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BROWNIAN MOTION AND DIMENSION OF 
PERFECT SETS 

ROBERT KAUFMAN 

0. Let X(t) denote real-valued Brownian motion on the interval 0 rg t rg 1, 
so normalized that E(X2(t)) = t. We prove some theorems about transforms 
X(F) of closed sets F: in general, F is not known in advance but depends 
on X. The main point of comparison among sets is taken to be their Hausdorff 
dimension, and in this respect the linear process is quite different from the 
planar. We state and discuss briefly two theorems. 

(A) It is almost sure that, for every closed set F in [0, 1], 

d\mX(F) ^ - 1 + 2dim,P. 

(B) For each closed set F in (—00,00) and number a < J + ^ dim F, 

PidimX-^F) ^ a} > 0. 

Plainly, statements (A) and (B) are nearly best possible. For the planar 
process dimX(F) = 2 dim F (with the same quantification as in (A)) [6]. 
In the linear case again, dimX(F) = min(l, 2 dim F) holds almost surely 
for each fixed F [2], so that the set X~l(F) in (B) is essentially stochastic. 

The proof of (A) depends largely on independence of increments, and it is 
presented apart from the other proofs. The proof of (B), however, depends 
upon a principle exposed in [5], capable of application to a variety of random 
trigonometrical series. These form a second topic of this paper and some 
investigations are necessary to establish (B) for an interesting class of series. 
The objective is to show that a certain random choice of coefficients yields a 
series that is "in the small" a Brownian motion. However, the proof of (B) 
for Brownian motion is implicit in the more general case. The main reference 
for these matters is [1]. 

It will be convenient to use a « ô as a substitute for a = 0(b). 

1. We denote by <p a measure function on (0, 00 ) : p is positive and increasing, 
<p(0+) = 0, <p(2u) « <p(u) for all u > 0. 

In a pair (<p, \[/) of measure functions, it is always supposed that for small u 
(say 0 < u < e - 1), 

xP(u) ^ u-l\ogzl2(u-l)<p(u2). 
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BROWNIAN MOTION 675 

Thus if <p(u) = ua, with \ < a ^ 1, we can choose \p(u) = u2""1 log2 (u~x). 
This is the link between (A) and the following theorem. 

THEOREM 1. It is almost sure that, for any closed set F, and any pair of measure 
functions 

<p — meas F > 0 => \j/ — meas X(F) > 0. 

This theorem is in turn a consequence of a simpler statement. 

(i) It is almost sure that if I is an interval of length 2~m (m = 1, 2, 3, . . .) , 
then X~l(I) meets <£mz,22m of the intervals 

[k4:~m, (k + l )4"w] , 0 ^ k < 4:m. 

In view of Levy's theorem [7, p. 547] on the modulus of continuity of almost 
all paths X, when X~l(I) meets [k4rm, (k + l)4rm], then X{M~m) falls in 
an interval I' of length <£ml,22m, and concentric with / . Thus (i) is reduced to 

(ii) It is almost sure that if V is an interval of length m1/22~m, then X~l(I') 
contains <^mzl22m of the points k4rm. 

To prove (ii) we estimate the number of w-tuples 0 ^ ki < . . . < km ^ 4m 

for which 

\X(ki+14:-m) - X(kt4:-m)\ ^ m1/22-m, I Si <m. 

Each m-tuple thereby defines an event of probability 

S(Cml/2)m-1(k2 - £i)"1/2 . . . ( * « - K-i)-1'2, 

where C\ = (2/ir)l/2. The sum of this probability for all m-tuples is 

^(Cim1 / 2)w-14m(C22m)m-1 ^ (C42mm1/2)w, say. 

By the Chebyshev inequality, the number of m-tuples is <£m2(Cml,22m)m 

almost surely. If, however, there is an interval V of length m1/22~m such that 
X(k4rm) e F for 5 values of k, then 

^)«m\Cm1/22-)m 

and after some calculation we find s S C*>mzl22m, as required. 

