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ABSTRACT. The model used by Lingle and Clark (1985) to approximate the deformation of the Earth
under a single ice stream is adapted to the purposes of continent-scale ice-sheet simulation. The model
combines a layered elastic spherical Earth (Farrell, 1972) with a viscous half-space overlain by an elastic
plate lithosphere (Cathles, 1975). For the half-space model we identify a new mathematical formulation,
essentially a time-dependent partial differential equation, which generalizes and improves upon the
standard elastic plate lithosphere with relaxing asthenosphere model widely used in ice-sheet simulation.
The new formulation allows a significantly faster numerical strategy, a spectral collocation method based
directly on the fast Fourier transform. We verify this method by comparing to an integral formula for a
disk load. We also demonstrate that the magnitudes of numerical errors made in approximating coupled
ice-flow/Earth-deformation systems are significantly smaller than pairwise differences between several
Earth models. Our implementation of the Lingle and Clark (1985) model offers important features of
spherical, layered, self-gravitating, viscoelastic Earth models without the computational expense.

1. INTRODUCTION
Ice-sheet flow and the deformation of the Earth in the
vicinity of ice masses (‘glacial isostasy’) form an important
coupled system. The coupling consists of several mechan-
isms. Changing ice load produces elastic Earth deformation
instantaneously (on the relevant timescales), but further
deformation follows from viscous upper mantle flow under
the crust and lithosphere. Conversely, the changing eleva-
tion and slope of the ice-sheet bed affects ice flow through
changes in elevation-dependent accumulation and surface
temperatures, and also geometry-determined stress condi-
tions. Grounding-line migration can occur, as relative sea
level and sea-floor slope at the grounding line are affected
by Earth deformation (Lingle and Clark, 1985).

Although elaborate models exist for both ice flow and
Earth deformation, the large spatial extent of ice sheets and
the long timescales relevant to ice ages and paleoglacial
questions strongly suggest simplifications of these models to
achieve reasonable computation time. For ice-sheet flow,
the full Stokes equations are usually reduced to the shallow-
ice approximation or to related shallow models for ice
shelves and streams (Hutter, 1983; Paterson, 1994). For the
Earth deformation component of the coupled system, full
spherical, layered, viscoelastic, self-gravitating models are
available (Le Meur, 1996; Peltier, 1998; Klemann and Wolf,
1999; Martinec, 2000; Le Meur and Hindmarsh, 2000; Le
Meur and Huybrechts, 2001), but they come at large com-
putational expense, especially for rapid load change with
fine spatial scale (Larsen and others, 2005). Significantly
simplified Earth models are therefore currently standard for
use in ice-sheet simulations (Le Meur and Huybrechts, 1996;
Greve, 2001).

In modeling the interaction between an ice-stream model
and the deforming Earth, Lingle and Clark (1985) used an
Earth model which is intermediate between the simplified
models used in current ice-sheet simulations and full
spherical models. They used as their fundamental tools the
Green’s functions of two different linear Earth models. These

models are reviewed below. In their original implementation
the Green’s functions for these models are convolved with
the load to compute vertical displacements of the Earth’s
surface. They find a purely elastic displacement uE and a
viscous displacement u given a current load and a load
change history, respectively. The total displacement is then
the sum utotal ¼ uE þ u, that is, the two linear models are
superposed. This sum gives the correct result because the
combined viscoelastic Earth model is linear. In fact, for
spherical Maxwell Earth models the analogous sum occurs
in Love number domain (Peltier, 1974, equation (51)) and
also in combining Green’s functions (Peltier and Andrews,
1976, equation (24)).

The partial differential equations (PDEs) behind these
Green’s functions are linear, but the PDE behind the viscous
half-space model has not been stated. In fact, as seems to be
common in the spherical Earth deformation literature as
well, the viscous model in Lingle and Clark (1985) is only
exploited through its tabulated Green’s functions. Displace-
ments are computed by expensive numerical integration
against load history.

The Lingle and Clark ‘two-layer’ model approximates the
upper mantle as a linearly viscous half-space of viscosity �
and density �r, overlain by an elastic plate lithosphere of
flexural rigidity D (Lingle and Clark, 1985, especially fig. 3).
Though it is presented in the Hankel-transformed (Sneddon,
1951) domain in Lingle and Clark (1985), and earlier in
Cathles (1975), it turns out that this half-space model is
described by a single differential equation for vertical
displacement uðx, y, tÞ,

2� jrj @u
@t
þ �rgu þDr4u ¼ �zz , ð1Þ

where g is the acceleration of gravity and �zz is the (ice) load
force per unit area.

Here r4 is the familiar biharmonic operator which
appears in equations for elastic plates (Sneddon, 1951),
but jrj ¼ ffiffiffiffiffiffiffiffiffiffi�r2

p
is an operation which is defined below
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through the Fourier transform (Equation (6)). Note that �r2

is a positive operator in the sense that it is self-adjoint and
has non-negative spectrum (Reed and Simon, 1980). Thusffiffiffiffiffiffiffiffiffiffi�r2
p

is a real operator while
ffiffiffiffiffiffiffir2

p
would be imaginary. As

we will show, reliable numerical solution of Equation (1) is
not only possible but indeed very fast on a rectangular grid.

