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Isolated, undamped geodesic-acoustic-mode (GAM) packets have been demonstrated to
obey a (focusing) nonlinear Schrödinger equation (NLSE) (E. Poli, Phys. Plasmas, 2021).
This equation predicts susceptibility of GAM packets to the modulational instability (MI).
The necessary conditions for this instability are analysed analytically and numerically
using the NLSE model. The predictions of the NLSE are compared with gyrokinetic
simulations performed with the global particle-in-cell code ORB5, where GAM packets
are created from initial perturbations of the axisymmetric radial electric field Er. An
instability of the GAM packets with respect to modulations is observed both in cases in
which an initial perturbation is imposed and when the instability develops spontaneously.
However, significant differences in the dynamics of the small scales are discerned between
the NLSE and gyrokinetic simulations. These discrepancies are mainly due to the radial
dependence of the strength of the nonlinear term, which we do not retain in the solution
of the NLSE, and to the damping of higher radial spectral components kr. The damping
of the high-kr components, which develop as a consequence of the nonlinearity, can be
understood in terms of Landau damping. The influence of the ion Larmor radius ρi as well
as the perturbation wavevector kpert on this effect is studied. For the parameters considered
here the aforementioned damping mechanism hinders the MI process significantly from
developing to its full extent and is strong enough to stabilize some of the (according to the
undamped NLSE model) unstable wavevectors.

Keywords: plasma simulation, plasma nonlinear phenomena, plasma confinement

1. Introduction

The geodesic acoustic mode (GAM) is a plasma oscillation observed in
magnetic-confinement fusion reactors with toroidal geometry, such as tokamaks or
stellarators (Winsor, Johnson & Dawson 1968). It develops because of the compressibility
of the E × B drift velocity of the zonal flows (ZFs), where E and B denote the electric and
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magnetic field, respectively, which leads to (m = ±1, n = 0) pressure sidebands (where
m and n are the poloidal and toroidal wavenumbers, respectively). As GAMs and ZFs
satisfy charge neutrality, the perpendicular divergence of the diamagnetic current density
is compensated by that of the polarization current, resulting in the GAM oscillation (Scott
2005; Qiu, Chen & Zonca 2018; Conway, Smolyakov & Ido 2021). The GAMs are thus
recognized to be the non-stationary branch of the ZFs (Diamond et al. 2005; Conway
et al. 2021) and their associated electric potential is (to the leading order) an m = n = 0
structure. The name GAM stems from the geodesic magnetic field line curvature, which is
responsible for plasma compressibility and thus a necessary condition for the emergence
of the characteristic pressure mode.

The interaction between GAMs and turbulence is fairly complex. Nonlinear
self-interactions of drift-wave (DW) turbulence are one of the main mechanisms for
generating the perturbations of the electric potential, which are the origin of ZFs and
GAMs (Itoh et al. 2006). Meanwhile, similarly to the ZFs, GAMs are understood to
suppress DW turbulence and regulate cross-field turbulence, thus enhancing energy
confinement (Conway et al. 2021). Still, their direct effect on turbulence is not clear at
the moment (Smolyakov et al. 2016), as GAMs are known to deplete the energy available
to ZFs and transfer part of the energy of the system back to turbulence (Scott 2003a,b).
This complex contribution to the turbulence dynamics makes GAMs highly interesting in
current fusion research.

Prior studies have established that, as a direct consequence of nonlinear gyrokinetic
theory, the GAM dynamics is well described by an equation of Schrödinger type – i.e. an
equation whose linear contribution is exactly the linear Schrödinger equation, while the
nonlinear dynamics necessitates an integro-differential expression, as has been discussed
in § 6 of Qiu et al. (2018). Indeed, this is not surprising as it is a general result that
plasma eigenmodes (more exactly, their radial envelope), arising in toroidal systems as a
consequence of various types of instabilities, can be described by a nonlinear Schrödinger
equation with integro-differential coefficients (Zonca & Chen 2014a,b; Zonca et al. 2015;
Chen & Zonca 2016). For the reduced case of an isolated GAM (i.e. without interaction
with other modes) a similar model equation is provided in Poli et al. (2021), where it was
shown that, in the regime of moderate nonlinearity, the dynamics of undamped isolated
GAM packets is well described by a cubic nonlinear Schrödinger equation (NLSE).
The NLSE is a standard model (Spatschek 2012) for describing nonlinear dispersive
oscillations with a (linear) dispersion relation of the form

ω(kr) = a + bk2
r , with arbitrary a, b ∈ C, (1.1)

which, in the limit k2
rρ

2
i � 1 (where ρi denotes the ion Larmor radius and kr is the radial

wavevector associated with the GAM radial electric field), approximates to the standard
gyrokinetic GAM dispersion relation (Smolyakov, Nguyen & Garbet 2008; Zonca & Chen
2008; Qiu, Chen & Zonca 2009), as will be discussed in § 2.1. The NLSE model has
been applied and studied extensively in the contexts of deep water waves, light travelling
through optical fibres, Bose–Einstein condensates and others (Kuznetsov, Rubenchik &
Zakharov 1986; Agrawal 2019; Kengne, Liu & Malomed 2021). Some predictions of
the NLSE are well known, like the emergence of solitons, nonlinear wave breaking, the
nonlinear phase shift and susceptibility to the modulational instability (MI). While some
of these phenomena have already been observed in gyrokinetic simulations of GAMs in
Poli et al. (2021), thus confirming the NLSE as a valid description of the dynamics, in this
report the focus is set on the MI, which to the best of the authors’ knowledge has not yet
been studied in the context of GAMs.
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Modulational instability of geodesic-acoustic-mode packets 3

The MI is usually analysed for wave envelopes which consist of a (nearly) constant
phase front that is modulated by a sinusoidal perturbation with a wavelength λpert =
2π/kpert. One finds that this perturbation is unstable under the conditions that the NLSE
is self-focusing (which for GAMs is the case when the ratio τe between the electron
temperature Te and ion temperature Ti fulfills τe = Te/Ti � 5.45 Smolyakov et al. 2016)
and the wavevector kpert of the modulation of the envelope is within a certain range, which
will be discussed in further detail in § 3. Unstable perturbations will grow exponentially at
the expense of the constant envelope component until the sinusoidal modulation dominates
the shape of the oscillation and saturates.

In the field of plasma physics the MI has been observed in numerous waves and
oscillations (e.g. Schamel 1975; Murtaza & Salahuddin 1982). Most notable for the context
of this paper are DWs, which as explained before are one of the driving mechanisms of
GAMs and ZFs. The MI of DWs has been shown to spontaneously excite ZFs (Chen, Lin
& White 2000) or increase their amplitude (Itoh et al. 2006). Since in this study the focus
is set on isolated GAMs, where the effects of the generation mechanisms such as DWs
are excluded, it is stressed here that in the present analysis the MI stems only from the
self-interaction of GAMs and is not directly connected to DW MI.

After analysing the conditions for MI for the case of GAMs, the analytic predictions of
the NLSE are first confirmed by numerical simulations of the NLSE and then validated
against gyrokinetic simulations obtained from the global particle-in-cell code ORB5
(Bottino & Sonnendrücker 2015; Lanti et al. 2020). Details about the numerical tools
are given in § 4. The results, which are presented in § 5, demonstrate that the MI does
in fact appear in gyrokinetic GAM simulations, however, significant differences between
the gyrokinetic and NLSE simulations are observed that can in part be explained by the
(currently not included) radial dependency of the nonlinear strength αNL = αNL(r) in the
NLSE. Moreover, the radial spectra of the simulations indicate that a damping term should
be included in the NLSE model in this context. The need to consider damping in the
current context may at first seem surprising, since simulations are performed using a
high safety factor (qs = 15) and an initial kr spectrum for which, according to theoretical
predictions by Sugama & Watanabe (2006, 2007) and Qiu et al. (2009), it is expected
that damping of GAMs is weak to negligible. However, the nonlinear evolution of the
packet leads naturally to the generation of shorter and shorter wavelengths which are
more efficiently damped. This effect is the nonlinear analogue of the enhanced Landau
damping discussed in Palermo et al. (2016) and Biancalani et al. (2016), where the shorter
wavelengths were generated by the linear dynamics in the presence of gradients.

