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Abstract

This paper is concerned with the injection moulding process, in which hot molten plastic
is injected under high pressure into a thin cold mould. Assuming that the velocity and
temperature profiles across the mould maintain their shape, a simple steady state model to
describe the behaviour of a Newtonian fluid during the filling stage is developed. Various
phenomena of the process are examined, including the formation of a layer of solid plastic
along the walls of the mould, and the relationship between the flux of liquid plastic through
the mould and the average pressure gradient along the mould. In any given situation,
it is shown that there is a range of pressures and injection temperatures which will give
satisfactory results.

1. Introduction

The injection moulding process is one of the most important operations involved in
polymer processing. The mould usually consists of two halves which are brought
together, clamped into position and kept at a constant temperature. Hot molten plastic
is then forced under pressure into the cooler mould. After the plastic has solidified,
the clamps are released, the moulded object is ejected and the cycle is repeated. In
this way, objects ranging in size from toy building blocks to car bonnets are produced.

Historically, those involved in injection moulding have relied on a combination
of experience and a few rules of thumb to produce reasonably successful results.
However, there are two important factors which have combined to make the traditional
approach outdated. Firstly, manufacturers realize they can achieve lower production
costs by having shorter cycle times and reduced object weight. Secondly, there
are now attractive markets for large injection mouldings such as business machine
panels, various panels for the car manufacture industry and even complete boat hulls
and decks. These considerations have led to quality control problems, since the items

Department of Mathematics, University of Western Australia, Nedlands WA 6009, Australia.
1School of Mathematical and Physical Sciences, Murdoch University, Murdoch WA 6150, Australia.
(© Australian Mathematical Society, 1995, Serial-fee code 0334-2700/95

1

https://doi.org/10.1017/50334270000007530 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000007530

2 J. Whale , N. Fowkes , G. Hocking and D. Hill 2]

are prone to cracking and buckling,

To avoid such problems, it is desirable to be able to predict the pressures, temper-
atures and times required to quickly mould ‘acceptably imperfect’ objects. Many of
the items to be moulded have a thin geometry, and special difficulties are often exper-
ienced in using this process for such objects [1,7]. Improvement in both the accuracy
and computational efficiency of the numerical simulations of the process are desired
and will result only from a better understanding of the physics and mathematics of the
melt flow behaviour and buckling process. In this paper, we will attempt to improve
the understanding related to the process for situations involving such thin geometry.

In the process, molten plastic is injected into the mould through a ‘gate’. Liquid
plastic in contact with the mould freezes immediately, thereby partially insulating the
liquid plastic from the cold mould walls. The solidified plastic layer continues to build
up during the mould filling stage. Molten plastic is extremely compressible so that
after the mould is ‘full’, up to 20% more plastic can be forced into the mould until
pressures equilibriate and the gate ‘closes’. This phase is called the compensation
phase or packing stage of injection moulding [6] . Molten plastic shrinks as it solidifies
so such compensation is desirable. After complete solidification the moulded item
is ejected and deforms into a shape determined by the stresses ‘frozen into’ the item
during the moulding process. This shape is one that minimizes the elastic strain
energy and so, in principle, can be determined from a knowledge of the ‘frozen in’
spatial distribution of the elastic properties.

These local elastic properties are determined by the local orientation of the long
chain plastic molecules. For example, plastic molecules will be aligned if they
freeze under high shear conditions (for example, during the injection phase) and the
resulting material is characterized by a small Young’s modulus in the direction of
alignment. Plastic molecules which freeze under low shear conditions (for example,
during the compensation phase) will be randomly orientated, and consequently will
have elastic properties which are independent of direction. Thus, to determine the final
shape of the object, it is necessary to investigate the growth (and stress environment)
of the solid plastic skin within the mould during the moulding process. If high
enough temperatures and pressures are employed, buckling is not a problem, and
manufacturers and research workers have avoided the buckling problem by working in
this range. However, high temperatures mean longer cycle times and again economic
pressures force one to consider the difficult questions posed above.

