] the
two Brianchon points on the edge of //joining (±;,0,l), and the first is the pole with
respect to c€, which has quadratic form x2 + y2 + z2 [3, p. 277], of that edge. Since the
group of H is transitive on its edges [3, p. 278] we see that the diagonal points of the
quadrangle not having Ah Aj for vertices are the pole of A,Aj with respect to # and the
two Brianchon points on AtAj.

The diagonal points of the five quadrangles not having A, for a vertex have 15
distinct diagonal points, namely the pairs of Brianchon points on the lines A^A^i > 1)
and their poles. Thus L, meets L^ L6 in five of these distinct points. Since no three
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Brianchon points are collinear [3, p. 285], at least three of these points on L, are poles
of edges of H through Ax. Hence L, is the polar line of /4, with respect to #. This
(see Section 2.1) is the line of contact of # and 3dx. There are corresponding results for
all the L,. Hence there are a,, /?, such that

where ^(x) is a form corresponding to e€. Hence, from (5),

F'(x) - a,.^(x) = (fi, - l)[L,(x)]2. (6)

If no pt is 1 then F* and ^ are distinct conies which determine a pencil containing six
repeated lines. Since a pencil of conies that contains a non-singular member has at
most four singular members [4, pp. 177-183] this is impossible. Hence some /?, is 1.
Then, from (6), F*(x) is a multiple of ^(x) so that F* is <€, as required. Since the lines
AtAj meet <€ in pairs of points and correspond [12, p. 125] to the diagonals of P, the
discussion of £f in Section 2.1 gives (i) and (ii). Also (iii) follows from Section 2.1 and
the fact (Section 1.1) that a non-singular rational sextic has 12 stalls.

(iv) We have already noted that the twisted cubics of the family with the fc, for
chords correspond in n to the lines through no Ah The lines through a Brianchon point
cut an involution on <& and two of them touch <€. The 20 points of contact are the 20
intersections of # with 10-ic p*^ [4, §4.5] which is the correspondent of Sfa (see above).
Translation of these results to D and the use of p now gives (iv), and the proof is
complete. •

2.3. It was shown in [4, Theorems 1, 3] that Bring's curve, the intersection of D
with the Schur quadric Q of 5, corresponds in n to the unique sextic curve S with the
At for double points and «,-, vt for nodal tangents. Further [4, Theorem 1] S has 12
inflexions which are the six pairs of points Uit V, on %> and the line l/,K is the
inflexional tangent to S at [/, and Vt. The sextics meeting each t/.VJ three times (at
least) at [/, and Vx form a pencil & [4, Theorem 2] whose only reducible members are
the conic # counted thrice and the set of six lines l/,^. All other members have U^
for proper biflexional tangents. The member of & through the Brianchon points is
rational and has these points for double points with the tangents to <€ from the
Brianchon points as nodal tangents. Apart from this curve, the reducible curves, and S,
the members of !P are non-singular and of genus 10. That Q has 3 point intersection
with Bring's curve at its intersections with the lines of S was proved in [6, p. 543].
Translation to D using information accumulated during the proof of Theorem 1
establishes the results stated in Section 1.3.
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3. Space sextics with six bitangents

3.1. Let F now be an irreducible space sextic curve. For precision, we remark that
by a bitangent of F we mean a line that is a tangent to F at at least two distinct points;
this includes the possibility that it is a nodal tangent at a singular point. This is a
special type of quadrisecant, namely a line with four, at least, intersections with F
when we count the order of its contact at the intersections. We note that two
quadrisecants of F are skew; else their plane would have, counting multiplicities, at
least 8 intersections with F.

3.2. A cubic surface containing F must, since it meets any quadrisecant in four
points or more, contain every quadrisecant of F. We need

Proposition 1. If T has at least six quadrisecants then it cannot lie on a singular
irreducible cubic surface.

Proof. Suppose that F lies on such a surface C. A cubic surface with a triple point
is a cone [13, p. 392], and all its lines concur at its vertex; it thus cannot be C. If C
is ruled then [5, p. 15], [12, pp. 65, 136, 206] each of its generators meets F in the same
number of points, say m. Since C contains at most two non-generator lines [5, pp. 32,
33], [11, p. 164], [12, p. 135], [13, p. 382], at least four generators must be quadrisecants
of F; so that m > 4 and thus each generator is a quadrisecant. But through a general
point of the directrix (double) line d on C pass two generators [5, p. 8], [12, p. 135],
[13, p. 384]: for Cayley's cubic one of these is d. We have a contradiction to the Final
sentence of Section 3.1.