In this paper, the theoretical predictions for the MI growth rate are modified with the
inclusion of the damping rate derived in Qiu et al. (2009), which is appropriate in the
in the underlying high safety factor qs and high spectral wavevectors (high qs, kr) regime
and is furthermore consistent with the approximation of adiabatic electrons employed in
the gyrokinetic (GK) simulations. Good agreement between theory and GK simulations is
found if the damping rate of Qiu et al. (2009) is multiplied by a factor of approximately
2.5 (see §§ 5.3 and 5.4). This is not unexpected, as a similar discrepancy has been already
reported in previous benchmarks (Biancalani et al. 2017). The following § 5.5 includes
these findings in the NLSE model and compares damped NLSE simulations with the GK
results, which are observed to show good agreement.

Sections 5.6 and 5.7 illustrate the self-focusing of a GAM with unperturbed Gaussian
initial condition, which is a phenomenon closely related to the MI, and a long GAM
simulation depicting breather behaviour (see e.g. Akhmediev & Korneev 1986; Dudley
et al. 2009) of the GAM MI.
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2. Nonlinear Schrödinger equation model
2.1. Introduction

The NLSE model (Poli et al. 2021) describes the dynamics of an isolated GAM packet via
the complex wavefunction ψ(r, t), where its real part

Re[ψ(r, t)] ≡ Er(r, t), (2.1)

represents the axisymmetric component of the GAM radial electric field Er(r, t). The
function ψ obeys the cubic NLSE given by

i
∂ψ

∂t
= Fψ − ∂

∂r

(G
2
∂ψ

∂r

)
− αNL|ψ |2ψ, (2.2)

where the first two terms on the right-hand side characterize the linear GAM dispersion,
while the last term introduces the contribution from nonlinear self-interactions. Their
respective strengths are determined by the parameters F , G and αNL, which in most
sections of this study will be assumed to be real values and independent of the radial
coordinate r, which is equivalent to assuming no damping and a uniform plasma
background, respectively. Damping in the NLSE will be considered later in this paper
in §§ 5.2 and 5.5, and thus is discussed separately there.

The values of the parameters F and G are obtained from the analytical GK result for the
linear GAM dispersion relation, which according to Smolyakov et al. (2016) is given by

ω(kr) = ω0

√
1 + 1

2 k2
rρ

2
i D(τe), (2.3)

and holds only when k2
rρ

2
i � 1. Here, ω0 is the dispersionless GAM frequency given by

(2.5) below, kr is the radial wavevector of the GAM spectrum, ρi is the ion Larmor radius
and D(τe) is a coefficient characterizing the strength of the dispersive corrections, which
depends on the electron-to-ion temperature ratio τe = Te/Ti

D(τe) = 3
4

−
13
4

+ 3τe + τ 2
e

7
4

+ τe

+
747
32

+ 481
32
τe + 35

8
τ 2

e + 1
2
τ 3

e(
7
4

+ τe

)2 . (2.4)

For ω0 the expression derived in Sugama & Watanabe (2006) is utilized and damping is
neglected

ω2
0 =

[
1 + 2(23 + 16τe + 4τ 2

e )

q2
s (7 + 4τe)2

](
7
4

+ τe

)
v2

Ti

R2
0
, (2.5)

where vTi = √
2Ti/mi is the thermal ion velocity, mi the ion mass, R0 the major tokamak

radius and qs the safety factor. In order to obtain expressions for the parameters F and
G, the square root in the dispersion relation (2.3) is expanded using the approximation
k2

rρ
2
i � 1 that was already assumed to hold during the derivation of the dispersion relation

ω ≈ ω0 + 1
4 k2

rρ
2
i ω0D =: F + 1

2Gk2
r , (2.6)

F := ω0, (2.7)

G := 1
2ω0ρ

2
i D. (2.8)

Here, a definition is denoted by ‘:=’. For the strength αNL of the nonlinear
self-interaction term there currently exists no analytical expression. As a consequence
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in this study the values for αNL are obtained through comparisons with GK GAM
simulations, which were generated with the particle-in-cell code ORB5 (Bottino &
Sonnendrücker 2015; Lanti et al. 2020). The results of these comparisons are presented
in Appendix A and show that the parameter is positive, αNL > 0, increases with τe and
depends approximately inversely on the ion Larmor radius, αNL ∝ 1/ρi. Furthermore, αNL
increases when approaching the centre of the plasma cross-section r = 0. No significant
impact of the safety factor qs on αNL was found.

2.2. Dynamics
This section gives a short introduction to the terms in the NLSE (2.2), that will be relevant
for the MI. The first term on the right-hand side, Fψ , is responsible for the coherent
oscillation of the GAM at the dispersionless frequency F = ω0. The corresponding
dynamics can be split off of the wavefunction ψ through the following transformation:

ψ(r, t) = ψ̂(r, t)e−iF t, (2.9)

where ψ̂ is the envelope of the GAM packet. This ansatz reduces the NLSE to the usually
reported form

i
∂ψ̂

∂t
= −G

2
∂2ψ̂

∂r2
− αNL|ψ̂ |2ψ̂. (2.10)

The second term on the right-hand side of (2.2), −G/2∂2
rψ (for G �= G(r)), gives the

dispersive properties to the GAM dynamics. The nature of the dispersion is determined by
the sign of the parameter G, which, as can be deduced from (2.4)–(2.8), depends solely on
the value of the electron-to-ion temperature ratio τe, with τe ≈ 5.45 marking the boundary
between positive and negative values of G (Nguyen, Garbet & Smolyakov 2008). The
corresponding regimes are labelled as follows:

Anomalous Dispersion G > 0 τe � 5.45,

No Dispersion G = 0 τe ≈ 5.45,

Normal Dispersion G < 0 τe � 5.45.

⎫⎪⎬
⎪⎭ (2.11)

The full dependency of G on τe is depicted in figure 1. The different kinds of dynamics
corresponding to the three dispersion regimes are illustrated through NLSE simulations
(without the nonlinear term) with an initial Gaussian profile in figure 2. The dispersive
term broadens the width of packets as time progresses and alters the oscillation frequency
of the Gaussian flanks compared with the maximum at r = 0.5 (a.u.), resulting in a
curvature of the phase front in (r, t)-space. In the case of normal dispersion, the flanks
oscillate faster than the packet centre, leading to convex curvature, and vice versa for
anomalous dispersion.

The nonlinear term introduces a shift that lowers the frequency (due to αNL > 0 for
GAMs) proportionally to the packet amplitude squared at the location r, which for G = 0
amounts to

�ωNL(r, t) = −αNL|ψ |2(r, t). (2.12)

This shift is illustrated in figure 3. The interaction between the nonlinear phase shift
and the dispersive term creates two distinct regimes called self-defocusing regime (when
G/αNL < 0, i.e. for GAMs for normal dispersion, i.e. τe � 5.45) and self-focusing regime
(for G/αNL > 0, i.e. vice versa) (Scott 2006). Since the self-focusing regime is deeply
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FIGURE 1. Dependency of the dispersion coefficient G on the electron-to-ion temperature ratio
τe as defined in (2.4)–(2.8). The parameters were chosen as specified in table 1, with ion cyclotron
frequency ωci ≈ 1.82 × 108 (rad/s−1) and ion Larmor radius ρi/amin = 4.08 × 10−4.

(a)

(b)

(c)

FIGURE 2. NLSE simulations illustrating the isolated impact of the dispersive term on the
dynamics. The figure shows the real part Re[ψ] of the wavefunction (which for the GAM
corresponds to the radial electric field Er) normalized to the maximum amplitude a0 of the
Gaussian initial condition. The nonlinear term is disregarded (αNL = 0). The selected values of
F and G are chosen such that their relative orders of magnitude match the GAM simulations
considered in the later sections. It can be observed that the coefficient F is responsible for the
oscillation of Re[ψ], while the dispersive term introduces a curvature in (r, t)-space as well as
an increase of the Gaussian width as time progresses.

connected with the formation of MI, it will be explained in further detail in the next
section.