In the absence of solidification, the physics of this type of flow through narrow chan-
nels is well understood. Ockendon [8] follows approximations made by Pearson [9] in
developing asymptotic methods to analyse the flow and, in particular, the phenomenon
of thermal runaway, which occurs when injecting a fluid with temperature-dependent
viscosity into a narrow channel. In this situation, the heat generated causes both
an increase in shear and a decrease in viscosity. If the increase in shear dominates
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the viscosity decrease, temperature levels continue to rise and may run away to very
high levels. Elliott and Ockendon [4] and Tayler [12] consider the injection moulding
process as an application of Hele-Shaw flow between slightly separated parallel plates.

The filling of the mould is treated by Wang et al. [13] in an effort to develop an
integrated computer program incorporating a numerical simulation of mould dynam-
ics. Wang [14] presents some accomplishments of the subsequent research. Further
computer-aided applications have been developed where the filling stage has been
simulated by means of the Hele-Shaw equations for non-Newtonian flow [3], [2].
Recently, attempts have been made to develop simplified simulation models [5].

In 1986, the Australian Mathematics in Industry Study Group [1] was approached to
develop a model which contained the essential features of the problem but did not rely
on any significant computing. In particular, the Group was interested in the formation
of the solid plastic skin on the walls of the cooled mould and its effect on melt flow
behaviour. They examined the steady state solid plastic skin profile as a function of
distance from the gate for a Cartesian steady state model with thin slab geometry.
The assumption that the profiles of fluid velocity and temperature preserve their shape
along the length of the mould allowed them to obtain approximate solutions for the
case of a Newtonian fluid. This paper also deals with a steady state model, and is
concerned with the growth of solidified plastic during the mould-filling stage and in
particular its influence on the flux-pressure relationship within the mould.

2. The steady state problem

There are a number of difficulties in attempting to solve the full problem for this
physical process, such as complex and possibly thin geometries (many moulded items
are millimetres thick and many centimetres in length), the change in state, and the
many time scales involved in the full procedure. In many cases the flow is also
non-Newtonian. Our goal, however, is to develop a simple model of the actual flow
behaviour during the filling stage, and consequently we consider the simplest problem
possible which still contains the essential features of the process. This corresponds to
examining plane flow through an open ended channel (see Figure 1).

We assume the plastic is incompressible throughout the filling stage and the mould
is of finite length L and half-width H, where Hy << L. A pressure difference
Do — Py is applied between the ends of the mould forcing a volume flux Q through the
mould. The solid plastic skin forms on the walls of the mould reducing the channel
width for flow of liquid plastic. For a given position determined by longitudinal
co-ordinate x, the half width of the channel is H (x) so that the solid sidewall skin has
width Hy — H(x). The fluid is injected with entry temperature T, while the mould
walls are maintained at a constant temperature T,,. The solid-liquid interface is at the
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FIGURE 1. Definition sketch of the problem modelled in this paper.

solidification temperature T; and we have Ty > T; > T,, (see Figure 1).

To avoid latent heat complications we concentrate on a steady state situation. The
steady state model is appropriate only during the filling stage and is convenient for
understanding the major aspects of the physics of the problem. Plastic is driven into
the channel (and drawn out the other end) by a fixed pressure difference and we
assume sufficient time has elapsed so that all transients have settled down. In an
infinite mould, either the skin thickness reaches an equilibrium level at which viscous
heat generation within the plastic balances heat loss to the mould, or the mould closes
off the gap. In a finite mould, the solid layer maintains the same shape (time invariant)
but may or may not attain a constant thickness. Note, then, that we have an important
distinction between steady state and equilibrium.