Equation (1) should be compared to the following pair of
equations which describe both the bed elevation u and a
notional plate elevation w for a plate which is, at all times,
in equilibrium with the current load:

�rgw þDr4w ¼ �zz , ð2aÞ
@u
@t
¼ � u �w

�
: ð2bÞ

This is the standard model of an elastic plate lithosphere
with relaxing asthenosphere (ELRA) widely used in ice-sheet
simulation (Le Meur and Huybrechts, 1996; Greve, 2001;
Hagdorn, 2003; Zweck and Huybrechts, 2005). Here �r, D
and �zz have the same meanings as in Equation (1), but
the actual (asthenosphere) viscosity � plays no direct role.
Instead, a single relaxation time � is assumed to apply for all
loads regardless of their spatial extent; � ¼ 3000 years is in
widespread use. In other words, the bed elevation u decays
toward w at a fixed rate 1=� by Equation (2b).

In both models (1) and (2), the function u describes the
top of the elastic plate lithosphere, with unloaded steady
state u ¼ 0. In these models the elastic plate lithosphere
does not compress, so the top and bottom of the lithosphere
are a fixed distance apart. An additional thickness u0 (x, y)
gives detailed bed topography (e.g. mountain ranges). The
super-lithosphere part of the crust described by u0 is
assumed to be of zero strength. The true bed elevation is
b ¼ uE þ u þ u0 in the Lingle and Clark model and b ¼
u þ u0 in the standard model.

We claim that Equation (1) implements the original intent
of model (2). Asthenosphere viscosity is directly incorpor-
ated, so there is no need to average over modes to give a
single constant relaxation time. Time dependence is directly
incorporated and this allows initialization from an uplift
map. See section 4 for more on these points.

The only issue for Equation (1) is numerical implemen-
tation, and in particular the presence of the operation jrj.
This is fully resolved in section 3. In section 5 we show that
our implementation is fast and stable. Furthermore it
computes results which agree closely with the continuum

model. In fact, we demonstrate that numerical errors made
in approximating coupled ice–Earth systems can be ex-
pected to be less than differences among Earth models. This
is clear evidence that the correct choice of Earth model is
important in ice-sheet simulations.

2. MODEL
As noted, Lingle and Clark (1985) combine a layered
spherical, self-gravitating, purely elastic Earth model with a
viscous half-space overlain by an elastic plate model.

The continuum equations of the spherical elastic model
are the linearized equation of conservation of momentum,
the stress/strain relation of linear elasticity, and Poisson’s
equation for the perturbation of the gravitational potential
(Farrell, 1972). Along with Lingle and Clark (1985), for
concreteness we adopt Farrell’s elastic Green’s functions
corresponding to the ‘Gutenberg–Bullen A’ layered Earth
(Alterman and others, 1961). Other stratifications could be
used in the same computational framework.

We incorporate this elastic Earth model entirely through
its surface vertical displacement Green’s function G EðrÞ, the
function described by equation (37) in Farrell (1972). This
Green’s function is the vertical displacement caused by a
1 kg mass applied at a point on the geoid and evaluated at a
distance r along the surface of the Earth from the point of
application. Table A3 of Farrell (1972) reports the values of
G EðrÞ at particular distances, and linear interpolation of the
corresponding values of rG EðrÞ gives the graph in Figure 1.
We see that there is a 1=r singularity for G EðrÞ, in contrast to
the Green’s function for the viscoelastic half-space model
used in the current paper (see Fig. 2 below). Layered and
spherical elastic effects enter the Lingle and Clark (1985)
model, and thus the results of the current paper, through the
non-trivial dependence of G E on the distance r. Indeed the
Green’s function for vertical displacement for a purely-
elastic stratified half-space is different from that shown in
Figure 1, and the differences are most significant for large r
(Farrell, 1972).

The elastic Green’s function G EðrÞ is used as follows to
compute the vertical displacement uE ¼ uEðx, y, tÞ caused
by elastic deformation of the spherical Earth. Suppose the
load at time t is given by the function �ðx, y, tÞ, with units of
mass per unit area. Then

uEðx, y, tÞ ¼
ZZ

R
GEðjr� r0jÞ�ðx 0, y 0, tÞ dx 0 dy 0, ð3Þ

where we define jr� r0j2 ¼ ðx � x 0Þ2 þ ðy � y 0Þ2 and denote
by R the region of the Earth’s surface containing the load.
The displacement uE depends on time only through the
changing load since elastic changes are instantaneous. In
using Equation (3) we necessarily project the Earth’s geoid
into a fixed plane, and this projection means our results are
limited to an appropriately small region of the Earth’s
surface. We implement integral (3) more-or-less directly by
doing a numerical convolution (see section 3).