3. Modulational instability

We recall in this section some known results concerning the MI. Although the material
reported here can be found in textbooks (e.g. Agrawal 2019), we present it to put the results
of the next sections into context. The MI, also called Benjamin–Feir instability (Benjamin
& Feir 1967), is believed to be one of the most ubiquitous instabilities in nature (Zakharov
& Ostrovsky 2009). It appears not only in the NLSE, but also in other equations describing
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(a)

(b)

FIGURE 3. NLSE simulations illustrating the nonlinear frequency shift (in the dispersionless
regime, G = 0) for a Gaussian initial condition. Similarly to figure 2 the real part Re[ψ] of the
wavefunction is illustrated, which corresponds to the GAM radial electric field Er. Comparing
the upper simulation (without nonlinearity, αNL = 0) with the lower one, it is evident to see that
the frequency shift as described by (2.12) is most pronounced at the centre of the Gaussian at
r = 0.5, since there the amplitude reaches its highest value.

nonlinear dispersive waves, e.g. in the Withham equation and the Korteweg–de Vries
equation. The instability only develops when the nonlinear and dispersive contributions
to the oscillation dynamics interact such that the NLSE is self-focusing. As the name
suggests, the NLSE dynamics creates a self-focusing effect of maxima in the wave packet,
which is explained in further detail in Appendix B.

3.1. Introduction and behaviour
The MI is usually analysed for the case of a plane wave A0(t)with amplitude a0 (which can
be considered to be a packet with very large width, kr → 0) superimposed with a radially
periodic perturbation A1 with a wavevector kpert

ψ(r, t) = [A0(t)+ A1(r, t)] exp(−iω0t), (3.1)

A1(r, t = 0) = a1 cos(kpertr), a1 � a0. (3.2)

When the perturbation wavevector kpert lies in the unstable range, which will be specified
in § 3.2, due to the previously mentioned self-focusing effect the sinusoidal perturbation
will grow exponentially (as long as the perturbation amplitude a1 is small compared
with the plane wave amplitude a0) at the expense of the plane wave (kr = 0) component
of the wave, which in the following will be called the background wave. More details on
the growth process are given in Appendix B. When the perturbation has grown so large that
it dominates the shape of the wave ψ it saturates and acquires a large nonlinear phase shift
(as mentioned in § 2.2) compared to the background, leading to strongly incoherent phase
fronts. In this saturation phase the radial spectrum of the wave contains many high-kr
components. When the nonlinear phase shift is large enough that the perturbation has
skipped an entire oscillation compared with the background, the wave front reconnects
and the perturbation decreases again. Finally, the initial condition is restored and the
MI process can start anew, leading to a cyclic behaviour called Akhmediev breathers
(Akhmediev & Korneev 1986). A single Akhmediev breather cycle together with the
corresponding radial spectrum is shown in figure 4.
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(a)

(b)

FIGURE 4. Single cycle of an Akhmediev breather where the initial perturbation wavevector
was chosen to be kr = 10 (a.u.). The upper figure illustrates Re[ψ]/a0, which for the GAM
corresponds to the radial electric field Er. As indicated by the colour bar only the positive
values are drawn in the figure to emphasize the decoherent phase front at t = 4 (a.u.). The bottom
figure shows the evolution of the corresponding radial spectrum (i.e. the absolute value of the
Fourier transform |F[Re[ψ]]|). The perturbation grows exponentially until t ≈ 2.5, after which
the growth slows down and at t ≈ 4 the perturbation reaches its maximum value (which can be
seen in the spectrum as well as in real space).

3.2. Conditions for instability
The conditions for instability will be briefly summarized in the following (see e.g.
Remoissenet 1996). By assuming that the time evolution of the perturbation A1(r, t) will
be of the form

A1(r, t) = a1

2
exp(i(kpertr − ωpertt))+ a∗

1

2
exp(−i(kpertr − ωpertt)), (3.3)

one finds that ωpert fulfils the dispersion relation

ω2
pert =

(
k2

pert − 4
αNL

G a2
0

) G2k2
pert

4
. (3.4)

It is immediate to see that exponential growth occurs (i.e. ωpert is imaginary) when firstly

αNL

G > 0, (⇔ NLSE is self-focusing), (3.5)

which due to αNL > 0 for GAMs is equivalent to requiring anomalous dispersion (G > 0,
τe � 5.45 as described in § 2.2), and secondly when the perturbation wavevector is within
the range

|kpert| < |klim| = 2a0

√
αNL

G =
√

2kmax, (3.6)

where klim marks the boundary between stable and unstable perturbation wavevectors. The
perturbation wavevector k2

pert provides the frequency mismatch of the sideband wave with
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FIGURE 5. Dependency of the MI growth rate γMI := |Imωpert| on the perturbation
wavenumber kpert, as given by (3.7). It is assumed that the first condition, given by (3.5), is
satisfied, i.e. dispersion is anomalous.

respect to the background (pump) wave. The corresponding growth rate, which will be
labelled γMI := |Imωpert| in the following, reaches its maximum value at the wavevector
|kmax| := a0

√
2αNL/G. From (3.4) one finds that

γMI(kpert) =
∣∣∣∣Im

[Gkpert

2

√
k2

pert − 4
αNL

G a2
0

]∣∣∣∣ , (3.7)

γMI(kpert = kmax) = αNLa2
0. (3.8)

The full dependency of γMI on the wavevector of the initial perturbation kpert is illustrated
in figure 5.

4. Numerical approach

This section introduces the numerical tools employed in this paper to simulate the
GAM gyrokinetically and with the NLSE model. As mentioned in the introduction, § 1,
the GK results, which are obtained using the global particle-in-cell code ORB5 (Bottino
& Sonnendrücker 2015; Lanti et al. 2020), are assumed to provide an accurate physical
description of the GAM dynamics and are thus an adequate reference solution to validate
the NLSE results and show shortcomings of this simplified model.

4.1. Split-step NLSE solver
The split-step solver (SSS) code was written by G.P. Agrawal (Agrawal 2019) in MatLab
and was created to solve the NLSE (2.10), which describes the dynamics of the envelope,
in the context of optical fibres where it is reported. The code was modified to incorporate
the originally missing oscillation term by utilizing the transformation introduced in (2.9)
and adapted to make its input and output consistent with ORB5 simulations.

The split-step method states that, if the chosen numerical time step �t is small enough,
the nonlinear and dispersive contributions to the NLSE dynamics (of the wave envelope
ψ̂) act (mostly) independently from each other (Faou 2012; Agrawal 2019). It follows that
the solution can be approximated by alternatingly solving the two equations

i
∂ψ̂

∂t
= −αNL|ψ̂ |2ψ̂ (isolated nonlinear dynamics), (4.1)

i
∂ψ̂

∂t
= −G

2
∂2ψ̂

∂r2
, (isolated dispersive dynamics), (4.2)

for each time step. This approach has the significant advantage that the equations for the
isolated nonlinear and isolated dispersive dynamics can each be immediately solved from
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an initial condition ψ̂(r, t = 0) = ψ̂0 using the following analytic solutions:

ψ̂NL(r, t) = exp(iαNL|ψ̂0|2t)ψ̂0 =: ϕt
NL[ψ̂0], (4.3)

ψ̂D(r, t) = F−1

{
exp

(
−it

G
2

k2

)
F{ψ̂0}

}
=: ϕt

D[ψ̂0], (4.4)

where F{·} is the spatial Fourier transform which is calculated using the
fast-Fourier-transform algorithm, F−1{·} denotes the inverse Fourier transform and ϕt

NL[·]
and ϕt

D[·] denote the exact flows (i.e. the temporal evolution starting from an initial
condition ψ̂0(r)) for the isolated nonlinear and isolated dispersive equation, respectively.

The flow ϕt
NLSE associated with the complete dynamics of the NLSE is then

approximated as follows:

ψ̂(r, t = n�t) = ϕn�t
NLSE[ψ̂0] ≈ (ϕ�t

D ◦ ϕ�t
NL)

n[ψ̂0], (4.5)

also known as the Lie splitting method, where ‘◦’ denotes the concatenation of flows,
(ϕ�t

D ◦ ϕ�t
NL)[ψ̂0] = ϕ�t

D [ϕ�t
NL[ψ̂0]].

The SSS implements a refinement of the split-step method with higher accuracy, called
the symmetrized split-step Fourier method or Strang splitting scheme. In this form, the
nonlinear dynamics is split into two parts of duration �t/2, with the dispersive (and thus
smoothing) evolution acting in between (Faou 2012; Agrawal 2019).

