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A striped pattern of snowfall and snow cover 
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ABSTRACT. A striped pattern can be seen by spraying ink on a vertical wall ofa 
snow pit to observe the layered structure of a snow cover. This pattern is caused by 
variations of snowfall in time, particularly pauses in snowfall, and its structure is 
related to a kind of fractal. In this paper, we consider snowfall and snow cover from a 
viewpoint of fractals and show that the layered structure of snow cover is a record of 
fractals on atmospheric-turbulence phenomena through the time variation of 
snowfall. 

INTRODUCTION 

In snow-pit observations, we usually describe the snow 
cover as a set of finite, countable snow layers. However, 
when we spray blue ink diluted with water on the vertical 
wall of the snow pit, we can see a striped pattern 
composed of numerous blue lines, which looks as ifit were 
endlessly repeated to a finer structure. As a result, 
descriptions of layers in a snow cover might be strongly 
observer-dependent. 

In general, this striped pattern is caused by the 
discontinuity of grain-size of snow particles (Wakahama, 
1963), and the discontinuity is due to variations of 
snowfall in time. Each blue line of the striped pattern 
usually corresponds to a boundary between successive 
snowfalls (Shimizu, 1965), in other words, a pause in 
snowfall. 

On the other hand, Kawakami and Yoshida (1988) 
have shown that the variation in precipitation can be 
considered as a kind of fractal (Mandelbrot, 1981 ) which 
is characterized by endlessly repeated geometrical figures, 
that is, self-similarity or self-affinity. From the viewpoint 
of fractals, a set of precipitation events on the time axis 
can be regarded as a cantor set, which is a typical 
example of fractals. A cantor set is composed of points 
embedded in space with topological dimension I and has 
an infinite number of pauses in several sizes. 

The shapes of clouds are well-known fractals (Lovejoy, 
1982) related to atmospheric-turbulence phenomena. 
Precipitation also is a kind of atmospheric-turbulence 
phenomenon; therefore, it is suggested that the self-similar 
structure of the record of precipitation is caused by 
atmospheric-turbulence phenomena. 

Snow is deposited on the ground, in a time-dependent 
manner, while rain flows away from the ground. 
Therefore, such a structure of snowfall must be recorded 
within the snow cover. This paper describes the endlessly 
repeated structure of the striped pattern in natural snow 

cover as a kind of record of a fractal of the time variation 
in snowfall, in which atmospheric-turbulence phenomena 
are reflected. The purpose of this paper is to inspect the 
number of snow layers contained in a snow cover and the 
total time of snowfall through a qualitative model from 
the viewpoint of fractals. 

NUMBER OF SNOW LAYERS 

Figure I shows an example of a striped pattern on the 
vertical wall of a snow pit dyed by spraying blue ink 
diluted with water. This striped pattern is composed of 
numerous blue lines in several thicknesses and darknesses. 
The snow cover can be roughly separated into several 
layers by the thickest and darkest lines, and each layer 
also has several thinner lines. Moreover, if we observe 
carefully the layers between the thinner lines, several 
further thinner lines can be found within each layer. 

Such a striped pattern of snow cover has a layered 
structure endlessly repeated to a finer structure, as ideally 
schematized in Figure 2. A snow cover, then, can be 
considered as a set of uncountable and infinite layers with 
infinitesimal thickness; actually it is impossible to 
recognize the layers thinner than the grain-size of snow 
particles. 

TOTAL TIME OF SNOWFALL 

Figure 3 is an example of a record of daily new-snow 
depth measured by a snow plate in Nagaoka, Japan, in 
the winter 1985-86. In this record, the time axis is 
covered with either snowfall periods or its pauses, and a 
successive snowfall period corresponds to a severe storm, 
which usually occurs several times per winter in Nagaoka. 
On the other hand, the small graph included in Figure 3 
shows time variation in precipitation, magnifying the 
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Fig. 1. Striped pattern of snow cover in a pit wall. 

time scale of a period during successive snowfalls in the 
large graph of daily new-snow depth. From this, it can be 
found that pauses of minimum time scale one hour exist in 
the record, even though the snowfall is recorded as 
continuous. 

This means that whether or not the snowfall is 
regarded as continuous depends on the minimum time 
scale; so does the total time of snowfall. For example, even 
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Fig. 2. Schematic representation of a striped pattern of 
snow cover. 

though its total time in a record (minimum time scale 1 d) 
is 10 d, this does not mean that the total time is 240 h 
when the minimum time is I h. As the snowfall time in the 
limit of microscopic scales, consider the time for which ice 
of snow flakes passes through a point near the ground. 
Assuming that total ice thickness in one wintertime is I m 
and falling velocity of snow is I ms-I, snowfall time per 
one wintertime can be estimated to be I s. In this 
microscopic scale, snowfall time is negligibly small in 
comparison with total length of a winter, which is about 
107 s, even though it snows every day. 