An important point about the model in this paper, which
explains the need to include uE in the superposition utotal ¼
uE þ u, is that the elastic plate lithosphere in the viscous
half-space model deflects but does not compress. Therefore
all vertical displacement u in this model is asthenosphere/
upper-mantle motion, though the elastic plate spreads the
influence of any load. The just-described spherical, purely

Fig. 1. The vertical surface displacement Green’s function G EðrÞ for
the elastic spherical self-gravitating Earth model (Farrell, 1972),
shown normalized to avoid the 1=r singularity.
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elastic Earth exhibits elastic compression, however. In
practice, 12–14% of the steady-state displacement comes
from uE while the remainder is in u from the viscous half-
space model (Lingle and Clark, 1985).

The viscous half-space model used by Lingle and Clark
can be found from a close reading of Cathles (1975). In this
paper, we use the particular choices of layer thickness,
viscosity and flexural rigidity for the ‘two-layer’ half-space
model of Lingle and Clark. Fast computation of the ‘three-
layer’ model in Lingle and Clark (1985) is also possible, as
described in section 4 below.

To present the equation of the Cathles–Lingle–Clark
viscous half-space model in its original form, we assume a
load, described by its time-dependent normal force �zzðr, tÞ,
which is radially symmetric around a point on the Earth’s
surface. Let uðr , tÞ be the vertical displacement of the
surface. Consider its Hankel transform

�uð�, tÞ ¼
Z 1

0
uðr, tÞ J0ð�rÞr dr, ð4Þ

where � is the transform variable and J0 is the Bessel
function of first kind and zeroth order (Sneddon, 1951).
Recall that the Hankel transform of a function f ðrÞ is the
same as the Fourier transform of the corresponding function
on the plane (i.e. f ðx, yÞ where r ¼ ðx2 þ y2Þ1=2). The model
then says that �u solves

2��
@ �u
@t
þ �rg �u þD�4 �u ¼ ��zz , ð5Þ

where ��zz is the Hankel transform of the load (Lingle and
Clark, 1985). The ‘two-layer’ model of Lingle and Clark
(1985) uses D ¼ ET 3=½12ð1� �2Þ� ¼ 5:0� 1024 Nm for the
flexural rigidity of the lithosphere from Poisson’s ratio
� ¼ 0:5, Young’s modulus E ¼ 6:6� 1010 Nm–2 and a thick-
ness of T ¼ 88 km for the elastic plate lithosphere. The
density and viscosity of the fluid in the underlying half-space
are assumed to be �r ¼ 3300 kgm–3 and � ¼ 1021 Pa s,
respectively.

If the initial condition to Equation (5) is the condition of
zero displacement and if a 1 kg load is applied at the point
r ¼ 0 and time zero, and is held there for t > 0, then �uð�, tÞ
solving Equation (5) is the Hankel transform of Equation (1)
(though that differential equation is not stated in Cathles
(1975) or Lingle and Clark (1985)). In this case we denote
the displacement uðr , tÞ by GVðr , tÞ. Equation (5) is an
uncoupled set of linear first-order ODEs in time because the
spatial Hankel transform has done its job and turned the
underlying partial differential equation (1) into a trivially
solvable system (when the load is a function of r only).

Unlike the elastic case, the Green’s function GV is time-
dependent. A graph of GV for several t values is shown in
Figure 2. The viscous behavior is clear, as is the role of the
elastic plate lithosphere in removing any singularity at r ¼ 0.
Note that the peripheral bulge develops only at large times.
Though picturing the Green’s function GV is useful, we will
have no further need for it; GV plays no direct role in our
numerical scheme. Furthermore we will do no numerical
Hankel transforms. A method for using GV to compute the
response to a prescribed load change history is, however,
described in equations (19) and (22) in Lingle and Clark
(1985). We now believe that direct use of GV is both
inefficient and unnecessary for continent-scale ice sheets.

To explain why Equations (5) and (1) are the same thing,
note that the Hankel transform of r2f is ��2 �f if f ¼ f ðrÞ
is a function of the radial variable and �f ð�Þ is its Hankel
transform (Sneddon, 1951). Thus the term ‘�4 �u ’ in Equa-
tion (5) corresponds to r4u. Only � > 0 is allowed in
Equation (5), however, and an expression ‘�1 �f ’ should be
interpreted as ‘j�j�f ’. It turns out that such a first-power term
may not, strictly, be interpreted as the Hankel transform of a
partial differential equation. If we consider functions f ðx, yÞ
in the plane, however, and use the two-variable Fourier
transform F 2 with transformed variables �, 	 then it is an
easy calculation to show that the operation defined by

jrjf ¼ F�12 ð�2 þ 	2Þ1=2F 2f
h i

ð6Þ

has Hankel transform ��f ; jrj is known as a pseudo-
differential operator. It follows that Equation (5) is the
Hankel transform of Equation (1), but in Equation (1) we
have no need to assume the displacement and load are
functions of r.

Equation (1) needs boundary conditions. We assume u
goes to zero as ðx, yÞ ! 1, and similarly for a sufficient
number of its derivatives. We also assume that the load
�zzðx, y, tÞ is always zero outside of some bounded region of
interest.

Relative to the equilibrium plate with buoyant restoring
force (Equation (2)), the interesting part of Equation (1) is the
time-derivative term. This term accounts for viscous flow
within the asthenosphere. Note that the units of the product
�@u=@t in Equation (1) are consistent only with the half-
power of the Laplacian �r2.