4.2. ORB5
The GK code ORB5 (Bottino & Sonnendrücker 2015; Lanti et al. 2020) is a global
particle-in-cell code that simulates the plasma dynamics inside a tokamak for processes
occurring on a time scale slower than that of the ion gyromotion. It can be executed with
or without nonlinear plasma interactions.

The GK theory reduces the six-dimensional kinetic theory by one dimension by
averaging over the gyromotion to obtain a five-dimensional problem describing the
dynamics of the guiding centre distribution function fs of each species s. The set of GK
equations describing the dynamics of fs can be constructed in different ways. The model
implemented in ORB5 is derived from a GK Lagrangian describing the particle motion
in a magnetic field (Brizard & Hahm 2007). The time-symmetric Hamiltonian within the
Lagrangian conserves energy automatically, leading to a model which is particularly useful
for numerical simulations (Bottino & Sonnendrücker 2015). ORB5 provides numerical
results that exhibit strong agreement with other GK codes (Lanti et al. 2020). Its recent
application to the dynamics of isolated GAMs is documented in Palermo et al. (2016),
Biancalani et al. (2016), Palermo et al. (2017), Palermo, Poli & Bottino (2020), Poli et al.
(2020) and Palermo et al. (2023). The interested reader is referred to these references for
more details about the numerical model.

In order to create GAMs in the ORB5 simulations, an electric field Er is initialized in
ORB5 via a perturbation δni of the gyrocentre density of the only ion species included in
the simulations. This perturbation leads through the GK Poisson equation to a potential
perturbation (or equivalently to a polarization density) that ensures quasineutrality. The
relevant relation between density perturbation and electric field for a (0,0) perturbation
can be expressed as

δni(r) ∝ 1
r
∂

∂r
(rEr(r)). (4.6)
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FIGURE 6. Initial condition of the GAM radial electric field Er = Re[ψ] according to (5.1) for
two values of p, compared with the usual constant background initial condition of MI described
in § 3.1. Unless stated otherwise, p = 4 will be used for the packet steepness, w0 = 0.35amin
for the width and the centre will be placed at r0 = 0.6amin in subsequent simulations. The
perturbation wavevector and amplitude in this example are kpert = 8(2π/amin) and a1 = 0.1,
respectively.

As a result, the GAM is essentially ‘dropped into’ the simulations and the formation
process is not considered.

5. Simulation results

In the following simulations the (axisymmetric) GAM radial electric field is initialized
in the following form:

Er(r, t = 0) = a0 exp

(
−
[

r − r0

w0

]2p
) (

1 + a1 cos(kpert[r − r0])
)
, (5.1)

which is similar to the initial condition discussed in (3.1) in § 3, but uses a plateau
function instead of a constant background in order to avoid numerical artefacts at the
boundaries of the simulation domain, i.e. r = 0 and r = amin. This initial condition is
depicted for different parameters in figure 6. The exponent p determines the steepness of
the plateau edge, where p = 1 corresponds to a Gaussian profile and p = 4 was chosen in
the following simulations.

The parameters a0 (which is related to the density perturbation amplitude δn/n0 as
discussed in Appendix A), r0,w0, a1 for the initial condition and amin,R0, τe,B0, qs,mi
for the simulation conditions are chosen as specified in table 1, with the ion Larmor radius
ρi and the perturbation wavevector kpert assuming different values in the following sections.
Through the choice of τe = Te/Ti = 3 < 5.45 the first MI condition, (3.5), i.e. G > 0
(anomalous dispersion, self-focusing NLSE) is satisfied. The geometry of the tokamak
with an aspect ratio of R0/amin = 10 has a high cylindricity, which more closely resembles
the NLSE model where the geometry is not considered in the equations.

The GAM damping is known to decrease with rising safety factor qs (Palermo et al.
2016). In order to fulfil the assumption of weak damping (compared with the MI growth
rate γMI, (3.8)) that was posed in § 1, the safety factor qs = 15 is chosen. In this
regime the damping term derived by Qiu et al. (2009) is applicable as the assumptions
of 1/q2

s � k2
rρ

2
i � 1 and 1

2τek2
rρ

2
i � 1 are satisfied for all of the chosen perturbation

wavevectors kpert (note that for ρi/amin = 5.025 × 10−3 and kr = 10(2π/amin) the value of
1
2τek2

rρ
2
i ≈ 0.1 and for kr = 14(2π/amin), 1

2τek2
rρ

2
i ≈ 0.3). We remark that GAM damping
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Initial Condition Tokamak plasma

Parameter Value Parameter Value

a0 2–3.4 × 10−4 (a.u.) amin 0.13 m
δn/n0 2–3.4 × 10−4 R0 1.3 m
r0 0.6 amin B0 1.9 T
w0 0.35 amin τe 3
p 4 mi 1 a.m.u.
a1 0.1 qs 15
kpert 4–14 2π

amin
ρs/amin

2
425 – 2

325
ρi/amin 3.842–5.025 × 10−3

TABLE 1. Parameters used in the GK (ORB5) and NLSE simulations.

has also been studied under different approximation limits, e.g. by Sugama & Watanabe
(2006) whose expression is appropriate in the limit k2

rρ
2
i � 1/q2

s , and by Gao et al. (2006),
who employ the approximation τe → 0. For a detailed discussion about the damping
behaviour in the transitory regime between the limits by Qiu et al. (2009), Sugama &
Watanabe (2006) and Gao et al. (2006) the reader is referred to Zonca & Chen (2008).
One obtains from Qiu et al. (2009) that the unmodulated packet and wavevectors kr <
5(2π/amin) are undamped (see figure 10). However, damping rates of larger wavevectors,
e.g. γQiu(kr = 10(2π/amin)) = −6.07 × 10−6 ωci are of similar orders of magnitude as the
MI growth rate γMI(kr = 10(2π/amin)) = 3.11 × 10−5ωci, i.e. |γQiu| ≈ 1

5 |γMI|, which leads
to the conclusion that damping may slow the growth of MI down but it is not expected to
suppress MI.

5.1. General comparison between NLSE and GK simulations
A first comparison between NLSE and GK simulations of the general GAM dynamics
(without modulation of the initial condition and thus without MI) was made using
the parameters in table 1. Specifically, the initial GAM electric field amplitude a0 =
2.5 × 10−4 (a.u.), sound Larmor radius ρs/amin = 2/375 and ion Larmor radius ρi/amin ≈
4.355 × 10−3 (where ρi and ρs are determined as described in (A1) and (A2)) were chosen
as a starting point. The dispersion coefficient G is obtained according to (2.8) and αNL is
chosen as described in Appendix A (with r = r0 = 0.6atok). Figure 7 presents the GK and
NLSE simulation results.

The comparison in figure 7 shows that, despite the uniform plasma background and thus
(according to the equations introduced in § 2.1) constant values of F and G, the frequency
of the nonlinear GAM is radially varying in the GK simulations. This major discrepancy
between the NLSE and GK simulation results may be explained by a radial dependence of
αNL that stems from the geometry of the tokamak. This is not included in the NLSE used
in this paper since, as mentioned in § 2.1, the NLSE model for GAMs has not yet been
derived from analytic theory. The dependency is analysed numerically in more detail in
Appendix A and will be considered in future work.

Next, an initial condition with a modulated envelope is considered. From the parameters
a0 = 2.5 × 10−4 (a.u.), αNL and G one obtains the range of unstable perturbation
wavevectors kpert through (3.6) as

|kpert| < |klim| ≈ 14.6
2π

amin
=

√
2 · kmax ≈

√
2 · 10.3

2π

amin
. (5.2)
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FIGURE 7. The GAM radial electric field Er in an ORB5 GK (colour contours) and NLSE
(red levels) simulation of an initially unmodulated GAM. While the frequency of the oscillation
matches well at the packet centre and further outward (for r ≥ 0.6amin), differences increase
when moving to smaller values of r. Since the plasma parameters were chosen to be constant
across the radial coordinate r, these discrepancies can be attributed to an influence of the tokamak
geometry on the nonlinear parameter αNL, which is analysed in Appendix A.

It follows that the wave is unstable to MI when the wavelength of the perturbation
λpert = 2π/kpert is larger than approximately 1/15th of the minor tokamak radius, and
the maximum growth rate from (3.8) of γMI = 3.05 × 10−5ωci is achieved when the
perturbation wavelength is approximately amin/10.

