HOLOMORPHIC CONVEXITY FOR GENERAL
FUNCTION ALGEBRAS

C. E. RICKART

Introduction. In previous papers (7;8), we have investigated certain
properties of general function algebras which may be regarded as generaliza-
tions or analogues of familiar results in the theory of analytic functions of
several complex variables. This investigation is continued and expanded in the
present paper. The main results concern a notion of holomorphic convexity for
the general situation. We also extend somewhat several of the results obtained
in the earlier papers.

The setting for our investigations is a ‘‘system” [Z, A] consisting of a
Hausdorff space 2 and an algebra %[ of complex-valued continuous functions on
2. It is always assumed that 9 contains the constant functions and also
determines the topology in Z. In addition, for the most important results, it is
assumed that every continuous homomorphism of A onto the complex numbers
is given by evaluation at a point of Z. Then [Z, U] is called a ‘‘natural system.”
The prototype of a natural system is [C", PB], where C" is ordinary #-dimen-
sional complex space and P is the algebra of all polynomials in # complex
variables. Important examples are provided by a Stein space with its algebra of
holomorphic functions (3, p. 222) and the Gelfand representation of a
commutative Banach algebra on its space of maximal ideals (6, 3.1.20).
Various properties of natural systems are discussed in §1. Included, for
instance, is a notion of Silov boundary for the non-compact case. In §2 a class
of “-holomorphic” functions is defined and some of its properties obtained.
These functions are derived from the algebra % by a succession of local approxi-
mations. The important fact concerning [-holomorphic functions is that they
satisfy a local maximum modulus principle. In §3, “%-holomorphic convexity”’
for subsets of = is defined in terms of the 9(-holomorphic functions, and condi-
tions for certain sets in 2 to be 9-holomorphically convex are obtained. For
example, let G be an open set in £ and denote by & the algebra of all -
holomorphic functions defined on G. If [Z, 9] is natural, then G is A-holomorph-
ically convex if and only if the system [G, @] is natural. This contains as a
special case the theorem proved in (8). I't also implies a known result for Stein
spaces (3, VII, A7). The proof depends on convexity properties of A-analytic
varieties which were obtained in (7, Theorem 3.2). Finally, we show that under
suitable countability assumptions an open -holomorphically convex set is
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actually a region of holomorphy; i.e. it is the domain of definition of an
-holomorphic function which cannot be holomorphically extended to a larger
region.

All proofs of the above results are ‘‘function algebraic” in character, the only
contact with the theory of several complex variables being through Hugo
Rossi’s local maximum modulus principle for function algebras (9).

1. Natural systems, [Z, U]. Let = be a Hausdorff space and ¥ a subalgebra
of the algebra C(Z) of complex-valued continuous functions on £ which con-
tains the constant functions. The pair [Z, U] will be called a system if A
determines the topology of Z;i.e. the topology of Z is the weakest for which all
functions in ¥ are continuous. The topology assumed for U is the compact-open
topology given by uniform convergence on compact subsets of . We shall
always assume that [Z, %] denotes a system in the above sense. Observe that no
compactness conditions are imposed on Z. We did assume in (7) that the
spaces involved were locally compact; however, the condition was not actually
needed.

If X is an arbitrary subset of Z, we shall denote by [X, 9] the system obtained
by taking the topology in X to be that induced by 2 and the algebra on X to be
that obtained by restriction of functions in [ to the set X. We also call [X, U] a
subsystem of [Z, Al. Two systems are called isomorphic if there exists a homeo-
morphism between their topological spaces which induces an isomorphism of
the two algebras.

Let ¢: a — d(¢) denote a homomorphism of A onto the complex numbers C.
Then it is readily verified that ¢ is continuous with respect to the compact-open
topology in ¥ if and only if there exists a compact set Ky & 2 such that, for
each a € ¥, [d(¢)| < |alx,, where, for arbitrary X C Z, |a|x denotes the
supremum of numbers |a(¢)| for § € X. The compact set K, is said to dominate
¢, and we denote by ., the collection of all such compact sets. A standard
application of Zorn’s lemma shows that each element of £, contains a minimal
element of J#,. A minimal element of ¢, is called a support for ¢. A given
homomorphism may, of course, have many different supports.

Each point ¢ € Z determines a homomorphism ¢, defined by evaluation at
o; i.e. d(¢p,) = a(a), a € . It is obvious that ¢, is continuous, with the set
consisting of the single point ¢ as a support. For these special homomorphisms,
we write 4, in place of £, and say that elements of ', dominate the point o.
Similarly, a minimal element of ¢, is called a support for o.

We now define the class of systems with which we are primarily concerned in
the following discussion.

1.1. Definition. The system [Z, U] is said to be natural if each continuous
homomorphism of U onto C is given by evaluation at a point of Z. If every
homomorphism (continuous or not) is so given, then [Z, %] is said to be
strictly natural.
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In (7) we used the term ‘‘natural” to refer to systems which we now call
“strictly natural.” Quigley (5), in a similar context, has called such function
algebras ‘‘generic.”

If B is a commutative Banach algebra with an identity element and ®s is its
space of maximal ideals, then [®3, B], where $ is the Gelfand representation of
$B as an algebra of continuous functions on &9, is a strictly natural system (6).
If C*is n-dimensional complex space and P is the algebra of all polynomials in #
complex variables, then [C", P] is also a strictly natural system (7). More
generally, let A be an arbitrary index set and associate with each N € A a
complex plane C,. Denote by C2 the ordinary cartesian product of the planes
C,. Also denote by P the algebra of all polynomials in variables {{x: N € A}.
Thus each P € P is an ordinary polynomial in a finite number of the variables
tH. We regard P as an algebra of continuous functions on C4 and obtain a
system [C4, PB] which is strictly natural (8).