3. IMPLEMENTATION
We treat Equation (1) numerically by discretizing in time
using a finite-difference method and then computing the
action of the spatial derivatives jrj and r4 using the fast
Fourier transform (FFT), a famously effective implementation
of the discrete Fourier transform (DFT) (Briggs and Henson,
1995). The resulting method can be called a Fourier spectral
collocation method (Trefethen, 2000).

We discretize in time by the trapezoid rule, analogous to
the Crank–Nicolson method for the heat equation (Morton

Fig. 2. Green’s function GVðr, tÞ for the half-space model. From top
to bottom the curves are at t ¼ 20, 100, 200, 400, 600, 1000, 1500,
2000, 3000, 4000, 6000, 8000, 10 000, 14 000, 20 000 and
105 years.
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and Mayers, 2005), and obtain an unconditionally stable
Oð�t2Þ method for Equation (1). In particular, let tn ¼ n�t
for n ¼ 0, 1, 2, 3, . . . and let Unðx, yÞ be our semi-discrete
approximation of uðx, y, tnÞ. Equation (1) is approximated by

2� jrjUnþ1� �þ�t
2

�rgUnþ1 þDr4Unþ1� �

¼ 2� jrjUnð Þ ��t
2

�rgUn þDr4Un� �þ�t �zzðx, y, t�Þ:
ð7Þ

Here �zzðx, y, t�Þ ¼ �zzðx, y, ½ðn þ 1Þ=2��tÞ if the load is
known at the time t� ¼ ½ðn þ 1Þ=2��t , or �zzðx, y, t�Þ ¼
ð1=2Þð�zzðx, y, tnÞ þ �zzðx, y, tnþ1ÞÞ if the load is only known
at the times tn, tnþ1; both choices preserve Oð�t2Þ accuracy
and unconditional stability.

With careful attention to the boundary condition at
infinity, the time-discretized form of our PDE, Equation (7),
can be well approximated by its DFT version. A reasonable
way to incorporate the DFT is to assume periodicity in the
spatial variables. Other boundary conditions could be
applied along a boundary at sufficient distance (e.g. a
clamped condition), but none of the easily implementable
choices are obviously superior. For convenience we will
assume a square computational region containing a smaller
region of physical interest. In fact, let L be the half-length of
a computational domain ½�L, L� � ½�L, L� which contains
and may be substantially larger than the region of physical
interest ½�Lx , Lx � � ½�Ly , Ly �. We apply periodic boundary
conditions at x, y ¼ �L; we want L to act like 1 when we
do this. We will verify that if L is at least twice maxfLx , Lyg
then our numerical scheme makes very small errors, and, in
particular, very little error results from applying the bound-
ary condition at finite distance.

Thus our spatial PDE problem is Equation (7) with
periodic conditions on the boundary of ½�L, L� � ½�L, L�
and the initial condition that U 0ðx, yÞ is known.

To use the DFT, we transform the problem to a standard
region ½�
,
� � ½�
, 
�. Let X ¼ 
x=L, Y ¼ 
y=L. Let N be
an integer. Let h ¼ 2
=N, Xj ¼ �
þ jh and Yk ¼ �
þ kh
for j, k ¼ 1, . . . ,N. We use the DFT as normalized by
Trefethen (2000). If f ðX,Y Þ is some function on
½�
,
� � ½�
, 
� with grid values fjk ¼ f ðXj ,YkÞ then the
DFT pair is

f̂ pq ¼ h2
XN
j, k¼1

e�iðpXjþqYk Þfjk ,

fjk ¼ 1

ð2
Þ2
XN=2

p,q¼�ðN=2Þþ1
eiðpXjþqYk Þ f̂ pq:

ð8Þ

Let

FðX ,YÞ ¼ 1

ð2
Þ2
XN=2

p,q¼�ðN=2Þþ1
eiðpXþqYÞ f̂ pq ð9Þ

be the ‘band-limited trigonometric interpolant’ of f ðX,Y Þ
(Trefethen, 2000); note the relation to the inverse DFT (8).
We see that

�r2FðX ,YÞ ¼ 1

ð2
Þ2
XN=2

p,q¼�ðN=2Þþ1
ðp2 þ q2ÞeiðpXþqY Þ f̂ pq

ð10Þ
so the Laplacian �r2 corresponds to multiplying the
p,q mode by p2 þ q2. Therefore jrj and r4 are defined

for functions of X,Y by, respectively, multiplication by
ðp2 þ q2Þ1=2 and ðp2 þ q2Þ2.

It follows that Equation (7) is very easy to compute if we
approximate Unðx, yÞ by its band-limited interpolant and
compute the action of powers of the Laplacian by the
multipliers above. As an algorithm, our Fourier spectral
collocation method for solving PDE (1) is the sequence:

1. compute the load at time-step tn from, for example, an
ice-flow model;

2. FFT the load at t ¼ t� ¼ tn þ ð�tÞ=2 giving ð�̂zzÞpq ;

3. compute Û
n
pq by FFT from current bed displacement

values Un
jk ¼ Unðxj, ykÞ;

4. let � ¼ 
=L, � ¼ ðp2 þ q2Þ1=2 and � ¼ �rg þD�4ðp2þ
q2Þ2, and compute

Û
nþ1
pq ¼ 2���� ð�t=2Þ�½ �Û n

pq þ�t �̂zzð Þpq
2���þ ð�t=2Þ� ; ð11Þ

5. undo the transform (i.e. do inverse FFT) to obtain
Unþ1

jk ¼ Unþ1ðxj , ykÞ;
6. go to (1) and do next time-step.