2. Let A = (Xn)i°° be a sequence of mutually independent integer-valued 
random variables, with \n uniformly distributed among the values 1 , 2 , . . . , » . 
Set 

oo 

g(t) = ] £ w~2cos(27rXw/). 

LEMMA 1. Almost surely g(t) differs from XX=iiw~2 cos(27m/) by a con­
tinuously differ entiable function. 
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Proof. We compute first the sum of the expectations of the various terms, 
obtaining 

oo 1th oo / oo \ 

23 m~Z 23 cos(27m/) = 23 I 23 m~% )cos(27rn/) 

oo oo 

= 23 hn~2 cos(2irnt) + 2^ 0(n~z)cos(2irnt). 
n=l n=l 

Next we observe that the nth term of the derived series has expectation 

n 

— 2im~z 23 m s m 2-wmt <3C n~2(t — t2)"1 

m=l 

on (0, 1). Now, following [1], we see that the derived series, after being 
centred at expectation, converges uniformly, because the general term is 
^n"1. The expectations, however, converge uniformly on compact subsets 
to the derivative of the function found before. This completes the proof. 

Set 
oo 

h(s,t) = 23 ^~2cos(27rAj)cos(27rAws) 

= h(t + s) + $g(t-s). 
LEMMA 2. Let 0 < a < b < 1, \ (? [a, b]. Then the inequality 

h(s, s) + h(t, t) - 2h(s, t) » \t - s\ 

holds uniformly on [a, b] for \t — s\ sufficiently small. (By Schwarz's inequality, 
(h(t,t) + h(s,s)) ^ 2h(s,t).) 

Proof. The function to be estimated is g(0) — g(s — t) + ig(.^s) + 
^g(2t) — g(s + t). Referring to the form of g obtained in the last lemma, 
and noting that 2s and 2t are not near 0 (modulo 1), we conclude that the 
sum of the last three terms is o{\t — s\). Finally, 

g(0) — g(u) ~ h*\u\ a s \u\ —* 0 

and this yields the lemma. 

LEMMA 3. Almost surely inf h(t, t) > 0. 

Proof. By definition, h(t, t) is continuous on 0 ^ ^ 1 and h(t, t) > 0 
there unless t = £, J. For each of these values of t the equation cos(27rXn0 = 0 
has at most 1 + \n solutions in the range 1 ^ \n S n. The variables Xn are 
independent, whence h(t, i) > 0 for all t, almost surely. 

The significance of the function h (s, t) can now be explained. Let Y = ( Fw)i°° 
be a sequence of mutually independent Gaussian variables of type N(0, 1) 
and 

00 

H(t) = £ n-1Yncos(2r\nt), O g î ^ l . 
re-l 
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For each fixed choice of A, H(t) is a Gaussian process, the series being almost 
surely uniformly convergent [1]. Then 

E(H(s)H(t)) = h(s,t). 

The component of H(t), orthogonal to H(s), has variance 

E(H2(s)) - E2(H(t)H(s))/E(H2(t)) = h(s, s) - h2(s, t)hrl(t% t) 

?>h(s,s)h(t, t) - h2(s, t). 
In the identity 

uv — w2 = (u + v — 2w)w + (u — w)(v — w) 

we set u = h(s, s), v = h(t, t), and w = h(s, i). Then (u + v — 2w)w *2>\t — s\ 
for small \t — s\ on an interval [a, b] as in Lemma 2. Also (u — w)(v — w) = 
o(\t — s\) from the smoothness property established for g. Thus 

h(s, s)h(t, t) - h2(sy t) » |* - s\. 

From the same property of g, 

E((H(s) - H(t))2) = h(s, s) + h(f, t) - 2h(s, t) 

» \t - s\. 

Observe that Brownian motion trivially satisfies the conditions established 
for almost all processes H, provided we omit an interval 0 ^ t ^ e from the 
real line. 