The system [C4, P] may be regarded as a product of the one-dimensional
systems [C,, Ba] where P, is the algebra of polynomials in one variable {x. In an
analogous way, one may define the product of an arbitrary family, {[Z\, 2]:
N € A}, of systems. First take Z4 to be the ordinary cartesian product of the
spaces 2, and let ¢ = {o)} denote an arbitrary element of 4. Then take %A* to
be the Kronecker (or tensor) product of the algebras %,. The algebra (A may be
identified with the algebra of functions on 2 generated by all functions of the
form

A)\(J') = a)\(O')\), 5’ 6 ZA,

for arbitrary A € A and a) € ¥, Observe that the mapping ay — A, defines an
isomorphism of ¥, into 4. It follows that every continuous homomorphism of
A4 onto C induces a continuous homomorphism of ¥, onto C. This implies that,
if each of the systems [Z,, %,] is natural, then the product system [Z4, A4] is
also natural.

Of special importance for our purposes is the product of a general system
[Z, U] with one of the form [CA, B]. In this case, the product A X B of the two
algebras may be regarded as the algebra of all polynomials in the variables
{tx: A € A} with coefficients in the algebra . Since [C4, B] is strictly natural,
the system [Z X C4, 9 X PB] will be natural if and only if [Z, %] is natural.

We observe next that an arbitrary system [Z, A] may be represented as a
subsystem of one of the form [C4, P}]. Assume that {z,: A € A} = ¥ and to each
point ¢ € X associate the point ¢* = {z,(¢)} in CA. Then the mapping ¢ — ¢*
is a homeomorphism on Z to a subset Z* of CA, Let P be an arbitrary element
of B, with

PE) =D Grora Shr oo OO0,

setz = {2}, and define

P(z) = Zalu...kn ... 2
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Then the mapping P — P(2) is a homomorphism of P onto 9. The kernel of the
homomorphism is the ideal & in B consisting of all polynomial relations among
the elements z,. Also, since P(¢*) = P(%)(s) foreacho € Z, we have

f = {P: P €, P|z* = 0].

Thus P modulo & is isomorphic with $|=*, and the mapping P|Z* — P(Z) is an
isomorphism between the algebra PB|Z* and U which is induced by the
homeomorphism ¢ — ¢*. Therefore the systems [Z, %] and [Z*, P] are iso-
morphic under this homeomorphism. Now let K be a compact set in = and
define

Ag = {§:§ € CAnl < lalx, N € A}

Then Ag is a compact polydisk in C4. Denote by A the union of all of the
polydisks Ag. Also let

YR ={{:§ €CLPE)=0,P € Q).

Then ¥ (8) is an example of a ‘“‘subvariety’’ of C4 (see §2), also called the
“hull” of the ideal &. It is not difficult to prove that, if [Z, Y] is natural, then
2* =¥ (R) N Aand, if [Z, U] is strictly natural, then Z* = ¥ ().

Next let us recall the definition of A-convexity for a system [Z, A]. This
notion is a generalization of polynomial convexity for [C”, B]. If K is a compact
subset of 2, then the set

K ={o:0 €2, a(0)| < lalx, a € U}

is called the A-convex hull of K. Observe that K is always a closed subset of =
and |a|z = |a|x for each @ € . Hence, if K’ is any compact subset of K, then
K’ € K. Thus K is ““convex’’ in the sense of the following definition:

1.2. Definition. A subset Q of Z is said to be UA-convex if for each compact set
K C Qitis true that K C Q. If X is an arbitrary subset of Z, then the smallest
-convex set that contains X is called the A-convex hull of X and denoted by X.

The entire space Z and the empty set @ are obviously A-convex. Thus every
subset of = is contained in at least one A-convex set. Observe also that the
intersection of an arbitrary family of A-convex sets is A-convex. Therefore the
9-convex hull X always exists and may be defined as the intersection of all
A-convex sets that contain X. Note that a set X is ¥-convex if and only if

X =X

1.3. ProrosITION. If [Z, U] is natural and @ C =, then the subsystem [Q, A]
will be natural if and only if Q is A-convex. If [Z, A] is strictly natural, then
[Q, A] will be strictly natural if and only if @ =¥ (), where & is the kernel of the
homomorphism a — a|Q,a € .

Proof. If ¢ is any homorphism of |2 onto C, then the mappings
a-—)alg—)(l»/IEZ((ﬁ), a E g[v
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define a homomorphism of 9 onto C. Moreover, if ¢ is continuous, then the
homomorphism of 2 is also continuous. Therefore, in the present situation, the
only homomorphisms of |2 that we have to do with are of the form a|Q — a(ao)
for some ¢y € Z. Furthermore, a mapping of this kind determines a homo-
morphism of A|Q if and only if oo € ¥ (R), i.e., if and only if a|Q = 0 implies
a(oy) = 0. This already shows that, if [Z, %] is strictly natural, then [Q, U] will
be strictly natural if and only if @ = ¥"(&). The mapping a|Q — a(s,) will be a
continuous homomorphism if and only if ¢ € K for some compact K C Q.
Therefore, if [Z, ] is natural, then [Q, 9] will be natural if and only if Q is
A-convex.

For an arbitrary system [Z, 9], the A-convex hull of a compact set need not
be compact. However, if [Z, U] is natural, then K is always compact for
compact K. This result, which is fundamental in the study of natural systems,
is proved by showing that K is the space of maximal ideals of a commutative
Banach algebra with identity element (7, Lemma 1.1). In fact, it is in this way
that the theory of Banach algebras becomes available to us. More precisely, if
[Z, %] is natural and Q is a compact Y-convex set in Z, then Q is the space of
maximal ideals of the Banach algebra 8 obtained by closing |Q in C(Q). In
particular, since a homomorphism of a Banach algebra onto C is automatically
continuous, it follows that [Q, 8] is strictly natural.

The following proposition contains an extension of a familiar result for the
compact case.