With standard estimates of the speed of the FFT (Briggs and
Henson, 1995), this method requires OðN2ðlog2NÞ2Þ scalar
operations to update the vertical displacement. We avoid
the entire stage of numerically integrating viscous Green’s
functions, and we have observed speed-ups of a factor of
>103 relative to implementations of such Green’s function
methods. MATLABTM codes for an implementation of our
method have been placed in the public domain.

To complete the implementation of our continuum
model, recall that the total deformation in our model is
the sum of u from the half-space model and uE from a
purely-elastic spherical model. For uE we implement Equa-
tion (3) more-or-less directly, another OðN2ðlog2NÞ2Þ oper-
ation per time-step if the convolution integral is
approximated by a convolution sum which is implemented
by the FFT. Alternatively, as described in Lingle and Clark
(1985), the integral can be approximated by matrix multi-
plication. Because purely elastic deformation is effectively
instantaneous, uE is calculated from the current load only
and the single matrix multiplication per time-step is
relatively inexpensive regardless of implementation details.

4. DISCUSSION
We can now calculate an illuminating comparison be-
tween Equation (1) and the standard model (2). Suppose
that there is no load and that the vertical displacement u
is a y-independent mode with wavelength 
: uðx, y, tÞ ¼
AðtÞexpði2
x=
Þ. In model (1) the amplitude satisfies

_A ¼ � �rg þ 16
4D
�4

4
�j
j�1 A: ð12Þ

Modes have wavelength-dependent decay. By contrast, in
model (2) any mode evolves by

_A ¼ � 1
�
A, ð13Þ

independent of wavelength.
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It is, however, clearly the case that a viscous astheno-
sphere will make elastic plate modes decay at different rates.
Indeed, Greve (2001) identifies the failure of the standard
model (2) to have frequency-dependent relaxation times as a
deficiency of that model relative to full spherical self-
gravitating models. Comparing Equations (12) and (13) we
are motivated to plot the function

�ð
Þ ¼ 4
�j
j�1
�rg þ 16
4D
�4

, ð14Þ

the relaxation time for a mode with wavelength 
.
Supposing �r, g, D, � have the values given earlier for the
two-layer model of Lingle and Clark (1985), we have the
solid curve in Figure 3. We see that the standard choice
� ¼ 3000 years in Equation (13) represents a reasonable
value and corresponds to wavelengths 
 � 300 km and

 � 3000 km in Equation (12), but clearly no constant
relaxation time is representative of the relaxation spectrum
from Equation (1).

Following results in Cathles (1975), Lingle and Clark
(1985) describe the modifications to Equation (5) which add
a low-viscosity channel beneath the lithosphere. The
modifications amount to changing Equation (1) to

2� jrjR jrjð Þ @u
@t
þ �rgu þDr4u ¼ �zz , ð15Þ

where

Rð�Þ ¼ 2~�Cð�ÞSð�Þ þ ð1� ~�2ÞT 2
c �

2 þ ~�2Sð�Þ2 þ Cð�Þ2
ð~� þ ~��1ÞCð�ÞSð�Þ þ ð~� � ~��1ÞTc�þ Sð�Þ2 þ Cð�Þ2 ,

Tc is the thickness of the channel, ~� is the ratio of viscosities
(i.e. the viscosity of the channel divided by the viscosity of
the half-space), Cð�Þ ¼ coshðTc�Þ, and Sð�Þ ¼ sinhðTc�Þ.
As a minimal check on the formula for Rð�Þ, note Rð�Þ ¼ 1 if
~� ¼ 1, as must be.

The model corresponding to Equation (1) is called a ‘two-
layer model’, and that corresponding to Equation (15) a
‘three-layer model’, in Lingle and Clark (1985). Adopting
values ~� ¼ 0:04 and Tc ¼ 75 km from Lingle and Clark, we
add the relaxation time for the three-layer model to Figure 3.
The effect is clear: short-wavelength undulations (modes) of
the lithosphere are more rapidly damped than in the two-
layer model, while long-wavelength modes require deeper
viscous flow and are damped at (asymptotically) the same
rate as in the two-layer model. Implementation of the three-
layer model is straightforward as the operator jrj is
interpreted everywhere as multiplication by ðp2 þ q2Þ1=2 in
the DFT variables.

It can be shown that in Equation (14) the relaxation time
�ð
Þ is proportional to the wavenumber k ¼ 2
=
 for
small k. That is, �ð
Þ � 2�k=ð�rgÞ as k goes to zero. The
relaxation time for the three-layer model shows the same
behavior, though with the viscosity being the thin channel
viscosity: �ð
Þ � 2�channelk=ð�rgÞ. This behavior is identi-
fied by Klemann and Wolf (1999) as a property of the most
significant mode in a spherical, self-gravitating viscoelastic
Earth model.