Exploiting the thin geometry, we obtain the standard lubrication theory approxim-
ations for the equations of mass, momentum and energy conservation as:

Hx)
[ u(x,y)dy = —g—, (independent of x ) Continuity 2.1
0
Px = (uy)y, X momentum 2.2
p = p), y momentum (2.3)
pc (u T, + va) = kT,, + pu,’. Energy (2.4)

The following boundary conditions must also be satisfied:

u=v=0 ony=H(x), (2.5)
u,=T,=0 ony=0 (2.6)
and
—kT,(x, H(x)) =k L=Tw = H( 2.7)
y(x, H(x _X(HO—H(x)> ony = H(x). 2.
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Since we don’t know the thickness (as a function of x) of the solid sidewall
skin beforehand, the equations are unmanageable using exact methods. Austin and
Miller [1] arrived at a system that is amenable to solution by assuming the velocity and
temperature profiles are shape preserving. That is, they may be written as a product
of a scaling function which varies with position x and an O(1) profile function that
gives the detailed shape and depends only on y/H (x) = §, that is,

u(x, ) =i [ -], TEy)=TON-¥YEI+T. 28)

This assumption of shape preservation is in the spirit of Kdrmén-Pohlhausen (see
[10]), the intention being to encompass the essential features of the problem. The
shape-preserving form for # can actually be found from (2.2) and (2.6) if u is constant,
and it turns out to be
i=—pH2u, @E)=¢ (2.9)

The form for T is not in general exact, but it is a useful rough approximation, as is
that for « if u is not constant.

The interface boundary condition (2.5) means that ®(1) = W (1) = 1 whilst the
symmetry condition (2.6) implies that ®'(0) = ¥'(0) = 0.

3. The model equations

A tractable system is obtained by integrating the lubrication theory equations over
the half thickness 0 < y < H(x) to obtain ordinary differential equations in x. The
profile shapes give O(1) constants when integrated. In [1], it is established that the
qualitative character of the solution is essentially independent of the particular profile,
the only difference being these O(1) constants.

Since we do not attempt to determine the correct velocity profile, it is necessary
to introduce effective plastic properties, denoted with a subscript E. These effective
parameters are the true parameters multiplied by O(1) constants which depend on the
assumed profile shape. ‘

Performing the half thickness integrations and using (2.8) results in the equations

iu(x)H(x) = Qg, (independent of x ) Continuity 3.1
—% = “Eﬁz%’ X momentum 3.2)
pecQeT"(x) = —ke ZI((J; b buegl) By 63)
and the boundary condition (2.7) yields
T T, ~ T,
ey = (@ 7). o9
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where the effective parameters are given by

0 =0/C, we = Cop,
pe = (Cy/C)p, ke= Csk, pg=Csp, 3.5)

where
1 1
G=2£[P-M9hﬁ, <z=£[¢@Wda
1
C; = (1), Cs= \P'(l), Cs = / 1-®& -¥E)) nds. (3.6)
0

If the viscosity is constant, (2.9) and (3.3) can now be used to obtain T in terms
of parabolic cylinder functions. However, since it is intended to develop an approach
that will prove useful for the analysis of situations in which the viscosity is shear
and/or temperature dependent the general profile forms (2.8) will be retained.

For simplicity we drop the accents from the profile terms i (x) and f'(x) and the
subscripts from the six effective parameters.

The energy equation (3.3) govems the horizontal transport of heat within the liquid
plastic. The first term on the right of the equation represents heat being lost from the
liquid plastic to the solid plastic. The second term on the right represents heat being
gained by the liquid plastic via viscous heat generation due to shear. The solid heat
conduction equation (3.4) governs the lateral transport of heat. Heat is conducted
from the liquid plastic to the solid plastic and passes through to the cold mould.