1.4. PrROPOSITION. Assume [Z, U] to be natural and let Q be an A-convex
subset of 2 which decomposes in the form Q = Q1 \J Qs where Q1 M Qy =
QN Qo = @. Then Qyand Qs are also A-convex.

Proof. Let K be compact in Q1. Then K is compact, contained in ©, and is the
space of maximal ideals of the Banach algebra 8 obtained by closing A|K in
CK). Also K = (K N Q) U (K M Q) is a decomposition of K into disjoint
closed sets. It follows from the Silov decomposition theorem (6, 3.6.3) applied
to [K, B] that K N @; and K N @, are B-convex in K. Since Y|K is dense in B
and K is %-convex, we conclude that these sets are ¥-convex in Z. Since
K C KN Q, it follows that K C Q;. Therefore €;, and similarly Q,, is
-convex.

Next we introduce a definition of Silov boundary for a general system
[Z, A]. Note first thatif 6 is any point of Z, then a compact set K will dominate §
(i.e. K €;) if and only if 8 € K. When 2 is compact, a point 8 is called a
strong boundary point of Z with respect to ¥ if there exists for each neigh-
bourhood U of § an element % € A such that |u|s_y < |u|s = |u(6)|. Thus
every compact set K that belongs to 2 ; must contain 8. In particular, the only
support for the point é is the set consisting of § itself. Recall also that, in the
compact case, strong boundary points are dense in the Silov boundary (6,
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3.3.15). These observations suggest the following definition which applies to an
arbitrary system [Z, ].

1.5. Definition. A point 6 € Z is called an independent point of [Z, U] if it is
supported only by itself. The closure of the set I of independent points is
called the Silov boundary of [Z, %] and denoted by d[Z, UJ.

If 2 is compact, then 8[Z, ¥] clearly reduces to the ordinary Silov boundary.
On the other hand, if = is not compact, then 9[Z, U] may be empty. This is the
case, for example, with [C", B]. However, we have the following generalization
of a familiar property of the Silov boundary in the compact case.

1.6. THEOREM. Let X be an arbitrary subset of Z. Then every independent
point of [X, Al is contained in X. If X is closed, then 3[X, A] C X.

Proof. Let & be an independent point of [X, %] and consider the set
Y = X — {6}. For any compact set K C ¥, we have K C X. Furthermore,
since 8 ¢ K and 4 is an independent point of [X, %], it follows that also 5 ¢ K.
Hence K C Y. But this means that ¥ is a proper -convex subset of X.
Therefore ¥ cannot contain X. In other words, § € X and the proof is com-
plete.

A fundamental result in the theory of function algebras is a local maximum
modulus principle which was proved by Hugo Rossi (9; 3, p. 62). A version of
the principle which is appropriate for our purposes may be stated as follows:
Let [Z, U] be a natural system with compact Z and let U be an open subset of 2
which does not intersect d[Z, A]. Then, for everya € 9, we have |a|y = |a|vary v-
This says, in particular, that if I' = bdry U, then U C I. Observe that if U is
any open set in = for which there exists # € U with |u|y > |#|pary v, then U
must contain points of d[U, A]. Hence U must contain a strong boundary
point of U. Such points are obviously independent points of [U, ¥]. This
suggests the following definition for an arbitrary system [Z, ¥].

1.8. Definition. A point & € Z is called a locally independent point of [Z, U] if
there exists a neighbourhood V of 8§ such that § is an independent point of

[V, Al

Every independent point of [Z, U] is obviously locally independent. The
example [C”, PB] shows, as in the case of independent points, that there may be
no locally independent points. In any case, we have the following generalization
of the local maximum modulus principle to general systems.

1.8. TaEOREM. If [Z, U] 7s a natural sysiem, then every locally independent
point of [Z, U] is independent.

Proof. Let 6 be a locally independent point of [Z, U] with V" a neighbourhood
of & such that é is independent in [V, A]. Suppose that § is not independent in
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[2, A). Then there exists a compact set K in 2 such that 8 € K — K. Since K is
compact, there exists a neighbourhood U of § such that

UNKC VN (K - K).

Note that, since 9[K, %] € K, the neighbourhood U is disjoint from d[K, A].
Let I' = bdryz U N K. Since [K, %] is natural, it follows from the Rossi local
maximum principle that U N\ K C 1. In particular, 4 € I — T. But T'is a
compact set in V, so we have a contradiction of the assumption that § is an
independent point of [V, A]. Therefore 6 must be independent in [Z, 9] and the
theorem is proved.

It is not difficult to obtain the following corollary to the above theorem.

1.9. CorROLLARY. If 6 € 2 — 9[Z, U] and U s any neighbourhood of & disjoint
from O[Z, U], then there exists a neighbourhood V of & contained in U such that &
15 in the A-convex hull of bdry V.

We close this section with a result which shows that a natural system may be
“normalized’’ so as to have an empty Silov boundary.

1.11. THEOREM. Let [Z, A] be natural and denote by 2y the A-convex hull of the
setZ — O[Z, A in Z. Then [Zo, A is natural and I[=,, A] is empty.

Proof. Since Z, is A-convex, [Z,, A] is natural by Proposition 1.4. Let I,
denote the set of independent points of [Z,, A] and define 2’y = =y — I,. If K
is a compact set in Z’y, then K C Z,. Furthermore, since K M I, = @, also
K N I,=0.Hence K C 2y, so 2’y is A-convex. Similarly, we conclude that
2 — I is A-convex. Since £ — 9[Z, A] C 2 — I, it follows that 2o & T — I.
Now suppose there exists a point § € Iy — 9[Z, Al. Then, in particular, § ¢ I,
so there exists a compact set K C = such that § € K — K. Choose an open
set Usuch that 6 € Uand

UNK=UNKEN A = 0.
Then U NK C 2 — 9[2, A] C =y, and hence, if
I' = bdryz UNK,

then I' © 2, and T is compact. Now since § ¢ I' and § is independent in
[Z9, U], we conclude that § ¢ T'. On the other hand, U M K is open in K and

UNKCRK—-KCK - 9K, .