A justification for model (2a) is its computability. Indeed,
approximation of the elliptic PDE (2a) is standard in all
numerical paradigms (finite-difference, finite-element, spec-
tral); the computation of (2b) is easy, of course. At least on a
rectangular spatial grid, however, the time semi-discretiz-
ation (7) of Equation (1) is just as computable as Equa-
tion (2a). In particular, if an ice-sheet simulation is performed

on a rectangular grid using a finite-difference or finite-
element method for the ice dynamics, Equation (1) can be
easily computed by the Fourier spectral collocation method
of the previous section. If the ice-sheet simulation is on an
irregular grid or triangulation, we believe that interpolation
to a regular grid, then application of our spectral collocation
method, and finally re-interpolation to the irregular grid/
triangulation will be an effective method. In any case, a
spectral method is essentially always preferred for PDEs
which have smooth solutions and coefficients and if the
domain is rectangular (Trefethen, 2000; Hindmarsh, 2001).

Note that the Fourier spectral collocation method de-
scribed above can also be applied to the standard model (2)
if desired.

Here is a final reason to prefer Equation (1) to (2) as a
model for Earth deformation in the context of ice-sheet
modeling. Suppose that the ice thickness H0 in a region of
interest has been well measured. Suppose also that a map of
uplift rate v ¼ ð@u=@tÞjt¼0 is also known. This is an obser-
vationally realistic supposition in many circumstances
because uplift can be well constrained by global positioning
system (GPS) and other measurements when bedrock is
exposed (Larsen and others, 2005). Alternatively a full
spherical Earth model of more-or-less arbitrary sophistica-
tion and computational expense might generate a trusted
current uplift map (Ivins and James, 2005) from an assumed
load history. In either case we can then use Equation (1) to
determine the initial condition for the Earth deformation part
of an ice-sheet simulation without requiring further refer-
ence to the past load history. That is, we use Equation (1) to
solve for ui ¼ ujt¼0,

�rgui þDr4ui ¼ �igH0 � 2� jrjv±, ð16Þ
where �i is the density of ice. In other words, we ask for the
‘pre-bent’ position of the elastic plate in the half-space
model which accounts for the current uplift rate in the
presence of the current load. Solving Equation (16) numeri-
cally is essentially the same computation as one step of the
numerical method in the previous section. This mechanism
is, we believe, a principled replacement for the hypothesized
‘unloaded surface elevation’ sometimes used to initialize the
standard model (2) (e.g. Zweck and Huybrechts, 2005).
(Creation of such an unloaded surface elevation would

Fig. 3. Wavelength-dependent relaxation time (solid line) for modes
evolving under Equation (1). The three-layer result with a low-
viscosity channel (dashed line) is for Equation (15) with the
constants given in the text. The mode-independent relaxation time
� ¼ 3000 years (dotted line) is widely used in the standard model (2).
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appear to require an assumption of isostatic equilibrium with
the load either at the present time or at the start of a model
run at some past time (Lingle and Clark, 1985).)

5. RESULTS
Earth deformation only
We will verify in this section that our numerical implemen-
tation of Equation (1) reproduces the disk load case, known
through a Hankel-type integral formula. This verification
process reveals that a small error can be avoided if our
implementation is modified slightly. The avoided error has a
magnitude of a few meters uniformly in the computational
domain and represents most of the effect of imposing a
boundary condition, in our case a periodic condition, at
finite distance.

To describe this modification and to do the verification,
we note that the solution of Equation (1) on the entire plane
with an ice disk load of density �i , thickness H0 and
radius R0 , centered at the origin, is

uðr , tÞ ¼ �igH0R0

	
Z 1

0
��1 exp � �t

2��

� �
� 1

� �
J1ð�R0Þ J0ð�rÞ d�, ð17Þ

where � ¼ �ð�Þ ¼ �rg þD�4. A routine calculation starting
from Equation (5) gives Equation (17).

We make the following simple modification to the
implementation of the previous section. Consider the
gridded numerical vertical displacements Unðxj , ykÞ for
Equation (1) at time tn. Let Un

L be the average value of Un

along the boundary of the computational domain
½�L, L� � ½�L, L�. Choose the values H0,R0 so that the
volume 
R2

0H0 of the disk load matches the current time tn
load volume. Let u1H0,R0

ðrÞ be the value from Equation (17) at
t ¼ 1. Then shift the values Unðxj, ykÞ by a constant which
gives Unðxj , ykÞ the correct ‘far-field’ value of u1H0,R0

:

Unðxj, ykÞ :¼ Unðxj , ykÞ �Un
L þ u1H0,R0

ðLÞ: ð18Þ
Note that though the volume of the equivalent disk is
determined by the current load, one has freedom in choosing
either its thickness or its radius. We presume that an effort
can be made to approximate the aspect ratio of the actual

load, but close matching is not essential; we used R0 ¼
1000 km for the coupled ice/Earth system results below.