We also have an injection condition given by

T) =T, 3.7

where Tj is the temperature of the plastic as it is injected into the mould.
Introducing the scalings

H(x) = Hoh(x), x=LX, T(x)=Tr(x), (3.8)

the energy equation (3.3) becomes

—q=a<%—%), (3.9)

where o = ﬁ is the aspect ratio and  and € are dimensionless groups
0

k c— uQ
pcQ’ HipcTy

(3.10)
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Similarly, the boundary condition (3.4) becomes

_Bh(X)
I(X)—l—_m, @(3.11)

where (T, - T.)
B = i (3.12)

The injection condition (3.7) becomes t(0) = 1 and (3.11) can then be used to
write 8 in terms of the initial half-width of the channel

h(0) =1/ + B). (3.13)

It is clear then that there exists a relationship between the injection temperature
and the initial thickness of the solid plastic in the channel. This seems strange since
we might expect to be able to specify any temperature at injection, and also have zero
solid skin thickness at the injection point £(0). This problem arises because of the
lubrication theory approximations that have been made. We reconcile this by placing
the y-axis not actually at the start of the mould but a small distance into it.

Using (3.11), we eliminate 7 from (3.9) to yield an ordinary differential equation
for the varying channel width due to solidification,

1 — h)?
hxzom[y( h3) +h—l], (3.149)
where
y =¢€/(nB). (3.15)
The equilibrium width of the channel 4, occurs when Ay = 0. Equation (3.14)
gives
y( —hy) =h. (3.16)

We note that y governs the magnitude of the equilibrium thickness and n determines
how far down the length of the mould the equilibrium thickness occurs. This is so
because

nQ?

= H& (T, — T.)

represents a ratio of viscous heat generation to transverse heat loss through the solid
to the walls, while

y (3.17)

n=k/(pcQ) (3.18)

is a ratio of conductive heat loss to the mould walls over the heat supplied through

entry.
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Figures 2 and 3 graphically illustrate the importance of the two dimensionless
parameters. Figure 2 clearly shows the effect that increasing y has on the channel
width, and Figure 3 the effect that increasing n has on the distance down the mould at
which the equilibrium is reached.

1.0

081}
h I
06}
04

0.2

9% 0.2 04 06 0.8 1.0

FIGURE 2. Diagram showing the effect of varying y on the skin thickness. In the situation shown,
n = 0.04, « = 200 and 8 = 0.01. Larger values of y reduce the equilibrium thickness of the solid skin.

005 o7 0% 08 10

X

FIGURE 3. Diagram showing the effect of varying n on the distance down the mould at which the
equilibrium is reached. In the situation shown, y = 0.1, o = 300 and 8 = 0.01. Larger values of »
reduce the distance taken for the equilibrium thickness to be reached.
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4. The flux-pressure relationship

Let us now investigate the influence of the solid sidewall skin on the flux-pressure
relationship within the mould. In particular we would like to compare the results
obtained with those for a channel where solidification does not take place.

The continuity and momentum equations of the model combine to give

— pe = pQ/H’(x). (CRY
The volume flux, Q is independent of x, and so integrating along the length of the
mould yields
g=B P [ f [H ()] dx] . “2)
w 0
Defining
Po=(po— pL)/L (4.3)
and employing the previous scaling, along with
Q0 = Qug, 4.4)
we obtain .
. _
q= [ / R (X)) dX] , 4.5)
0
if Qg is such that
Qo = PoH /1. (4.6)

Note that (4.6) is the flux-pressure relationship for the nonsolidification case, and
gives us a prototype example with which to gauge the effect of solidification on the
flow in the mould.

If we now define

__ KQ __ FH
- Hozks(T: - Tw) - /"'k:(Ts - Tw)

Yo 4.7

and
_ k _ uk
pcQo PCPOHS’

the ordinary differential equation (3.14) for the thickness of the channel becomes

(1 — h)? h—l]

Mo (4.8)

q+ 4.9)

hx = ano [Vo E p

After careful examination, it becomes apparent there is more than one approach to
solving the equations and finding the flux-pressure relationship.

https://doi.org/10.1017/50334270000007530 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000007530

10 J. Whale , N. Fowkes , G. Hocking and D. Hill [10}

In practice, for a mould of fixed length, we apply a certain pressure difference
between the ends of the mould and ask, what is the resulting flux of liquid plastic
through the channel? Adopting this procedure, we set a value for Py, the average
pressure gradient, and calculate the parameters y4 and 7. To determine the unknowns
h(X) and g, requires us to simultaneously solve the integral equation (4.5) coupled
with the differential equation (4.9), subject to the injection condition (3.13). The flux
of liquid plastic through the mould is then found by substitution of (4.6) into (4.4).