Hence 8 ¢ T contradicts the local maximum principle for [K, 9]. Therefore
I, C 9[Z, Al and we have

2 e 6[2, 91] g Eo h I() = 2/0.

Since 2’y is A-convex, it follows that 2o C X’y and hence o = ¥’y. In other
words, I, = @ and therefore 9[Z,, A is empty.
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2. Y-holomorphic functions. Let = be any Hausdorff space and consider
an arbitrary family % of functions defined on subsets of Z. The domain of
definition &, of a function f in # may be an arbitrary subset of =, and
elements of % need not have a common domain. We call & a partial algebra if
it contains, along with elements f and g, the functions f + g and fg (defined on
;M Z,) whenever the latter exist. A function g is said to be locally approxi-
mable by elements of # if there exists for each point of &, a neighbourhood U
such that g is uniformly approximable on U M &, by elements of % . The
family of all functions that are locally approximable by elements of % is
called the local extension of & and denoted by loc.% . It is obvious that loc %
contains & . If loc # = %, then & is said to be locally closed. The family of all
functions defined on subsets of 2 is clearly locally closed. Moreover, the
intersection of an arbitrary collection of locally closed families is also locally
closed. Therefore, although the local extension of % need not be locally
closed, there always exists a smallest locally closed family % 1. that contains & ;
viz., the intersection of all locally closed families that contain.%# . We call % 1.
the local closme of #.

If & C&, then it is immediate from the definition that loc & C loc# and
& 100 ©F 1. Since F T F ,, it follows that locF CF .. Note that the
local closure of any locally closed family % is equal to & ; i.e., loc.# =%
implies % 1oc =% . In particular, for arbitrary %, we have (% 100)ioc = Z 10c-
Next we observe that the local closure of % may be described in terms of local
extensions by a process of transfinite induction.

2.1. LEMMA. Let & be an arbitrary family of functions deﬁned on subsets of Z.
Then there exists an ordinal u and, for each v < u, a family F , of functions with
the following properties:

ONFo=F and ¥, = F ..
() Ifa < B < u,then/ C
(iii) Foreachv < u,

F, = loc (U, F ).
Proof. Define % , =% and then, by transfinite induction, define
= loc (\Uec,F o)

for each ordinal ». Then a < B8 implies that# , C loc %, C % . Furthermore,
a simple cardinality argument shows that not all of the classes # , can be
distinct. Hence there exists a first ordinal u such that % , =% , for some
p > p. Sinceu < p+ 1 < p,wehave

yugﬁwlg}vp:fw
Therefore % ,,1 =% ,and hence
F,Cloc F,CF =%,
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so loc# , =% , and # , is locally closed. Moreover, u is the first ordinal for
which& , is locally closed. I't remains to show that# , = & ... Since# C %,
it follows by definition that# o, C.% ,. Also, % ¢ = F CF . and, if v is an
ordinal such that# , C % . fora < v, then

F, = loc (Uec,F o) C locE 10 = F 100

Therefore, by induction,# , &% . for all ». In particular,.# , % . and the
desired result, % , = & L, follows.

We are now ready to apply these concepts to the algebra U involved in a
system [Z, ¥].

2.2. Definition. Let [Z, U] be an arbitrary system. Then elements of the local
closure ¥, of A are called A-kolomorphic functions. Elements of U, are said to
be A-holomorphic of classv.

The family of all A-holomorphic functions with a common domain of
definition G is denoted by @ ¢. A function f such thatG C D ,;and f|G € O4is
said to be U-holomorphic on G. If f is A-holomorphic, then it is automatically
I-holomorphic on every subset of its domain.

In (7), the term “‘9-holomorphic” was used to refer to functions that are
A-holomorphic of class 1 according to Definition 2.2. The principal motivation
for the introduction of the more extensive class of A-holomorphic functions is
the fact that the class 9; need not be closed under uniform convergence, let
alone under local extension (8, §3). A beautiful example due to Eva Kallin (4)
shows that, even when [Z, Y] is natural with compact £ and ¥ is closed in
C(Z), there may exist functions that belong locally to % but do not belong to .
This already shows that we may have U; # . The example in (8), whose
construction is based on the Kallin example, shows that we may also have
As # Ay. Unfortunately this construction does not generalize and we do not
have examples that distinguish between classes U, for » > 2. Nevertheless, it is
plausible to conjecture that examples do exist showing that the classes %, may
be distinct, at least for finite ». However, the construction is likely to be
difficult.

Since U is an algebra of continuous functions, it follows easily by an induction
argument that each of the classes U,, and hence the class of all %-holomorphic
functions, is a partial algebra of continuous functions. It follows that for
arbitrary G C = the family &4 of A-holomorphic functions defined in G is an
algebra of continuous functions. We also introduce the algebra & ,* of all
functions that are defined and continuous on the closure G of G and A-holo-
morphic on G. The algebra of all functions continuous on £ and -holomorphic
onZ — 9[Z, A] will be denoted by O*.

2.3. THEOREM. Let hy, ..., h, € Og* and set
I = {(hi(o), ..., ka(0)): ¢ € G}.

https://doi.org/10.4153/CJM-1968-027-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1968-027-2

HOLOMORPHIC CONVEXITY 281

Also let F be an ordinary holomorphic function of n complex variables defined in an
open neighbourhood of T in C*. Set

k(o) = F(hi(a), ..., h(a)), e €G.
Then h also belongs to O g*.