4. In this section we establish a useful fact about sets of fractional dimension. 

LEMMA 4. Let F be a compact set in (— co, oo ), 0 < r\ < dim F. Then there 
is a positive constant G and an integer NQ with the following property: for each 
N ^ No there exist points £i, . . . , £N in F such that the inequality 

|£, - y <R, i*j, 

has at most CiRvN2 solutions for R = 1, J, J, . . . . 

Proof. Let v\ < rji < dim F; following Frostman [4, p. 27], there exists a 
probability measure /JL in F such that n(x, x + h) ^ C^i for all intervals of 
length h. Let £i, . . . , %N be mutually independent random variables whose 
law of distribution is ju. 

The expected number of solutions of the inequality |£* — £j\ < R, i 9^ j , is 
N(N - l)P{|£i - f2| < R} ^ 2iV(iV - l)C2P"i. Therefore the event, that 
the inequality have at least CiRvN2 solutions, is of probability at most 
2C2CiPT?i~'7. We have only to choose G so large that 

to obtain at least one suitable choice of £1, . . . , £#. 
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Of course the lemma holds for 0 < R ^ 1 if Ci is increased to 2C\. 

5. Let <p(N) = iV—T7_1 for N ^ 1. Having chosen by Lemma 4 the points 
Si, . . . , %N> we define AN to be the union of the intervals [£*, S y + p(iV)L 
1 ^ i g iV. Among distinct intervals, the number of intersections is at most 
Ci(pv(N) • TV2 by Lemma 4; by using a value slightly larger than rj in Lemma 4 
we can make this ofo^ÇN)) • N2 = o(N). Thus the Lebesgue measure of AN 

is (l+o(l))Ncp(N). 
We now fix some sequence A for which all the "almost sure" conclusions 

of the previous lemmas actually hold, and also an interval [a, b] not containing 
\. The following estimation of probabilities is fundamental. 

LEMMA 5. For \t — s\ sufficiently small and N sufficiently large, we have the 
conditional probability 

P*{H(s) e ANJ H(t) e AN] « N2<p2(N) logfl/ - s\~l)\t - <,|-1/2+»/2. 

Proof. For each s and /, H(s) and H(t) can be represented by means of 
independent Gaussian variables Z\ and Z2: 

H(s) = A1Z11 H(t) = AiZ1 + BZ2; 

here Ai, A2, and B are functions of A with 

i 4 i » l , \AX - A2\ «\t - s\1/2 

\t - s\1/2 « £ « \t - s\1/2. 

The probability in question is at most 

Z Z P"\ii < H(s) g U + *,(#). {, g ff(/) £ {, + «>(#)}. 

We observe that PA{^T(5) Ç ^4^} <KN<p(N) so that the lemma is obvious 
except in the case 

1 ^ N<p(N) logQt - s]-1)^ - s|-1/2+*/2, 

an inequality that is now assumed to be true. We then divide the N2 pairs 
(S*> %j) into three classes and estimate the total probability for each. 

(a) |£* — S;| ^ log(|/ — s|_1)l^ — s\1/2i i ^ i- The number of these pairs is 
«iVMog'fl* - s ^ l t - s\^/2. Recalling that H(t) - H(s) has a component 
independent of H(t), of variance >̂> \t — s\, we find a total contribution 

«i\f2 log'fl* - ^l"1)!/ - s\"/2 • <p2(iV)|* - s\~1/2, 

as required. 
(b) |Si — Sy| = log(|/ — s| - 1)k — s|1/2. Now we use the inequality assumed 

before and find that for large N and small \t — s\, <p(N) = 0(|S* — %j\)- Thus 
the intervals [£*, Si + ^C^OL [Sy, Si + <p(N)] have a mutual distance 

»ls*-s,-|. 
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The event whose probability is to be estimated is 

\A1Z1 - £<| ^ <p(N), \AtZx + BZ2 - £,| g <p(N). 