However, if we decide on a particular flux Q first, (4.5) and (4.9) decouple. For
a given Q, the nondimensional parameters y and n can be evaluated. An explicit
solution for £(X) is obtained from solving (3.14) in accordance with (3.13). Then q is
determined via (4.5) and again we substitute (4.6) into (4.4) to find the pressure drop
across the mould. We choose to use this latter ‘fixed flux’ approach. The ordinary
differential equation (3.14) was solved for a range of parameter values using a fourth-
order Runge-Kutta scheme from one of the many available packages, and then g was
obtained using the trapezoidal rule.

Before we consider the results, let us consider the situation in which the solid layer
attains a constant thickness. As X increases, £ changes from £(0) to an equilibrium
value h,. We have equilibrium whenever heat gained by the liquid via viscous
generation balances conduction loss to the cooled mould walls.

The appropriate terms of equation (4.9) are

_ k(T, = T,)
Loss = Hd—h) 4.10)
. nQ*\ 1
Gain = ( H ) R 4.11)

Plotting the two functions (see Figure 4), A, is determined from their point of
intersection. Naturally 4, is an increasing function of Q. We find that this point is
unique and moreover, analysis of the sign of 4y in the vicinity shows the equilibrium
to be stable, so that for a given flux, the equilibrium will be reached whether we start
with a very narrow entry channel or a very wide one. Due to the approach we have
adopted, this is to be expected. If the channel has a particular flux going through it
then it must stay open and steady solutions always exist. The pressure drop required
to drive the flow, however, may be completely unrealistic.

Therefore, for any starting value of #(0) we approach equilibrium. There are two
possible cases. If hy > h,, the liquid plastic cools and the channel narrows as it
converges to its equilibrium height. If 4y < h,, we have a situation where we are
pushing the liquid plastic through a narrow entrance. In this case, the shear is so large
that the heat gained by the fluid overrides the heat lost to the mould walls and the
channel expands.
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Change
in heat
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I‘V
hm 1 h

FIGURE 4. The loss and gain terms of (4.9). The direction of the arrows gives the behaviour of 4 as
X increases. Thus &, is a stable equilibrium.

5. Results

There are of course an almost infinite number of possible ‘experimental’ ex-
amples which we could consider, involving different values of the various parameters.
However it is not our intention to provide such a catalogue of possible outcomes, since
we are working with a very simple model. Instead we are interested in considering
the qualitative behaviour which may arise within realistic ranges of these parameters.

To this end, we have chosen ‘typical’ values for the dimensions of the mould (on
the basis of thin geometry) and certain properties of the plastic melt, namely, thermal
diffusivity, «, and shear viscosity, 1.

For fixed aspect ratio « and entry temperature parameter S, the development of
the solid sidewall skin was calculated for variations in the parameters involving the
plastic coefficients « and «, respectively. The results are shown in Figures 2 and 3.
For the figures in this section, actual values for  and x are chosen, based on the
properties of industrial plastics, specifically low-density polyethylene [11], [15].

The situation is completely determined by assigning values to Q, «, § and

k o |2
k = -, k = ) k =<3 5'1
T T KHAT,-T) T H G-
since
n=k/Q, v =k2Q2, Py = k3 Q. (5.2)

Figure 5 displays the thickness of the channel for various flux values, and is
consistent with the behaviour predicted by Figures 2 and 3. Larger values of flux
correspond to higher velocities, which means less heat is actually lost in travelling a
certain distance along the mould, resulting in a thinner plastic layer.
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FIGURE 5. Development of the solid plastic skin thickness for variations in the flux Q for a particular
‘experiment’. Here, k; = 1077, k3 = 109, & = 200, and = 0.25. Q values increase uniformly from
1x107%103 x 1075,