We want to know that our numerical results, with the
just-mentioned modification, are close to highly accurate
solutions of the continuum Equation (1). The disk load case
(Equation (17)) is such a solution. Let us define a particular
numerical experiment. Consider a load which is a disk of ice
with density �i ¼ 910 kgm–3, radius 1000 km and thickness
1000m. The center of this load will sink to a compensation
depth �1000ð�i=�rÞ ¼ �276m as t !1. We seek the
deflection on a square region of physical interest, centered
on the disk load, of side length 4000 km, so Lx ¼ Ly ¼
2000 km. Suppose that at time zero the deflection is zero
everywhere, and that the load is applied at time zero. We
calculate the deflection at t ¼ 20 kyr, by our numerical
method and by Equation (17).

There are three parameters of importance for our numer-
ical implementation of the Lingle and Clark viscous half-
space model:

�x, the spatial grid size, with�x ¼ �y for concreteness,

�t, the time-step used in approximating the time
derivative in (1), and

the factor by which the computational domain is larger
than the physical domain.

Our verification involves showing that as the first two
parameters go to their continuum limits (e.g. �x ! 0 and
�t ! 0) we rapidly approach the exact solution (17). Brief
experimentation with large computational domains also
reveals that, as long as the above-described modification is
applied, it suffices to use a computational domain which is a
factor of two larger than the region of interest.

If we fix �t ¼ 500 years and then consider the effect of
spatial grid refinement, we see that relatively coarse grids
give acceptably small errors. Maximum and average error,
over all gridpoints in the region of physical interest, are
shown in Figure 4. The coarsest grid has �x ¼ 500 km and
this value is halved five times. Figure 4 shows that the
average bed elevation error is <20 cm for �x ¼ 15 km, or
roughly 0.07% of the compensation depth.

On this finest 15 km grid, a 267� 267 grid, and using a
MATLABTM implementation, a 20 kyr model year run took
only about 20 s. Compared to the computational expense of
thermocoupled ice-sheet simulations, this Earth model is
effectively free.

In fact �t ¼ 500 years is not too long a time-step. We
compare the effects of spatial grid refinement to reduction of
time-step �t on the error in Figure 5. We see there is no
benefit of �t < 500 years. This is good, not surprising, news
for ice-sheet simulation because of the relative timescales of
ice vs asthenosphere flow. Relaxation times in the three-
layer model are somewhat shorter, but time-steps of length
�t ¼ 100 years certainly suffice in that case.

Coupled ice flow and Earth deformation
Earth deformation in the context of ice-sheet modeling is our
actual interest, so next we seek to verify results for coupled
ice-flow/Earth-deformation systems. The simplest represen-
tative ice-sheet model is the isothermal shallow model with
Glen rheology (Huybrechts and others, 1996). Let hðx, y, tÞ
be the surface elevation of the ice and Hðx, y, tÞ be the ice
thickness. If bðx, y, tÞ is the ice-sheet bed elevation then

Fig. 4. Maximum and average bed elevation error made by our
numerical scheme for Equation (1), relative to the exact solution
(17) of the disk load problem. Here �t ¼ 500 years.
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h ¼ b þH. The frozen-base isothermal ice-sheet equation is
the non-linear diffusion (partial differential) equation

@H
@t
¼ M þr 	 �Hnþ2jrhjn�1rh

	 

, ð19Þ

where Mðx, y, tÞ is the ice equivalent accumulation rate, n is
the Glen exponent for ice flow and � is a constant. We use
n ¼ 3, � ¼ 2ð�igÞnA0=ðn þ 2Þ and A0 ¼ 10�16 Pa–3 a–1.

As we now show, exact similarity solutions to Equa-
tion (19) which incorporate pointwise isostasy (Halfar, 1983;
Nye, 2000; Bueler and others, 2005) provide a nice tool to
examine coupling to the Earth model and illuminate the
differences among Earth models. By ‘pointwise isostasy’ we
mean the rule which specifies

b ¼ �f H, ð20Þ
where f is a fixed fraction of the ice thickness; we use
f ¼ �i=�r here. Since h ¼ b þH, if Equation (20) applies
then h ¼ ð1� f ÞH.

We compare numerical results for three coupled ice-
sheet-flow–Earth-deformation models:

POINTWISE: Equations (19) and (20),

STANDARD: Equations (2), (19) and b ¼ u,

Lingle and Clark (L&C):
Equations (1), (3), (19) and b ¼ uE þ u.

There is no detailed bed topography so u0ðx, yÞ ¼ 0.
Figure 6 shows a profile of the coupled simulation for

these three models at 60 kyr. The most obvious difference is
the deeper descent of the center of the sheet in the L&C
model. This comes from the inclusion of spherical elastic
compression, which is missing in the other two models.

The result shown in Figure 6 came from starting with
H ¼ 0 and b ¼ 0 at t ¼ 0 and using an accumulation history
corresponding to the 
 ¼ 5 similarity solution in Bueler and
others (2005). The accumulation M comes from Equa-
tion (10) in Bueler and others (2005), using n ¼ 3,
f ¼ 910=3300, � ¼ �1, � ¼ 2, H0 ¼ 3600m, R0 ¼ 750 km
and � ¼ 9:0177� 10�13 m–3 s–1. Note t0 ¼ 40034 years is
the characteristic timescale for this similarity solution
(Bueler and others, 2005, equation (9); cf. Nye, 2000)). At
time t ¼ t0 the accumulation is turned off, so for t > t0 the
exact solution to the POINTWISE model is a version of the

Halfar (1983) accumulation-free similarity solution incorp-
orating pointwise isostasy. Thus the accumulation history is
from a similarity solution to Equations (19) which grows
from zero ice at t ¼ 0 to maximum ice thickness of 3600m
at t0 ¼40034 years. It spreads out from then on, with no
change in volume, and at all times the Earth is in equilibrium
with the load according to Equation (20).