Thus C must be one of the 21 types of cubic surface with isolated double points [8, pp.
63-82], [9, p. 222], [11, p. 170]. Each of these contains a finite number of lines. Let
/,, i = 1, 2 , . . . , 6, be six quadrisecants of F. Any line meeting four of these meets C in at
least four distinct points, and so is on C. Through any line on C there pass at most five
planes whose residual intersection with C is a reducible conic [13, pp. 391, 392]. Thus no
line meets all six /,. The Five /, other than a particular lj may have a common transversal; if
they do we shall let m; denote one such transversal. If m,, m2,..., m5 exist then C has at
least 11 lines. Suppose that just mx,m2,m-i,mi occur. Then /,,/2,/3,/4 have at least one
transversal, which cannot be m,, m2, «i3, mA else all six /, would have a common transversal.
Again, C has at least 11 lines. By considering similar 4-subsets of the /,, we see that if there
are 0, 1, 2 or 3 m, then C has at least 21, 17, 14, 12 lines respectively. Only five types of
the possible singular cubic surfaces have 11 or more lines. These are [9, p. 220], [11, p. 164]
those whose sets of singular points are C2, 2C2, B3, 3C2 and B3 + C2 respectively, where
C2 denotes a conic node and B3 an ordinary binode. These cubics contain 21, 16, 15, 12, 11
lines respectively. In the last case 8 of these 11 lines are the join B3C2, four other lines
through C2 and three other lines through B3 [8, p. 73], so there is no possibility of six skew
lines on this cubic. The other four types may be represented by plane cubic curves with
six distinct base points £ , , . . . , £6. But these base points are not in general position. For
the cubic with 21 lines the £, lie on a conic; for the cubic with 16 lines B2, B3, B4 and
B2, B5, B6 are collinear triads with B, general; for the cubic with 15 lines B,, B2, B3 and
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BA, Bs, B6 are collinear triads; and for the cubic with 12 lines B,, B2, B3; BUB5,B6;
B3, B4, B5 are collinear triads [7, pp. 640-644], [12, pp. 143, 144]. The triads, and in the first
case the conic through the B,; correspond to the double points. The lines on C correspond
to the neighbourhoods of the B,, any conies through five but not six of the B,, and the joins
B.B, where B,, B; are not part of a triad. It is easy to check that in each case it is impossible
to find six skew lines on C. Alternatively, one can check this from Henderson's equations
for the lines on C which are given in simple co-ordinate form in [8, pp. 6-82]. We have
our required contradiction. •

We can now prove

Theorem 2. An irreducible space sextic curve with at least six distinct quadrisecants
is either

(i) a (4,2) or a (5,1) curve on a quadric surface, in which case it has infinitely many
quadrisecants,

or
(ii) a rational non-singular sextic that lies on a unique and non-singular cubic surface;

in which case its quadrisecants are the six lines of one half of a double-six on the cubic
surface, and it is skew to the lines of the complementary half.

Proof. Since a quaternary cubic form has 20 coefficients there is a cubic surface C
through 19 points of such a curve F. By Bezout's Theorem, C contains F. If C is
reducible then it must have a quadric component that contains F. This quadric
contains the skew quadrisecants and so is not a cone. Hence the quadrisecants belong
to one regulus, and F must be a (5,1) or a (4,2) curve.

So, suppose that C is irreducible. Then, by Proposition 1, it must be non-singular.
Any other cubic surface containing F also contains six quadrisecants of F and so would
meet C in a composite curve of order at least 12; an impossibility. The only sets of
six skew lines on a non-singular cubic surface are the 72 halves of its 36 double-sixes,
and there are no sets of seven skew lines [7, p. 485]. Take the plane representation n of
C (see Section 1.2) so that the quadrisecants of F correspond to the neighbourhoods
of the six base points A-, [7, p. 489], [12, pp. 125, 126]. Let F correspond to the curve
F* in n of order n. Suppose that F* has multiplicity ^ at At. Then we again have (4)
with /i, > 4, and thus n > 10. Since F is irreducible we must have /i, < 6. Thus the only
possibilities for (4) are:

(i) each //, is 4, and n = 10;
(ii) three //, are 4, the others are 5, and n = 11;

(iii) each /i, is 5, and n = 12.
The deficiency D of F* is non-negative. Thus, since F* may have multiple points

other than the A, we must have [12, p. 30],

(n - l)(n - 2) - Zt.ftGi, - 1) > 0.