We also notice that if the filling rate is sufficiently high the channel actually opens.
It starts at some finite thickness and the fluid is being forced through a narrow gap. In
circumstances where there are high filling rates, so much heat is generated by viscous
effects that the fluid actually heats up and the channel widens. A quick calculation
reveals that the channel will initially widen if

y > hy/(1 — hy). (5.3)

Figure 6 shows the influence of solidification on the pressure versus flow rate curves
for various entry temperatures Tp. The isothermal curve depicts the flux-pressure
relationship in a mould where the plastic melt remains at the same temperature for
the duration of the filling time and consequently no solidification takes place. From
Figure 6 we see that the isothermal pressure falls steadily with decreasing flow rate.
Moving up through the curves is equivalent to a decrease in the injection temperature.

When the injection temperature is high, the curves approximate the isothermal case
quite closely. However as the injection temperature is reduced, the plastic is more
prone to solidification within the length of the mould, and the curve deviates from the
isothermal case. A greater pressure gradient is then required along the length of the
mould to push the melt through the restricted space.

For each curve there is a minimum pressure drop, Py .:n, beneath which flow will
not be maintained. Note that for each value of the pressure drop, there are two possible
values of the flux. It is likely that one of these is stable, and the other unstable. Suppose
we are at the minimum pressure drop, Pp =:n, fOr a certain situation, and we increase
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FIGURE 6. Plot of flux against pressure drop for different entry temperatures for the parameters used
in the flows depicted in Figure 5. The isothermal case corresponds to the case in which no skin develops.
Here, ky = 1077, k; = 10'°, k3 = 2.16 x 10!, & = 200, and B ranges from 8 = 0.1 to B = 0.5 in steps
of size 0.1.

the applied pressure difference by a small amount. One would expect that this would
lead to an increase in the flux, and consequently the state of the system would move to
the right along the curve. This suggests that perhaps the left branch of the curve, with
the lower flux, is an unstable branch. In turn, this means that the actual minimum flux
is that which occurs at the minimum pressure drop. Several numerical experiments
were performed using the fixed pressure drop approach, that is, simultaneously solving
(4.5) and (4.9) subject to (3.4). In every case the flux obtained corresponded to the
right hand branch of Figure 6, supporting the hypothesis that this is the stable branch.

6. Conclusion

As a preliminary investigation of the injection moulding process, we have de-
veloped a steady state model that describes the behaviour of a Newtonian fluid in a
mould of simple geometry during the mould-filling stage. Using the assumptions of
lubrication theory, and the assumption that the velocity and temperature profiles retain
their shape as they move through the mould, leads to a pair of coupled equations. If
the flux through the mould is fixed, the equations decouple into a single first order
nonlinear equation for the thickness of the skin of solid plastic which forms along the
walls of the mould.

Numerical solutions of this equation give two branches of solution for a fixed
pressure drop in the mould, and indications are that only one of these branches is
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stable. This means that there is a minimum pressure drop along the mould for a
given situation, beneath which no flow will be generated and the mould will close off.
This corresponds to a minimum in the flux through the mould. The behaviour of the
plastic melt was covered in a range of situations, including different lengths of mould,
plastic properties and injection temperatures and this same behaviour was evident.
The flux-pressure relationship in the mould was compared to that which would occur
if no solidification took place, with consistent results.

Clearly there are inadequacies associated with this model. It cannot be used
when we expect the profile shape to change. For instance, in the ‘thermal runaway’
situation [8], or in the case of ‘hot core flow’ where a thin jet of hot fluid penetrates a
long way down the centre of the channel [9].

However, it has been the aim throughout to develop a qualitative understanding
of the behaviour of the melt in the injection moulding process with a minimum of
mathematical complexity. It has shown some very interesting behaviour which is
worthy of further investigation.

As a next step, the model could be used to examine the temperature-dependent vis-
cosity case with only slight extensions. Polymer melts are essentially non-Newtonian
visco-elastic fluids, and it is to be expected that inclusion of this dependence would
produce some interesting variations on the results obtained in this paper.
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