The importance of such a similarity solution is that it
forms an exact continuum solution to the POINTWISE model.
Therefore we can answer with some precision the question
‘how do differences resulting from coupling to various Earth
deformation models compare to the numerical errors which
occur in ice-sheet modeling? ’ If numerical ice-sheet errors
demonstrably exceed the Earth model differences then we
should be skeptical of any expenditure of effort in the Earth-
modeling direction. On the other hand, if the differences
among Earth models are significant, when coupled with a
given ice-flow simulation, one would want to report these
differences relative to the actual magnitude of numerical
ice-modeling errors.

The differences among models can be expressed in terms
of both bed-elevation and ice-thickness maps. In Figure 7 we
show the maximum and average pairwise absolute bed
elevation differences jbPOINTWISE � bSTANDARDj, etc. POINTWISE

vs STANDARD shows somewhat smaller differences while the
differences between POINTWISE and L&C are largest.

Now, are such differences significant to numerical
simulations of ice flow? The answer shown in Figure 8 is
yes. Ice-sheet flow simulations on grids inevitably make
large thickness errors near the margin (Bueler and others,
2005; Saito and others, 2007). These errors decay only
slowly under grid refinement. Figure 8, however, shows that
when we compare the average numerical ice-thickness
errors made in the POINTWISE model with pairwise average
thickness differences among the three coupled ice-flow/
Earth-deformation models, we see that differences between
the coupled models exceed the numerical error when the
grid is even modestly refined. This comparison shows the
differences among coupled ice/Earth models are numeri-
cally significant in a sense which is analogous to a claim of
‘statistically significant differences’ in a more traditional
experimental context.

6. CONCLUSIONS
The standard ELRA model (2) is regarded by many in the ice-
sheet modeling community as sufficient because it gives
results reasonably close to those from full spherical models

Fig. 6. Ice sheet on deforming bed, at time 60 kyr, from three Earth
models POINTWISE, STANDARD and L&C. View of gridded numerical
values (on a 192� 192 grid) along the positive x axis of the grid.
Note differences in descent depth at center and differences at the
margin of the ice sheet.

Fig. 5. Average bed elevation error as in Figure 4 but with �t
varying, and for several values of �x. Spatial grid refinement is
much more important to reducing error than is temporal refinement
(decreasing �t ).
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(Greve, 2001). We do not dispute this claim, though whether
any model is close enough clearly depends on modeling
goals and needs. (Such questions are not addressed in this
methodological paper anyway.) Our model is promising,
however, because it is just as computationally inexpensive
as the standard model while it also incorporates at least two
important features of more complete Earth models, namely
(i) mode-dependent relaxation times and (ii) elastic deform-
ation of the spherical, layered, self-gravitating Earth.

We expect that our model will also provide better
predictions of uplift rates because of the direct inclusion of
the asthenospheric viscous diffusion process. This should be
especially true in the vicinity of ice-sheet margins and ice-
stream grounding lines. Also, it is easier in our model to
provide suitable initial conditions for coupled ice-sheet and
Earth deformation models without assuming unrealistic
unloaded basal topographies. One can use observed uplift
rates, if available, to initialize such models.

The linearity of the underlying Maxwell Earth model
justifies superposing upon the result u of Equation (1) a
purely elastic displacement uE using tabulated values of
Green’s functions from Farrell (1972). Separate computation
of purely-elastic and viscous surface displacements then
opens the possibility of adjusting the constants in our model
to fit results coming from observed uplift rates and full
spherical viscoelastic models. The sum utotal ¼ uE þ u could
be replaced by some other linear combination utotal ¼
�uE þ �u if that was warranted by geophysical observations
or by comparison to full spherical models.

Indeed, speaking abstractly, the possibility also exists to
take spherical effects into account within the same class of
computationally inexpensive two-spatial-variable PDEs like
Equation (1). Equation (1) would be computable at nearly
the same speed if it were replaced by a non-constant
coefficient version (Trefethen, 2000). We do not yet know if
a set of non-constant coefficients (i.e. non-constant �, �r, D
in Equation (1)) exist which correctly account for spherical
geometry. We do know, however, that for a Maxwell Earth
(Peltier, 1974; Peltier and Andrews, 1976) the mathematical
mapping from present surface load and displacement to
present uplift is linear. Combined with the causality and
regularity of the model, the linearity of this mapping makes
it mathematically inevitable that a two-spatial-dimension
(map-plane), non-constant coefficient linear equation for the
vertical displacement of the Earth’s surface must exist. That

equation may well involve additional pseudo-differential
operators not present in Equation (1) or (15), however.
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