A comparison of an NLSE and GK simulation with kpert = 10(2π/amin) ≈ kmax and
a1 = 0.1 is shown in figure 8. While again significant differences between the NLSE
and GK simulations can be observed, the results illustrate that the MI does occur in
GK GAM simulations. This is apparent since the maxima of the initial condition start
to grow as time progresses and the phase skipping of the maxima (as described in § 3.1)
compared with the background is observed e.g. for t ≈ 1.5 × 105/ωci at r = 0.5amin and
for t ≈ 2.2 × 105/ωci at r = 0.6amin in figure 8(b). The observed radial difference in
growth rate can be explained by the radial dependency of the nonlinear parameter αNL,
as from (3.4) it follows that γMI increases monotonically with αNL, which gets larger for
smaller values of r (as determined in Appendix A). Another discrepancy is the merging
of two maxima at r = 0.8amin and r = 0.9amin in the GK simulation, which stay separated
for the NLSE. This is again explained by αNL decreasing with r since, according to (3.6),
the wavevector with the highest growth rate depends as kmax ∝ √

αNL. As a consequence at
r ≈ 0.85amin smaller wavevectors (i.e. larger structures) will grow faster, thus favouring the
merging of structures. Generally, one finds that across the whole radial space the growth
rate and maximum amplitude in the GK simulation are significantly smaller compared
with the NLSE simulation and theoretical predictions, as can be noticed comparing the
colour bars in figure 8. This observation is further discussed in §§ 5.3 and 5.4.

To study the aforementioned differences in further detail the radial spectra of the results
are compared, as depicted in figure 9. The spectrum of the NLSE simulation contains much
larger wavevectors kr than the GK simulation spectrum, most notably in the nonlinear
saturation phase at t ≈ 1.1 × 105/ωci (see figure 8a). Together with the lower amplitude
and growth rate, these findings indicate that a damping mechanism acting preferentially on
higher wavevectors is present in the GK simulations, which is not contained in the NLSE
solver. As a side note it is remarked that the NLSE spectrum extends up to wavevectors
larger than 30(2π/amin), where the assumption k2

rρ
2
i � 1 posed in § 2.1 is marginally or

no longer satisfied, as e.g. k2
rρ

2
i = 0.2 corresponds to kr ≈ 16(2π/amin) for the current ion

Larmor radius ρi/amin ≈ 4.355 × 10−3. One can also notice in figure 9 that higher spectral
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(a)

(b)

FIGURE 8. Comparison of a NLSE and a GK simulation where the envelopes are modulated
sinusoidally with the perturbation wavevector kpert = 10(2π/amin) ≈ kmax. The figures depict
the GAM radial electric field Er, which in the NLSE model is the real part of the wavefunction
Re[ψ] = Er. While the growth of the modulation is observable in both simulations, the growth
rate appears to be significantly lower in the GK result compared with the NLSE simulation. One
can find further discrepancies, e.g. the two individual maxima that form in the NLSE simulation
at r = 0.8amin and r = 0.9amin are seemingly merged together in the GK simulation. Panels
show the (a) NLSE simulation result and (b) the GK simulation result.

components develop later in ORB5 simulations as compared with the NLSE solution.
This is due to the fact that the instability develops on a slower scale in GK simulations, in
particular at larger r.

5.2. Damping term
This section gives a short introduction to the damping term derived in Qiu et al. (2009),
which, as mentioned in § 5, can be applied to the radial GAM spectrum when electrons
are considered to be adiabatic, 1/q2

s � k2
rρ

2
i � 1 and 1

2τek2
rρ

2
i � 1. The condition 1/q2

s �
k2

rρ
2
i is always satisfied for the chosen safety factor qs = 15 and the wavevectors kpert of the

initial perturbation. Furthermore, due to τe = 3 the remaining requirements can be merged
as follows:

k2
rρ

2
i <

τe

2
k2

rρ
2
i = 3

2
k2

rρ
2
i � 1. (5.3)

Taking 0.3 � 1 as the boundary value for the validity of this assumption, one finds that, for
the largest ion Larmor radius used in this paper, ρi/amin = 5.025 × 10−3, the applicability
of the damping term is limited to wavevectors kr � 14.2(2π/amin). The term is given by
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(a) (b)

FIGURE 9. Comparison of the radial spectrum of the GK and NLSE simulations reported in
figure 8. The figures show the absolute value of the radial Fourier transform of the GAM radial
electric field, |F[Er]|. It is apparent that the GK spectrum is in general more restrained to small
wavevectors compared with the NLSE spectrum. This is especially noticeable in the saturation
phase at t ≈ 1.1 × 105/ωci, which as described in § 3 is (according to the NLSE predictions)
associated with a spectrum that contains high wavevector components. Panels show the (a) NLSE
radial spectrum and (b) the GK radial spectrum.

the following expression:

γQiu = − |ωb|√
2b

exp
{
−σ ωb

ωdt

}[
1 + b

v2
Ti

ω2
bR2

0

(
31
16

+ 9
4
τe + τ 2

e

)

− b
v4

Ti

ω4
bR4

0

(
747
32

+ 481
32
τe + 35

8
τ 2

e + 1
2
τ 3

e

)
− 2

v4
Ti

ω4
bR4

0q2
s

(
23
8

+ 2τe + 1
2
τ 2

e

)]

×
{

1 + 1
24
ωbω

2
dt

(
−σ 4

ω3
dt

+ ωb

ω4
dt

)
+ σ

ωdt

ωb
τe +

(
τ 2

e + 5
4
τe + 1

)
ω2

dt

ωb
− 2b

}
,

(5.4)

where the components are defined as

b = k2
rρ

2
i /2, (5.5)

vTi =
√

2Ti/mi, (5.6)

ωb =
√

7
4

+ τe
vTi

R0

{
1 − b

2

(
31
16

+ 9
4
τe + τ 2

e

)(
7
4

+ τe

)−1

+ b
2

(
747
32

+ 481
32
τe + 35

8
τ 2

e + 1
2
τ 3

e

)(
7
4

+ τe

)−2

+ 1
2q2

s

(
23
8

+ 2τe + 1
2
τ 2

e

)(
7
4
τe

)−2
}
, (5.7)

ωdt = vTi

R0
krρi, (5.8)
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FIGURE 10. Damping term for the parameters given in table 1, with ρs/amin = 2/375,
ρi/amin = 4.355 × 10−3. The red line illustrates the point 3

2 k2
rρ

2
i = 0.3 beyond which the

expression may not be applicable anymore. It can be observed that the slope of the damping
expression changes roughly where the line is located, which can be an indicator that after this
point the behaviour is unphysical. It is remarked that the high end of the perturbation wavevectors
unstable to MI, i.e. for kpert = 14(2π/amin), is very close to the damping applicability limit at
kr ≈ 16(2π/amin).

ωtt = vTi

R0qs
, (5.9)

σ = sgn
[
ωb

ωdt

]
. (5.10)

This damping term describes the collisionless Landau damping of the GAM and can be
applied to larger wavevectors kr than e.g. the term derived by Sugama & Watanabe (2006),
which is achieved by including higher-order harmonics of the ion transit resonances
in the derivation. The resulting dependency is depicted in figure 10 for the parameters
from table 1 (notably with ρs/amin = 2/375, ρi/amin = 4.355 × 10−3). It is apparent that
the strength is negligible for wavevectors kr < 5(2π/amin), but increases rapidly at k ≈
10(2π/amin).

5.3. Role of the perturbation wavelength
This section analyses the influence of the perturbation wavelength λpert = 2π/kpert chosen
in the initial condition of the GAM radial electric field Er on MI growth (as predicted
by (3.7), see figure 5). Additionally, the damping mechanism introduced in the previous
section is taken into account. Similarly to the previous section, the parameters from
§ 5.1 are used and consequently all perturbation wavevectors kpert < 14.6(2π/amin) = klim
should be susceptible to MI. Thus, simulations with modulation wavevectors in the range
4 − 14(2π/amin) are analysed in this section.