Proof. It is obvious that % is continuous on G. By the preceding remark, we
note that if P is any polynomial in # variables, then P(hy, ..., h,) € Og*.
Now let 6 € G and choose a closed polydisk A in C* with centre (41(9), . . .,
h.(8)) and contained in the domain on which F is holomorphic. Next choose a
neighbourhood V of & such that (ki(s), ..., h,(0)) € Afore € V N G. Since
F is holomorphic in a neighbourhood of A, there exist polynomials { P} which
converge uniformly on A to F. Hence

(o) = limy,,, Py(hi(o), ..., k(o))

uniformly in V N G. But since Py(hy, ..., h,) € Og*, this implies that % is
locally approximable on G by A-holomorphic functions and so belongs to & g*.

2.4. COROLLARY. Og* is an algebra of continuous functions that contains
inverses (i.e.,if b € Og*and h(s) # 0for o € G, then ™! € O g*).

Next we establish a local maximum principle for -holomorphic functions.
As in the case of the algebra U itself, the system involved must be natural. We
first prove a lemma that is essentially an extension to %-holomorphic functions
of the version of the Rossi theorem used in the discussion of 9.

2.5. LEMMA. Assume [Z, U] natural with compact Z, and let U be an open set
in2 — 32, ). If h is any function continuous on U and A-holomorphic in U,
then |klz = |Blvary v-

Proof. Observe that % is not assumed to be defined outside of U. Let us refer
to this lemma as Lemma “‘»”" if % is restricted to be A-holomorphic of class v in
U. The proof of the lemma will consist in proving by an induction argument

"

that Lemma “‘»"" is valid for all ». Observe that Lemma ‘0" is valid by the

(XAl

Rossi theorem. Therefore assume that Lemma ‘“‘«’’ has been established for all
a < vand suppose that Lemma ‘‘»"’ were false. Then there exists an open set U
in =, with U N 9[Z, Al = @, and a function % continuous on U and A-holo-
morphic of class v in U such that ||z > |k#|pary v- Denote by B the subalgebra
of C(U) generated by & plus all functions that are continuous on U and
A-holomorphic of class o < vin U. From the assumption on #, it follows that U
must contain an independent point & of the system [U, 8B]. Now choose a
neighbourhood V of & such that ¥V C U and % is a uniform limit on V of
functions from U,«, .. Then every function in B clearly has this same
property on V. Since 4 is an independent point of [U, ], there exists f € B
such that

If(’s)[ > ]flﬁ—v > Iflbdry Ve
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Hence there exists for some & < va gin %, defined on ¥V such that

lg(8)] > [gloary v-

"

But this contradicts Lemma ‘@’ which was assumed true for all o < ».

e

Therefore Lemma “‘»”” must be true for all » and the lemma is proved.

Glicksberg (2) proved essentially the above lemma for functions % which are
9l-holomorphic of class 1 on all of =. The proof of Lemma ‘1"’ was given in (7).
As in the case of ¥, there is a local maximum principle for -holomorphic
functions that holds without compactness restrictions on 2. First a definition is
needed.

2.6. Definition. A point 6 is called an -holomorphically independent point of
[Z, U] if there exists an open neighbourhood U of é such that § is an independent
point of the system [U, O4].

Since A|U C Oy, it is obvious that every locally independent point of
[Z, A] (Definition 1.8) is also A-holomorphically independent. When [Z, U] is
natural, the following converse is true.

2.7. THEOREM. If [Z, U] is natural, then each A-holomorphically independent
point of [Z, A] is an independent point of [Z, A].

Proof. Let 6 be an A-holomorphically independent point of [Z, %] with U an
open neighbourhood of & such that é is an independent point of [U, O].
Suppose that § is not independent in [Z, A]. Then there exists a compact set K
such that & € K — K. Now choose a neighbourhood V of & such that
VNK CUand VNK = @.SetT = bdryz (V N K). Then T is a compact
subset of U and & ¢ T. Hence there exists & € Oy such that |k(8)| > |A|r.
Thus we have |k|ynx > |k|r. Since % is A-holomorphic on V, it is continuous on
V M K and A-holomorphic in ¥V N K. Furthermore, since 9[K, A] € K, also
VN oK, U] = B. We thus have a contradiction of Lemma 2.5 (applied to
[K, 9]), so the theorem follows.

2.8. CorROLLARY. If G is an open set disjoint from 8[Z, U], then (G, U]
is empty and 9[G, Os*] C bdry G. Also 9[Z, O*] = 9[Z, A].

The notion of ¥-holomorphic function is used to extend the concept of an
analytic variety to a general system (7). For this purpose, we may in fact use a
wider class of functions. Let us call a continuous function f almost A-holomorphic
if it is Y-holomorphic on that portion of its domain of definition where it is
non-zero. In the case of [C*, P], and in certain more general situations (see
Glicksberg (2)), it follows from the Radé theorem that an almost holomorphic
function (defined, say, on a polycylinder) is actually holomorphic. The crucial
fact concerning almost -holomorphic functions for [Z, %] is that they satisfy
the local maximum modulus principle of Lemma 2.5. This follows easily from
Lemma 2.5 and the definition.

https://doi.org/10.4153/CJM-1968-027-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1968-027-2

HOLOMORPHIC CONVEXITY 283

Let f be a function defined on all of Z. Then we say that lim,_, f(¢) = gif for
arbitrary ¢ > 0 there exists a compact set K such that

lf(e) =Bl < ¢ o €2 —K.

2.9. THEOREM. Let [, U] be natural with empty Silov boundary and let h € Us.
Then lim,_, k(o) exists if and only if b is constant.