Neither possibility (ii) nor possibility (iii) satisfies this inequality. Thus F* is a 10-ic
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with the A, for exactly 4-tuple points. The conic through A}, A2, Ait AA, As corresponds
to the line b6 of the complementary half of the double-six. Since the sum of its
multiplicities of intersections with F* at the Ai is at least 5 x 4 = 20, it meets F*
nowhere else. Thus b6 is skew to F. Similar statements holds for b{,..., b5.

Now take the plane representation of C having base points B , , . . . , B6 corresponding
to the lines bt. Then the quadrisecants correspond to conies through five of the B,.
And F corresponds to a curve F* not through any B,. Hence, by (3), Ff has order 2.
Thus, as argued for Sf in Section 2.1, F is rational and non-singular. We are done •

We should remark that we could use the deficiency inequality argument in place of
the discussion involving p* to show, when proving Theorem 1, that the Jf of
Section 2.2 has order 10. It seems worthwhile, however, to show the efficient
effectiveness of both approaches.

3.3 It is time to return to the bitangent situation. We have

Theorem 3. An irreducible sextic curve with at least six distinct bitangents has exactly
six bitangents, and is either

(i) a (4,2) curve on a quadric
or
(ii) a rational non-singular sextic lying on a diagonal cubic surface D, and having one

half of the distinguished double-six of D for its bitangents.

Proof. For an (a, /?) curve on a quadric there are, counting multiplicities, 2/?(a — 1)
points R such that the a generator through R has more than simple intersection with
the curve at R [5, p. 10], [12, p. 60]. For a (5,1) curve this number is 8, and so the curve
can have at most four bitangents. One can also see this by taking the stereographic
projection of the quadric from a point on the curve. For a (4,2) curve the number is
12. Hence there can be at most six bitangents. We verify in Section 3.4 below that such
curves do exist.

By Theorem 2, we must show that (ii) holds for a sextic F with six bitangents that
lies on a non-singular cubic surface C. We return to the plane representation of F given
by the last paragraph of the proof of Theorem 2. Now the conic F* has double contact
with the conic 3St through the five Bj other than B,.

We may take co-ordinates x = (x, y, z) in n such that Bu B2, Bz are (1,0,0), (0,1,0),
(0,0,1) respectively. Since SD^ and 3d5 do not touch at B{{i < 3), this point cannot be a
contact of either with T\ and so is not on Ff. By replacing x, y, z by suitable multiples
we may thus take for a quadratic form of Ff

2(x) = x2 + y2 + z2 + 2fyz + 2gzx + 2hxy. (7)

Suppose that 3St has for a quadratic form

Bi(x) = Q(x) - [L,(x)]2, (8)
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where L,(x) corresponds to the line of contact L, with Ff . Since 384,^5,3S6 contain
X, Y,Z their forms do not contain non-zero x2, y2, z2 terms. Hence each of L4(x), Ls(x),
L6(x) is one of ±(x + y + z), ±(—x + y + z), ±(x — y + z), ±(x + y — z). By replacing
some of x, y, z by their negatives, if necessary, we may assume that ±(x + y + z) does
not occur, and then by renumbering the B4, B5, B6 we may, since their sign's are
immaterial, assume that

L4(x) = - x + y + z; L5(x) = x - y + z; L6(x) = x + y - z. (9)

The points common to &d4 and @5 satisfy, by (8), L4(x) = ± L5(x). The negative sign
yields points with z = 0; these must be B, and B2. The positive sign yields points with
x = y. One of these is B3. The other must be B6 with co-ordinates (l,l,y) for some
y ^ 0. Similarly, B4 is (a, 1,1) and B5 is (1,/?,1) for some a, /? not 0. Thus the lines
B,B4, B25S, B3B6 concur at U = (1,1,1). Since no three B, are collinear U is not one of
these; none of a, p\ y is 1. We see from (7), (8) and (9) that

2 + 2 / + 2gfa + 2/ia = 0, (10)

with corresponding equations for p\ y.
Since ^ , contains B2 and B3 we have, by (7), (8),