In order to obtain a quantitative measure of the growth (or damping) γ of the
sinusoidal perturbation, the radial Fourier transforms of the GK simulation results,
F[Er](kr, t), are calculated using the fast-Fourier-transform algorithm. The Fourier
coefficient corresponding to the perturbation wavevector kpert, F[Er](kr = kpert, t), is then
extracted and an exponential fit is applied to the region of exponential MI growth or
exponential decay. Due to the fact that the growth rate depends on αNL, which in turn
depends on the radial position r, the Fourier coefficient of the whole packet would return
a complex mixture of the different growth stages at the different radial positions. As a
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(a)

(b)

FIGURE 11. Scheme for determining the growth rate γ of the perturbation in the GK GAM
simulations. The upper picture depicts the radial electric field of the case with kpert =
8(2π/amin). The bottom picture depicts the absolute value of the Fourier coefficient at
|F[Er](kr = 8(2π/amin), t)| and the envelope of the coefficient. The exponential fit is applied
only to the region where the growth rate is highest, as for the first oscillation cycles the
GAM electric field is experiencing an initial transient where higher GAM harmonics that were
excited by the initial ‘drop-in’ are still fading away, and for higher values of t the assumption
that the perturbation amplitude a1 is small compared with the plateau amplitude a0 is not
fulfilled anymore. (a) The GAM radial electric field Er from a GK simulation with perturbation
wavevector kpert = 8(2π/amin). The red lines show the time window where the fit was applied,
the black lines indicate the radial region that was included in the calculation of the Fourier
coefficient. (b) Time evolution of the absolute value of the Fourier coefficient of the perturbation
wavevector kpert = 8(2π/amin). The red lines indicate the time window where the fit was applied.

consequence, before the Fourier transform is performed, a mask is applied such that only
the simulation data around each maximum of the wavefront are included. This scheme is
illustrated for the example of kpert = 8(2π/amin) in figure 11.

The aforementioned scheme, illustrated in figure 11, is applied to all simulations,
with respective wavevectors kpert = 4, 5, . . . , 14(2π/amin). In figure 12, the MI growth
rates obtained from the GK simulation data employing the method described above are
compared with the theoretical results of § 3 (see figure 5 and (3.7)). The theoretical MI
predictions, which do not contain damping, clearly overestimate the GK MI growth rate γ
for high perturbation wavevectors kpert > 6(2π/amin). As can be seen in figure 12(a), even
when the nominal damping rate following (5.4) is included the growth rate of the MI is
overpredicted as compared with the GK simulations. However, after adjusting the strength
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(a) (b)

FIGURE 12. The GAM perturbation growth and damping rates γ in GK simulations where the
initial condition was modulated with different perturbation wavevectors kpert. The GK results
were obtained via the method illustrated in figure 11. The left figure shows the comparison of
the simulation results with the theoretical predictions for the analytic MI growth rate γMI (3.4),
and the damping γQiu (5.4). The theoretical predictions are found to overestimate the growth
rate significantly, as seen in figure 12(a). The right figure establishes that, when the damping
term is amplified by a factor of 2.5, data for the wavevectors in the region 6(2π/amin) ≤ kpert ≤
11(2π/amin) more closely match the theoretical predictions. (a) Unmodified damping according
to γQiu. (b) Damping multiplied by a factor of 2.5.

of the damping amplitude by multiplying it with a factor of 2.5, the simulation results show
good agreement with the theoretic predictions (figure 12b). Not only does this adjustment
improve the matching of the threshold between stable and unstable perturbations at
kpert ≈ 11(2π/amin), but it furthermore fits better to the values of the growth rates for
the wavevectors in the domain 6(2π/amin) ≤ kpert ≤ 11(2π/amin). We remark that this
correction factor is also in line with the benchmark in Biancalani et al. (2017) (see
figure 4(b) in this reference), where a similar difference between numeric simulations and
theoretical prediction has been observed.

In contrast to the well-matching growth rates at medium wavevectors, the matching
becomes poorer at larger and smaller kpert, as is apparent in figure 12(b). For wavevectors
kpert > 11(2π/amin), the MI is damped in GK simulations and its time behaviour is more
prone to fitting errors due to the initial transient process. Additionally, these values are
close to the applicability limit 3

2 k2
rρ

2
i � 1 of the damping term. On the other hand, the

growth rates obtained from the GK simulations at the lower end, with kpert < 6(2π/amin),
are too high compared with theory. Further investigations regarding this discrepancy are
needed.

5.4. Role of the ion Larmor radius
The last section established that the small scales (high wavevectors) are more strongly
affected by damping and that the analytical term from Qiu et al. (2009), when adjusted
by a factor 2.5, gives a good approximation to the observations. This section tests this
hypothesis further by analysing the impact of a change of the ion Larmor radius ρi on
the damping scale, where the values ρi1/amin = 3.842 × 10−3, ρi2/amin = 4.355 × 10−3
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FIGURE 13. The GAM MI growth and damping rates in GK simulations with different
perturbation wavevectors kpert and ion Larmor radii ρi (ρi1/amin = 3.842 × 10−3, ρi2/amin =
4.355 × 10−3 and ρi3/amin = 5.025 × 10−3) compared with the theoretical predictions from the
analytic MI growth rate γMI, (3.4) and the analytic GAM damping γQiu, (5.4). The difference in
the maxima of the growth rates stems mainly from the different packet background amplitudes
that were chosen according to (5.11).

(same value as in the previous sections) and ρi3/amin = 5.025 × 10−3 were chosen for the
comparison. The changes of ρi are achieved by adjusting the ion thermal velocity vTi,
which in the simulations is determined according to (A1) and (A2). The analytic damping
term γQiu predicts that, for smaller Larmor radii, smaller scales i.e. higher wavevectors kpert
should be less damped.

A change of ρi (via vTi) influences both G and αNL, meaning that the range of unstable
wavevectors kpert < klim = 2a0

√
αNL/G from (3.6) may change. To decorrelate the change

of ρi from the change of the unstable MI wavevectors, the parameter a0 is selected
depending on ρi to ensure that the range of the unstable MI wavevectors stays the same.
Precisely, due to G ∝ ρ3

i (see (2.8) with vTi ∝ ρi) and αNL ∝ 1/ρi (see Appendix A) one
finds from (3.6) that in order to keep the unstable range constant a0 needs to be adjusted
as

klim = 2a0

√
αNL

G ∝
√

1
ρ4

i
a0 = const. ⇒ a0 ∝ ρ2

i . (5.11)

In order to obtain the same klim = 14.5(2π/amin) as in the previous sections the
corresponding amplitudes are a01 ≈ 1.99 × 10−4 (a.u.), a02 ≈ 2.56 × 10−4 (a.u.) and a03 ≈
3.40 × 10−4 (a.u.) for ρi1, ρi2 and ρi3, respectively. The simulations were analysed with the
scheme introduced in the last section with the corresponding growth and damping rates
presented in figure 13.

The results confirm the findings of the previous section that the adjustment by a factor
of 2.5 of the amplitude of the damping term does reproduce the observed damping rate.
Additionally, the theoretical predictions for the change of growth rates from γMI due to the
changing amplitude is in good agreement with the simulation results. However, similarly
to figure 12(b) the damping rate is overestimated in the region where the simulations
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(a) (b)

FIGURE 14. Repetition of the NLSE simulation reported in figure 8(a), where now the damping
scheme described at the beginning of this section is included. The figure shows the time evolution
of the GAM radial electric field Er (left) as well as the corresponding radial spectrum (right), i.e.
the absolute value of the radial Fourier transform of the GAM radial electric field, |F[Er]|.

are damped and the growth rate results for kpert < 6(2π/amin) are again higher than the
theoretical prediction.

5.5. NLSE simulations including damping
We now include the findings regarding the damping term of the previous two sections in
the NLSE solver and compare a damped NLSE simulation with a GK simulation. The
damping given by (5.4) is amplified by a factor 2.5 and included in the numerical solver
at the point where the dispersive term is applied, i.e. (4.4) in § 4.1. However, as shown in
figure 9(a), during the MI saturation phase large wavevectors (kr > 20(2π/amin)) appear
in the spectrum which, due to the condition (τe/2)k2

rρ
2
i � 1 from § 5.2, lie outside of

the applicability range of γQiu. From the GK simulations, see figure 9(b), it is clear that
these high wavevectors should be strongly suppressed, which was achieved by applying
γ = −4 × 10−4ωci to all wavevectors fulfilling (τe/2)k2

rρ
2
i ≥ 0.3.