Proof. If k is constant, then it is obvious that lim,_, %(s) exists. Therefore
assume that % is not constant and that lim,, %(cs) exists. Without loss of
generality we may assume that lim,_, #(oc) = 0. Since % is continuous and
small outside compact sets, it is bounded and the maximum set

M = {o: 0 € Z, k()| = |k|z}

is compact and non-empty. Let g = |h|z"'h. Then |g(s)| = 1 for ¢ € M and
lg(e)| < 1for ¢ € M. Since M is compact, the Silov boundary d[M, ] exists
so there exists an independent point 6 for [M, A]. Now let K be an arbitrary
compact set in Z with § ¢ K and let Ko = K M M. Then there exists # € ¥
such that |u(8)] > 1 > |u|lg, (where |u|lg, =0 if Ko = 0). Let K; = {o:
o € K, |u(s)] > 1}. Then K1\ M = @ so |glg, < 1. Choose £ such that
lglz® < (lu|x + 1) and define f = ug*. Note that |f(8)] = 1. Also, if
¢ € K — Ky, then |u(o)] < 1lso

[f(e)] = lu(o)] |g(o)]* < 1.
Ite € K, then
If(0)] < |ulglglm® < lulx(u|lx + 1)~ < 1.

Therefore

Iflx < If(®) = L.

Since f € O3, it follows that § is an independent point of [Z, &3] and hence is
also an independent point of [Z, A]. This contradicts the assumption that
9[Z, A] = B, so we conclude that % is constant.

2.10. Definition. Let © and © be subsets of = with ® C Q. Then 0O is called an
N-analytic subvariety of Q@ if each w € Q@ has a neighbourhood U such that
U M 6 consists of the common zeros of a family of functions which are almost
A-holomorphicin U M Q.

Observe that in this definition the intersection U /M 6 may be empty (so the
family of functions could reduce to a single non-zero constant). Also, the
families of functions involved in the definition may be infinite in number. Since
almost A-holomorphic functions are continuous, it follows that a subvariety of
Q must be relatively closed in Q. Moreover, if a subset of @ is known to be
relatively closed in £, then in order to show that it is a subvariety of @ one need
only verify the condition of the definition at points of the subset. For [C*, ]
the above definition gives the usual notion of subvariety (3, p. 86).
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The following lemma records a few of the elementary properties of A-analytic
varieties.

2.11. LEMMA.
(i) The empty set @ and the set Q are subvarieties of Q.

(ii) If ©1 and O, are subvarieties of Q, then ©1 (M O, is also a subvariety of Q.

(iii) If © is a subvariety of Qand @' C Q, then © M Q' is a subvariety of .

(iv) If G is relatively open in Q and © is a subvariety of G which is relatively
closed in Q, then © is also a subvariety of Q.

(v) If © is a subvariety of T which decomposes in the form © = 01 \U O,
where 01 M Oy = 01 M O, = 0, then O1and O, are also subvarieties of =.

Proof. Properties (i), (ii), and (iii) follow immediately from the definition.
For the proof of (iv), since O is relatively closed in 2, we need only consider
points of ©. Since G is open in @, there exists an open set W in Z such that
G = W N Q. Also, since 0 is a subvariety of G, there exists a neighbourhood 1/
of & € 6 such that V /M O consists of the common zeros of functions that are
almost YU-holomorphic in VNG, Set U= VN W. Then U is an open
neighbourhood of § with UNQ=TVNG and UMNO =V MN6O. Thus
U M © consists of the common zeros of functions that are almost A-holo-
morphic in U M Q. Hence 6 is a subvariety of Q. Property (v) follows easily
from (iv). In fact, since © is a closed set in Z, the component sets 0, and 6, are
also closed. Therefore, if G = £ — 0,, then G is open in £ and 6; = G M 6.
Hence 0, is a subvariety of G by (iii). Finally, since 0 is closed in Z, it must be a
subvariety of £ by (iv). Similarly, 0. is a subvariety of £ and the proof is
complete.

In (7, Theorem 3.2) we proved that if [Z, U] is natural, then an A-analytic
subvariety (determined by A-holomorphic functions of class 1) of a compact
A-convex set is also A-convex. Although only A-holomorphic functions of
class 1 were considered in (7), the proof of this result depends primarily on the
fact that these functions satisfy the local maximum modulus principle. There-
fore an identical proof yields the same result for the more general varieties
considered here. We now remove the compactness restriction.

2.12. THEOREM. Assume [Z, U] to be natural and let Q be an arbitrary -convex
setin Z. Then every A-analytic subvariety © of Qs U-convex.

Proof. Let K be a compact set in ©. Then, since 6 C @ and @ is U-convex,
K C Q. Also K is a compact A-convex set. By Lemma 2.11(iii), © N K is an
Y-analytic subvariety of K. Therefore it follows from the theorem for the
compact case that © N K is Y-convex. Since K € 6 N K, this implies that
K € 6 N K. In other words, if K is any compact set in 0, then K C 0 s0 0 is
A-convex by definition.

As a consequence of the above theorem plus Lemma 2.11(iv), we have the
following corollary.
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2.13. COROLLARY. Let G be an open set in =, and © an A-analytic subvariety
of G. If © 1is closed in Z, then it is Y-convex.

3. %-holomorphic convexity. We shall assume throughout this section
that the system [Z, 9] is natural. Let G be a subset of 2 and recall that &4
denotes the algebra of all Y-holomorphic functions defined on G. Let {h:
M\ € A} bean arbitrary subset of & s and, for K a compactsetinG, let

R({m}) = {o:0 € G, ()| < ||z, N € A}.

When there is no chance of confusion, we write simply Kin place of K({m}).
Since ¥-holomorphic functions are continuous, the set K is always relatively
closed in G. If also ¥|G C {}, then K C K, so the closure of K in = is a
compact set. In general, however, K itself will not be compact even when {/}
contains %|G.

3.1. Definition. A set @ C G is said to be {h\}-convex if for every compact set
K C Qitis true that K is compact and contained in Q. If G itself is & g-convex,
then it is said to be ¥-holomorphically convex.

Note that if  is a compact subset of G, then it will be {k)}-convex if and only
if @ = Q. Since A|G S O, it follows that the closure of K (&) is compact for
every compact set K C G. Therefore, according to the above definition, every
closed set is A-holomorphically convex. Thus, interesting results will hold only
for certain special cases, e.g. for open sets. Note, however, that an open set in
C" is holomorphically convex in the usual sense (3, I, G4) if and only if it is
PB-holomorphically convex in the sense of the above definition. Every %-convex
set is automatically -holomorphically convex. If G is A-holomorphically
convex and H is an & g-convex subset of G, then H is also %-holomorphically
convex. If J © H C G and J is @ g-convex, then it is also & g-convex. These
remarks follow easily from the definition.