By the upper bound on A\ — A2 and the lower bound on Ai, we have 
|i4i - At\ \Zi\ « |/ - s\1/2 and therefore \BZ2\ » logfl* - s\~l)\t - s|1/2, 
| Z 2 | » l o g ( | / - s ] " 1 ) . 

This requires that (Zi, Z2) belong to a planar set of Lebesgue measure 
<£<p2(N)\t - s\~1/2, and also that |Z2| » l o g ( | / - si"1). The probability of 
this event is « \t - s\-1/2<p2(N) • exp[<5 log2(|/ - s]"1)] for some ô > 0. Plainly, 
this is o((p2(N)) for \t — s\ sufficiently small. Since the number of pairs is N2, 
the total probability under (b) is o(N2<p2(N)). 

(c) i — j . The total here has magnitude <KN(p2(N)\t — s\~1/2 and this is 
within the bounds required by the inequality assumed above. 

THEOREM 2. Let F\ C [0, 1] and F C (— 00,00 ) be compact sets and let 

0 < p < dim Fx + § dim F - \. 

Then P{àim{H-l(F) C\ Fx] è 0} > 0. 

Proof. Let 77 > 0 and ô > 0 numbers such that 

77 < dim F, ô < dim F1} 0 < 5 + h ~ h 

(This 77 is used in the previous estimations.) Let a be a probability measure 
in Fi such that 

a(x, x + h) ^ C2&
5 for all intervals of length h > 0. 

We can suppose also that 0, 1, \ Q F\. For large integers N let aN be the ran­
dom measure in Fi defined as follows: 

<rN(T) = 0 if T H H-*(AN) = 0, 
^ ( D = N-^iNMT) if ff(r) C i4^. 

Then E(||o-^||) >̂> 1, by Fubini's Theorem and our estimate of the Lebesgue 
measure of AN. Further, 

E(||er*||2) « £ ( J J I* - s\-*eN (ds)aN(dt)) 

= N-2cp-2(N)jj P{H(s) 6 ANi H{t) G AN)\t - s\-e a(ds)a(dt) 

« I f V - s\-1/2+"/2 logfl* - sl-^lt - s\-P a(ds)a(dt) < 00 

since — /3 — \ + \r\ > — ô. 
Arguing as in [5], we find that with positive probability, Fi P\ H"1^) 

carries a positive measure whose potential in dimension 13 is finite, and so has 
dimension ^ /3 [4]. 

The final theorem shows that if Fi is suitably restricted, the number fi is in 
fact best possible. We suppose for this purpose that Fi meets <3C 2mX intervals 
[k2-m, (k + l)2rm], k = 0, ± 1 , ± 2 , . . . , (0 < X ^ 1). 
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THEOREM 3. Let F be a compact set of dimension <<5. Then 

F{dim[H^(F) C\ Fx] g - \ + id + X] = 1 

and the set in braces is almost surely void if X + 25 < 1. 

Since there are compact sets Fi for which X = dim Fi, e.g. the ternary 
Cantor set, Theorem 3 does provide a partial converse to Theorem 2. We only 
sketch the proof, referring to [5] for the details. 

For each c < f, i f is almost surely of class Lipc[l]. Consider a covering of F 
by intervals I i , . . . , IN with lengths |7i|, . . . , \IN\. For each Ik we can choose, 
by the definition of X, a covering of F\ by intervals Jt of length \Ik\

2, in number 
<<C |/;t|""2\ and with centres at. Then H(Ji) Pi Ik = 0 unless H(at) has distance 
<3C |/fc|2c from 7^. This defines an event of probability « |/fc|

2c. For each interval 
Ik, the contribution to the "expected Hausdorff measure", in dimension 
- \ + èô + X, of H-^F) H Fi is thus 

« | / *h 2 x - l ^ * l 2 c -W" 1 + W " 2 X -
Choosing c < \ so that dim F < 5 — 1 + 2c, we obtain the inequality on 
dimension. In case — 1 + ô + 2X < 0, we suppress the last factor above and 
choose c so that 2c — 2X > ô. 
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