The (undamped) NLSE simulation presented in figure 8(a) is now repeated with the
inclusion of the above described damping scheme. The damped result is reported in
figure 14 together with the corresponding spectrum. A clear improvement in regards
to multiple aspects can be discerned when comparing damped and undamped NLSE
simulations with the related GK result from figure 8(b). First of all, the point in time
at which the MI saturation phase appears in the simulations matches much better,
with tNLSE damp.

sat. ≈ 1.8 × 105 1/ωi and tGK
sat. ≈ 2.2 × 105 1/ωi (at the packet centre r =

r0 = 0.6atok), compared with the undamped NLSE simulation from figure 8(a) with
tNLSE undamp.
sat. ≈ 1.1 × 105 1/ωi. Furthermore, the maximal amplitude at the centre r = r0

is in better agreement, with ENLSE damp.
max = 1.31a0 and EGK

max ≈ 1.26a0, compared with
ENLSE undamp.

max = 2.43a0. The growth rate is γ NLSE damp. ≈ 1.48 × 10−5ωci, which is very
similar to the value obtained for the GK simulation with γ GK ≈ 1.41 × 10−5ωci. However,
a spectral comparison between figures 14 and 9(b) illustrates significant differences,
notably that the GK spectrum is much more complex, with more interactions of the
different wavevectors. This may in part stem from the radial dependence of the value
of αNL, which leads to incoherent phase fronts in the GK simulations and is not included
in the NLSE simulation (see also discussion in § 5.1), on the other hand, it may also be a
consequence of the generally reduced complexity of the NLSE model.
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(a)

(b)

(c)

FIGURE 15. Comparison of the evolution of the GAM radial electric field Er with an
unperturbed Gaussian initial condition according to the undamped NLSE, damped NLSE
and GK theory. The plasma background parameters of the simulations are τe = 2, qs = 11,
ρi/amin = 3.784 × 10−3, the initial condition is given by (5.1) with a0 = 3 × 10−4 (a.u.), a1 = 0,
w0 = 0.1amin and p = 1. (a) The NLSE simulation result. (b) The GK simulation result. (c) The
damped NLSE simulation result.

5.6. Self-focusing of Gaussian packets
This section illustrates the self-focusing effect of the NLSE on an unmodulated initial
condition where for the envelope a Gaussian packet is chosen. As detailed in § 2.2,
self-focusing is observed for anomalous dispersion, i.e. G > 0 and τe � 5.45. The resulting
comparison between a GK, an undamped NLSE and a damped NLSE (as specified in § 5.2)
simulation is presented in figure 15.

One can observe that, in all three simulations, the Gaussian packet experiences
self-focusing, resulting in an increase of the maximal amplitude and a phase skip of
the Gaussian centre compared with the packet edges. It is apparent that this behaviour
is very similar to the MI, while it in contrast does not require an initial modulation of the
envelope. We should note at this point that, differently from the standard scenario of the
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(a)

(b)

FIGURE 16. Gyrokinetic simulation of a GAM which shows the breather behaviour of the MI.
The upper figure shows the radial electric field Er with its radial shape, the bottom figure shows
the value of Er along the lines shown in the upper figure, which follow the maxima. The red
curve shows two MI saturation phases, the first at t ≈ 1.7 × 105 1/ωci and the second one at
t ≈ 3.3 × 105 1/ωci. The black curve shows the start of a second MI growth phase at the end of
the simulation. The parameters are chosen as specified in table 1, with ρi3/amin = 5.025 × 10−3,
a0 = 3.4 × 10−4 and kpert = 8(2π/amin).

MI presented in § 3.1, the background wave is not a plane wave but a packet with a finite
spectrum. Hence, it contains also higher spectral components, which can act as a seed for
MI. Indeed, a spectral analysis, which for the sake of brevity is not reported here, reveals
exponential growth of the wavevectors kr = 3(2π/amin), 4(2π/amin) and 5(2π/amin). This
observation suggests an interpretation of this behaviour as an MI, whereas the observed
unstable wavevectors are not necessarily the ones with the strongest growth rates but also
depend on the initial conditions of the packet. We should add that the generation of higher
spectral components is an inherent part of the nonlinear dynamics of the GAM, which
might contribute to the observed spectral behaviour on top of the MI.

Similarly to § 5.2 it is observed that, with damping included in the NLSE model, the
maximum amplitude of the GK simulation is more closely reproduced. Furthermore one
finds better agreement for the width and steepness of the focused packet, i.e. in the GK and
damped NLSE simulations at t ≈ 1.1 × 105 1/ωi compared with the undamped NLSE at
t ≈ 0.8 × 105 1/ωi. The radial asymmetry that develops in the GK simulation is not found
in the NLSE simulations and can be explained by the radial dependence of αNL that was
introduced in § 5.1 and is explored further in Appendix A.

5.7. Breather simulations
In this section the phenomenon of the Akhmediev breather is studied in GK simulations.
Akhmediev breathers (ABs) (Akhmediev & Korneev 1986) are special types of MI
solutions to the NLSE which predict that after the saturation phase, the MI initial condition
is restored, as illustrated in figure 4, and new MI growth should be observable. This
phenomenon is hard to observe in GK simulations as e.g. the dependency of αNL breaks
the packet apart and hinders the return to the initial condition after the first saturation
phase. As a consequence, we concentrate on the region r > 0.6amin, where the results
from Appendix A predict only small changes of αNL. A GK simulation with a breather
solution is depicted in figure 16.
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The maximum at r2 ≈ 0.87amin experiences two saturation phases, the first one
at t ≈ 1.5 × 105ω−1

ci and the second at t ≈ 3.3 × 105ω−1
ci , thus demonstrating the AB

phenomenon for a GAM packet in a GK simulation. Comparable behaviour happens for the
maximum at r ≈ 0.71, however, the growth is slower and not as pronounced. The impact
of the damping mechanism and the differences in the nonlinear coefficient αNL are again
present in the simulations: for example, the second saturation phase at t ≈ 3.3 × 105ω−1

ci
of the maximum centred around r2 is observed to have a maximum amplitude of 1.44a0,
which is significantly lower than the value of 1.74a0 found in the first saturation phase,
whereas an undamped AB would under ideal conditions yield the same maximum value
in both saturation phases.

While more complex patterns of the AB are possible under ideal conditions, such as
the appearance of growth phases of other unstable wavevectors in between the saturation
phases of the initial perturbation wavevector kpert, see e.g. Copie, Randoux & Suret (2020),
the deviations from a pure NLSE-like behaviour due to the mechanisms introduced in the
previous sections make the possibility of such observations highly unlikely.

6. Summary and conclusions

The results of this paper show that geodesic-acoustic oscillations (GAMs) are
susceptible to modulational instability (MI) under the conditions predicted by the
nonlinear Schrödinger equation (NLSE) model. However, the high wavevectors that are
part of the nonlinear saturation phase and important for the MI cycle (and MI breathers, see
§ 5.7) do not develop in gyrokinetic (GK) simulations due to the Landau damping which
was characterized in detail in §§ 5.2–5.5. For the parameters considered in this study the
aforementioned damping effect hinders the MI process significantly from developing to its
full extent and is strong enough to stabilize some of the (according to the undamped NLSE
model) unstable wavevectors, as was illustrated in figure 13 for k � 12(2π/amin). A second
significant shortcoming of the NLSE model was the assumption that αNL is independent
of the radial coordinate r. The GK simulations of this paper establish the radial variation
of the nonlinear coefficient αNL = αNL(r) of the NLSE model for GAMs, which was not
evident in the prior study on this topic (Poli et al. 2021), due to the relatively narrow
Gaussian packets that were considered there.

One can conclude from the theoretical descriptions of the MI and the damping
mechanism ((3.7) and (5.4), respectively) that GAM MI is more likely to be observable
for high safety factors and small Larmor radii (i.e. low ion temperatures Ti and thermal
velocities vTi). Theory further suggests that the tokamak aspect ratio A = R0/amin may have
an impact on the GAM MI growth rate, however, further investigations on the dependency
of the nonlinear coefficient αNL on the geometric parameters are needed to confirm this
prediction.