Let {/: N € A} € 04 and denote by % the function with values in CA
defined as follows:

h(o) = {m(0)}, ¢ €G.

For each ¢ € Gset ¢ = (o, k(c)). Then the mapping ¢ — &, which is a homeo-
morphism of G into £ X CA4, is called a general Oka mapping. For any subset Q
of G, the image @ in £ X C* under the Oka mapping is the graph of h over the
set Q. Note that the graph @ will be compact in = X C2 if and only if Q is
compact in Z. Recall that [Z X C4, % X PB] is a natural system, where A X P
may be regarded as the algebra of all polynomials in the variables {{y: A € A}
with coefficients in 9.

3.2. THEOREM. Let G be an open set in Z and {hy: N € A} an arbitrary subset
of Og. If Qis any {h\}-convex subset of G, then the graph Q is an (A X PB)-convex
set in 2 X CA
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Proof. Let us assume first that © is compact. Define
Ag = {{:{ € CA |0l < lifo, N € A}

Then Ag is a compact polydisk in C4 and so, in particular, is P-convex. Next,
foreach X € A, define

Hy(o,§) = (o) — & (¢, §) € G X CA,

Then {H): X € A} is a family of (3 X $)-holomorphic functions defined in
G X CA, Therefore

VY ({Hy}) = {(0,8): Ha(o,§) = 0, € A}

is an (¥ X P)-analytic subvariety of G X C4. If (w,{) € @, then « € Q,
I(w) = &, and hence || < |h|eforeach A € A. Therefore

QY ({H\}) N (G X Ag).

On the other hand, let (¢, {) be an arbitrary element of ¥ ({Hy}) N (G X Ag).
Then ¢ € G, I\(c) = &, and || < |7]e for each M € A. Thus |I(o)] < ||e
for each A € A and we have ¢ € Q({/}) = Q. But Q is compact and {/}-
convex,soQ = Qand hences € Q. This means that (o, E) € Q and we conclude
that

Q =7 ({H\}) N (G X Ag).

In other words, { is a compact (3 X P)-analytic subvariety of G X Aq. Since
G X Agq is an open subset of the space £ X Ag and , being compact, is a closed
subset of £ X Ag, it follows by Lemma 2.11(iv) that @ is an (3 X P)-analytic
subvariety of £ X Ag. Since [Z, U] is natural and Ag is P-convex, the system
[Z X Ag, A X PB] is also natural. Therefore @ is (A X PB)-convex in T X Aq.
Since 2 X Agis (A X PB)-convex in T X CA, we conclude that  is also (A X PB)-
convex in 2 X CA, This completes the proof when Q is compact.

For the general case, let T be any compact subset of . Then I'is of the form
K for some compact set K C Q. Since Qis {7 }-convex, the set K is compact and
contained in Q. Note that K is also {\}-convex. Therefore, by the result for
compact Q, the graph of K is (¥ X $)-convex in T X CA. Therefore, since
KCKCQand I' = K, it follows that the (% X PB)-convex hull of T is
contained in the graph of K and hence is contained in €. In other words, Q is
(%A X P)-convex and the proof is complete.

We also have the following converse to the above theorem.

3.3. THEOREM. Denote by § the subalgebra of U generated by WG plus
{Bx: N € A}. Let Q be a subset of G for which Q is (% X B )-convex in = X CA,
Then Q1is ©-convex and hence is also O g-convex.

Proof. Let K be a compact subset of Q. Then K is a compact subset of Q.
Hence the ( X $PB)-convex hull of K is contained in Q. Moreover, since
[Z X CA4, A X P] is natural, the (A X P)-convex hull of K is compact and is

https://doi.org/10.4153/CJM-1968-027-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1968-027-2

HOLOMORPHIC CONVEXITY 287

therefore equal to K; for some compact set K; C Q. Note that K C K;. Now,
if 6 € G — Ky, then§ ¢ K, sothereexists F € % X Psuch that

|F(5, h(8))| > |Flzg = maxyex |F(w, b(w))].
Define
h(w) = Flo, h(w)), w© €G.

Then & is a polynomial in a finite number of the A\’s with coefficients in 9.
Therefore s € ©and |k(8)| > |h|x,s08 ¢ K(9). Thus we have

R@® K. co.
Since K is compact, it follows that K (9) is also compact and Q is $-convex.

3.4. COROLLARY. If for each compact set K CG, it is true that K ({h})) =K (0 ),
then G is A-holomor phically convex if and only if G is (A X PB)-convex.

3.5. THEOREM. Let G be an open set in Z and let © be a subalgebra of O 4 that
contains A|G. Then a subset Q of G is H-convex if and only if the system [Q, D] is
natural.

Proof. Assume first that [Q, $] is natural and let K be a compact subset of Q.
Let o, be an arbitrary point of K($). Since K C Q, we note thatif f, g € 9,
then f|Q = g|Q implies that f(cy) = g(oo). Therefore the mapping

2 —fleo), [ €9,

is a well-defined homomorphism of $|2 onto C. Moreover, since |f(s0)| < |flx
for all f € O, the homomorphism is continuous. It follows, since [2, §] is
natural, that there exists a point wo € @ such that f(eo) = f(wo) for f € §.
This implies that oo = wo and we conclude that K($) C Q. Observe that X is
the $|Q-convex hull of the set K in Q. Again since [2, ] is natural, the set K is
compact. In other words, @ is H-convex.