+ px) (11)

for some p. Since $?, contains BA we also see that

2 + a2 + 2 / + 20a + 2fca = (1 ± 1 + pa)2,

which, by (10), becomes

a2 = (1 ± 1 + pa)2. (12)

On demanding that B5 and B6 lie on 38\ we similarly obtain

/?2 = 0 ? ± l + p ) 2 (13)

y2 = ( l ± y + p)2 (14)

The lower sign possibility yields p2 = 1 from (12). Then (11), (9), (8) would give 36X is
38s or ^ 6 a contradiction. Hence, the upper sign possibility must occur, so, from (13),
(14), /? and y both satisfy

f) = 0. (15)
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We cannot have p = —1, else, by (12), a = 1. Hence, from (15), P — y. Similarly, by
considering @2 and ^3, we see that a — P = y.

It follows that BiBs,B2Bi and B3B6 concur at (l.l.oT1); B,B4, B2B6 and B3BS at
(a"1, 1, 1); and B,B6, B2B5, B3B4 at (l,a~\ 1). Together with U these are four centres of
perspective of the triangles B,B2B3, B4B5B6, and are Brianchon points of the hexagon H
with the B, for vertices.

It follows that each of the 10 pairs of triangles, whose vertices are those of H, has
at least four centres of perspective, each a Brianchon point. Since exactly three edges
of H pass through any Brianchon point, it is the centre of perspective of exactly four
such pairs of triangles. Hence H has at least 10 x 4/4 = 10 Brianchon points. Since [3,
p. 275] a hexagon can have at most 10 Brianchon points, H has exactly 10. Thus [4,
Section 4.2] (see [9, pp. 197, 199, 201]) C is a diagonal cubic surface D with the bt

forming one half of its distinguished double-six 5. We may note that the 15 joins BjB;,
three through each Brianchon point, correspond to the diagonals of the pentrahedron
P of D, three through each Eckardt point. The proof is complete. •

Since any two pentahedra are projectively equivalent, so are any two diagonal cubic
surfaces. The group £5 of D has elements interchanging the halves of 8. Any non-
singular (4,2) quadric curve has genus 3 (Section 1.1). Hence, from Theorem 1 we
obtain

Theorem 4. Non-singular rational space sextic curves with six bitangents are
projectively equivalent, have the alternating group As for collineation group, and lie by
pairs on diagonal cubic surfaces.

3.4. We ought to exhibit a non-singular (4,2) curve on a quadric with six
bitangents. Take co-ordinates so that the quadric Q is parametrised as
(x0, x,, x2, x3) = (A/i, k, \x, 1). Let

F(A, n) = A4 + / V - 8~'A + (64)"V2-

Then F(k, //) = 0 corresponds to a sextic curve F on Q. To each value of \i, including
oo, correspond four A, and to each value of I correspond two of \i. Thus F is a (4,2)
curve. The generator \i = oo though (1,0,0,0) meets F in the four distinct points given
by k = oo, 64A3 = 1. The generator k — oo 'touches' F at (1,0,0,0). The projection F* of
F from (1,0,0,0) onto x0 = 0 is a quintic curve with (0,0,1,0) as an ordinary triple point
and (0,1,0,0) as a simple point. It is easy to check that (0,0,1,0) is the only singular
point of T'. Thus P , and hence F, has [12, pp. 30, 53] genus

= ^-4.3-^.3.2 =

and F is non-singular.
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Suppose that /i6 = 1. Define a, /? by

2(a + 0) = -ii\ 8aj? = - /A

Then a ^ /J. Direct checking shows that F(/., //) is the square of (A - a)(A - /?). Hence
the generator corresponding to this \i touches F at two distinct points. The six possible
such ft give six bitangents for F.

3.5. We conclude by giving a heuristic argument that suggests there are many
classes of (4,2) curves on Q with six bitangents. A quartic surface F has 35 coefficients
in a corresponding quartic form. Take F to contain two skew generators on Q. This
imposes 10 conditions on the coefficients, and F meets Q residually in a (4,2) curve.
Take six other generators of the same regulus, take two distinct points on each of the
first five, and one point L on the last line /. The demand that F touches these
generators at these 11 points imposes 22 further linear conditions. We expect to have F
belonging to an oo2 system. This system contains the repeated quadric Q2. Hence it
should cut / residually to the repeated point L in an involution. One of the united
points will be distinct from L. The corresponding F will cut Q residually in a (4,2)
curve with the six generators for bitangents.
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