The observed significance of damping in the GK simulation results might seem
surprising as the initial spectrum of the packet lies in a range for which theory predicts
negligible damping. This enhanced damping observed in the GK simulations is akin to
the phenomenon analysed in detail in Palermo et al. (2016) and Biancalani et al. (2016).
There, the generation of higher wavevectors through linear processes due to the presence of
radially non-uniform profiles was found to increase GAM damping significantly, leading to
the inclusion of a ‘phase-mixing damping adjustment’. Similarly to these findings, as was
discussed in § 3.1, the MI process is associated with the (in our case nonlinear) generation
of high wavevector components in the radial GAM spectrum. This interpretation of the
simulation results is confirmed by the good agreement they exhibit with an NLSE model
corrected with the inclusion of the damping rate derived in Qiu et al. (2009), as is
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presented in § 5.5. The overall correction factor adopted here to achieve a quantitative
matching with the GK simulations is in line with previous findings (Biancalani et al. 2017).

While the NLSE model proved to give accurate predictions of the general GAM
behaviour, the exact dynamics shows significant differences. An improvement of the
model, putting it on a more firm theoretical ground, requires a derivation of the NLSE
equation for GAMs from first principles, which should be addressed in the near future.
Predictive capability to other parameter regimes is limited and will only improve with
further studies on the unknown variable αNL.

Altogether, the results indicate that (without considering interactions with other plasma
modes) the possibility and impact of an MI on the GAM dynamics will be small. This
conclusion becomes more evident by the fact that in this study, electrons were treated
adiabatically in simulations and in the damping term, while recent research suggests that
a kinetic treatment of the electrons will increase damping, thus decreasing the likeliness
of MI even further (Zhang & Lin 2010; Ehrlacher et al. 2018). On the other hand, the
self-focusing behaviour associated with the MI formation process is omnipresent in the
regime of anomalous dispersion (G > 0, τe � 5.45) and may be observable in other
simulations similarly to the case presented in § 5.6. The main reason behind this is the size
of the involved structures and unstable wavevectors kr: while the self-focusing effect only
requires that a local maximum is present in the packet envelope, which can be of any size
(or even simply the packet itself), MI formation requires that the maximum is ‘on top of’ a
relatively constant packet, thus demanding much finer structures and higher wavevectors.
This is not only a much more unlikely initial condition to spontaneously develop in a
tokamak, but is also much more significantly affected by the damping process illustrated
in §§ 5.2–5.4. However, this conclusion is only valid in the absence of interaction with
other plasma modes.
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FIGURE 17. Dependency of the nonlinear parameter αNL on the electron-to-ion temperature
ratio τe. The remaining parameters were chosen as specified in table 1, with ρi/amin = 3.842 ×
10−3, qs = 5 and r0 = 0.5amin.

Appendix A. Determination of αNL

In order to make meaningful predictions about the MI behaviour and growth rates γMI
(see (3.7)), it is necessary to assess the magnitude of the strength αNL of the nonlinear
term. Since an analytical expression for this parameter has currently not yet been derived,
as was already mentioned in § 2.1, its value is in this study determined by comparing
NLSE results with GK simulations of isolated GAMs obtained with the code ORB5. The
axisymmetric component of the GAM radial electric field is initialized as described in
§ 4.2, where the NLSE evolves an initial electric field perturbation, while in ORB5 the
electric field is generated from an initial perturbation δn of the ion density.

To obtain the exact value of the initial electric field perturbation from the initial density
perturbation amplitude δn/n0 one would have to evaluate the proportionality constant of
the relation in (4.6). Since the exact physical values of the electric field do not matter
for the results of this study and to simplify comparisons between the NLSE and GK
simulations, we define a normalized amplitude of the electric field simply as a0 = δn/n0.
As a consequence, the parameter αNL is given here in units related to the amplitude of the
relative density perturbation δn/n0.

For the comparison of NLSE and GK simulations an unperturbed Gaussian envelope
(i.e. a1 = 0, p = 1 in (5.1)) was chosen for the initial condition. The dependency of αNL
on the electron-to-ion temperature ratio τe = Te/Ti, the safety factor qs, the radial position
r0 of the GAM and the ion Larmor radius ρi was determined. The ion Larmor radius is
set in ORB5 by the choice of the parameter Lx, which is defined through the following
relations:

Lx = 2
amin

ρs
, (A1)

ρs = cs

ωci
=

√
Te/mi

ωci
=
√
τe

2

√
2Ti/mi

ωci
=
√
τe

2
ρi. (A2)

This subsequently also affects the value of the ion temperature. The remaining parameters
amin,R0,B0,mi were chosen as specified in table 1. The results for the dependencies on
τe, ρi (i.e. Lx) and r0 are depicted in figures 17–19, respectively. The respective error bars
illustrate the range of values of αNL in which the NLSE simulations matched GK results
within one quarter of the oscillation period 1/4TGAM at the end of the simulation.
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FIGURE 18. Dependency of the nonlinear parameter αNL on the ion Larmor radius ρi. The
remaining parameters were chosen as specified in table 1, with τe = 4, qs = 5 and r0 = 0.5amin.

FIGURE 19. Dependency of the nonlinear parameter αNL on the position r0 of the GAM in the
minor tokamak radius. This dependency was not included in the NLSE simulation dynamics. The
remaining parameters were chosen as specified in table 1, with τe = 4, ρi/amin = 3.842 × 10−3

and qs = 5.

From figure 17 one finds that αNL(τe) increases nearly linearly with τe, but with different
slopes in the regime of anomalous (τe � 5.45) and normal (τe � 5.45) dispersion. The
error bars in the regime of anomalous dispersion are higher due to the self-focusing effect
of Gaussian packets, which is discussed in § 5.6 and complicated comparisons. From
figure 18 as a first approximation the proportionality αNL ∝ 1/ρi is obtained. The radial
position of the GAM is found to heavily influence the strength of the nonlinear parameter
as seen in figure 19, most notably when r0 is below 0.4amin. For the safety factor qs it
was found that the value of αNL does not change significantly in the range qs = 1 . . . 15
considered in this paper.

Appendix B. Qualitative picture for the self-focusing NLSE and MI

This section presents a qualitative explanation for the MI formation process in terms of
an interaction of the between the effects of the nonlinear and the dispersive term, which
were introduced in § 2.2. Although the MI is meanwhile a well-known phenomenon, we
believe that the summary of this simple interpretation might be useful, in particular to
interpret the results of this paper.
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FIGURE 20. An NLSE simulation of the GAM electric field Er = Re[ψ] for a Gaussian with
an initial convex curvature in (r, t)-space. The anomalous dispersion reduces the width of the
Gaussian while increasing its amplitude until the phase front is flat at t ≈ 3.5. After this point
one observes the usual dispersive broadening and increase of concave curvature.

As depicted in figure 2, the effect of the dispersive term (without nonlinearity, αNL = 0)
on a ‘flat’ phase front at t = 0 is an increase in width and the appearance of (in the case of
anomalous dispersion concave) curvature as time progresses. When considering a packet
with initial curvature opposite to what is generated by the dispersive term, one can observe
that during the process of reducing the phase-front curvature, the packet width decreases
until the phase front is flat, as shown in figure 20. After this point one finds the usual
dispersive broadening. This is the well-known behaviour of a Gaussian pulse in optics
(but with the roles of time and space reversed), see e.g. Hecht (2012). One can conclude
that, in the regime of anomalous dispersion, as long as the packet curvature is convex in
(r, t)-space, the width and curvature of the packet will decrease while the amplitude of
the maximum increases. For normal dispersion one will observe the same effect for an
initially concave packet.

As mentioned in § 2.2 the nonlinear term introduces a phase shift, described by (2.12),
in regions where the amplitude is higher, which gives maxima in the packet a convex
curvature, as seen in figure 3. It follows that, when both the nonlinear and (anomalous)
dispersive contributions to the dynamics are considered, the dispersive term acts to reduce
the curvature from the nonlinear phase shift and decreases the width of the packet. As
long as the strength of the nonlinear phase shift is stronger than the effect of the dispersive
term, the packet stays convexly curved. As a result, the width of the region around the
maximum will decrease while its amplitude rises. This competition between the nonlinear
and the dispersive term is represented mathematically by second condition for MI growth
stated in the previous section (3.6), which can be rewritten to

Gk2
pert

2
< 2a2

0αNL. (B1)

Here, the left-hand side is the strength of the phase shift of a local sinusoidal maximum
due to the dispersive term, while the right-hand side is the nonlinear phase-shift of the
maximum relative to its surrounding background.
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