Now let us assume that Q is $-convex and take {h: N € A} = 9. Then by
Theorem 3.2, the graph Q is (A X PB)-convex in = X CA. Hence, by Proposition
1.3, the system [Q, % X B] is natural. Next let F be an arbitrary element of
A X PB and define

he(o) = F(o, k(o)) = F(6), o €G.

Since F is a polynomial in a finite number of the variables ¢, with coefficients in
U, it follows that hr € . Moreover, the mapping F — hr is a homomorphism
of A X Pinto . Furthermore, if we define

o, D) =t (0,8) €2 XCH

then Z\, € A X P and &z, = hy Therefore the homomorphism F — £ is onto
all of .
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Consider an arbitrary continuous homomorphism ¢ of $|Q onto C. Then
there exists a compact set K C Qsuch that

[h2(e)| < |blx, B €D
The mapping

Fohe—hel® > haQ(g), F € A X,

defines a homomorphism of % X P onto C. Moreover,

[h#|Q(d)| < |hrlx = maxgex [hr(w)]
< maxgek |F(®)| = |Flk,

for every F € % X B. Since K is a compact set in = X C4, it follows that the
homomorphism is continuous. Hence there exists (5, £) € 2 X CAsuch that

halQ(d) = F(5,5), F €AXP.

Furthermore, since
|F(5,8)| < |Flz, F €€AXP,

it follows that the point (8, £) belongs to the () X $)-convex hull of X in
Z X CA,
Finally, since & is (Y X PB)-convex and K < €, the (A X Sp’)-conveys hull of K
is contained in §. In particular, (5, §) € 2,508 € Qand (5, §) = (5, h(8)) = 4.
Therefore .
F(s,8) = F(8) = he(3).

Thus ¢ is given by evaluation of elements of  at the point § € Q. In other
words, [2, $]is natural.

3.6. COROLLARY. The open set G is A-holomorphically convex if and only if the
system [G, U g) is natural.*

In the presence of certain countability assumptions, we can show that an
open -holomorphically convex set G is actually a region of holomorphy. In
other words G is the domain of definition of an U-holomorphic function which
cannot be holomorphically extended to a larger region. The set G is said to be
separable if it is the union of a sequence of open sets {G,} such that G, is
compact and contained in G, for each #». We say that G is strongly separable if
it is separable and there exists a sequence {V,} of open sets in Z such that
Va M (bdry G) £ 0 for each # and, if U is any open set that intersects bdry G,
then thereisa V,with V, "G C U.

It is obvious that every open set in C” is strongly separable. The proof of the
following theorem is similar to the proof of an analogous result for C* (1, p. 84).
We are indebted for this remark to M. Shauck who has also obtained a similar
abstract theorem (10).

*Added in proof. A special case of this result has been obtained by Jan-Erik Bjork
(written communication).

https://doi.org/10.4153/CJM-1968-027-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1968-027-2

HOLOMORPHIC CONVEXITY 289

3.7. THEOREM. Let G be an open A-holomorphically convex subset of Z. If G is
strongly separable, then there exists a function g € O g such that |g| ype = « for
every open set U that intersects bdry G.

Proof. Let {G,} and {V,} be the sequences of open sets given in the definition
of strong separability. Since G is A-holomorphically convex and @, is compact,
the @ g-convex hull of G, is a compact subset of G.

We construct by an induction a subsequence {H,} of {G,} and a sequence
{w,} of points of G with the property

w, € (Hn+1 - Pn) N Vny

where T, denotes the & s-convex hull of H, for each #n. First H; = G1. Then,
since T'; is a compact subset of G and V; intersects bdry G, there exists
w1 € (Vi — T'1) N G. Let Hy denote the first element of {G,} that contains the
point w;. With this start, assume that

Hl,...,Hm and Wiy o ooy Wip—1

are already defined with the desired property. Again since T, is a compact
subset of G and V, intersects bdry G, there exists w, € (V, — I'y) NG.
Choosing H,,1as the first element of {G,} that contains w,, we have

wn € (Hm+1 - Fm) N Vi

so the desired sequences exist by induction. Note also that

G= U H,.

n=1

Now, since I', is & g-convex, there exists &, € @ gsuch that
lhnlf‘n <1< lhn(‘*’n)l

Again by an induction, we may define an increasing sequence {m,} of positive
integers such that
Ihnmn[r." < 1/2n

and
n—1

Z hkmk

k=1

7™ (wn)| > + n,

Hn +1

for each n. Next define

g(w) = Z)I B (0), @ €G.
Since H; C Hyy1for each k we have, forallk > #,
|| 7, < |Bi™|m, < 1/2F.

Therefore the series for g converges uniformly on each of the sets H,. In
particular, the series converges locally uniformly inGsog € Og.
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Next let p denote an arbitrary positive integer and let # > p. Then, since
w, € Hn+l — Ty,

n—1 n—1
2 B (wn) | < Z ™ —
k=1 k=1 Hn 41

Alsow, € Hifork > nso

| (w,)| < |B™|m, < 1/2F
and we have

&, = 1 1
> ™ (@) < X 5 =5
k=n+1 k=n~{-12 2
Therefore
n—1
Mmn m 1
lg(wn)l > lhn (wn)‘ - Z hk t _ — on
= Hn +1 2

1 1
>n—§;>p+1—§,;>p.

Now let U be an arbitrary open set that intersects bdry G. For arbitrary p, let
U, = U — H,. Then U, is also an open set that intersects bdry G. Hence there
exists V, with V, NG C U,. In particular, w, € U, NG and, since w, ¢ H,,
n > p. Therefore |g(w,)| > p and hence

glune > [glumne > 1g(wa)] > p.
Since p is arbitrary, it follows that |g| yy¢ = ® and the proof is complete.

The condition that G be strongly separable may be formulated in other ways.
For example, the following weaker version will suffice for the above proof: G is
separable and there exists a sequence {B,} of subsets of G such that B, N\ G is
not compact for any # and for an arbitrary open set U that intersects bdry G
there is a B, with B, C U.
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