SNOW LAYERS AS REFLECTION OF SNOWFALL 

Figure 4 shows schematically the relation between 
snowfalls and the striped pattern of a snow cover. In 
general, the striped pattern on the wall of a snow pit is 
caused by discontinuity of grain-size of snow particles 
(Wakahama, 1963), and each line of the striped pattern 
corresponds to each position where vertical distribution of 
its grain-size changes discontinuously. Usually, each 
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Fig. 3. Daily new-snow depth and precipitation In 

Nagaoka, Japan, in the 1985-86 winter. 
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SNOWFALL 
Fig. 4. Schematic representation of successive snowfalls 
and a striped pattern. 

posItIOn of such discontinuity coincides with each 
boundary between a successive snowfall and the follow­
ing successive one (Shimizu, 1965), as long as it is not 
disturbed by rainfall or erosion by wind. 

Therefore, if snowfall has some characteristic struc­
tures on its time variation, then the snow cover made of 
the snowfall also has some characteristics reflecting the 
structures of the snowfall through the striped pattern of 
the snow cover. 

DEVIL'S STAIRCASE 
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A CANTOR SET 
Fig. 5. A cantor set, devil's staircase and striped pattern. 
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QUALITATIVE MODEL FOR SNOWFALL AND 
SNOW LAYERS IN A VIEWPOINT OF FRACT AL 

A shape made of parts similar in some way to the whole is 
called a fractal (Mandelbrot, 1986) and it can be 
characterized by fractal dimension which is not integer. 
A cantor set (Figure 5) is a typical example of fractals 
embedded in space with topological dimension 1, and 
given as the limit of the repeat of the operation as shown 
in Figure 5. Therefore, a cantor set is composed of an 
infinite number of gaps. As a result, the total length of 
every point belonging to the set is zero. If we consider a 
cantor set as a qualitative model for snowfall, this 
corresponds to the fact that the total snowfall time in 
the limit of the microscopic time scale is negligibly small, 
as mentioned above. 

Consider a density-distribution function in which a 
constant weight is equally distributed on each point 
belonging to the cantor set. The function which integrates 
the density-distribution function is called a devil's 
staircase. If we consider the cantor set as a kind of 
snowfall record on the time axis, then the devil's staircase 
corresponds to the records of the snow cover, e.g. time 
variation in snow load or accumulated daily new-snow 
depth. 

If settlement of snow due to gravity can be neglected, 
the devil's staircase can be considered as a snow depth. 
Then, a striped pattern of virtual snow cover made of the 
cantor set is shown on the right side of the devil's staircase 
in Figure 5. In this striped pattern, each line is drawn at 
the depth corresponding to each landing of the devil's 
staircase. In Figure 5, only a few lines are shown, but 
ideally the number oflines is infinite, and the virtual snow 
cover must be perfectly covered with the infinite lines. 

Figure 6 is an example of snowfall records observed in 
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Fig. 6. Snowfall record by a snowfall detector in Koide, 
Japan, in the 1979-80 winter. Solid lines and gaps 
represent snowfall period and its pause, respectively. 
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Fig. 7. Devil's staircase by accumulated daily new-snow 
depth (m) and snow load (gcm-2) in Shinjo, Japan, in 
the 1990-91 winter. 

Koide, Japan, in the winter of 1979-80 by a snowfall 
detector, in which the presence of snowfall is detected by 
the change of the electric resistance at an inclined hot 
plate. In Figure 6, magnifying the minimum time scale to 
recognize snowfall, successive snowfall periods are 
magnified. This shows that the snowfall record on time 
axis includes a lot of gaps, and that snowfall is not 
successive at all, even though it looks successive on the 
larger time scale. Consequently, from this viewpoint, the 
record of snowfall phenomena on the time axis can be 
considered as a kind of cantor set. 

Figure 7 is an example of actual devil's staircases made 
of accumulated daily new-snow depth in Shinjo,Japan, in 
the 1990-91 winter (after Shinjo Branch of Snow and Ice 
Studies, NIED) and accumulated weight of snowfall 
measured by an electric balance; the area of the collecting 
plate is 428cm2 (25.8cm x 16.6cm). In the record 
measured by the electric balance, its time scale is spread 
in comparison with that in the record of accumulated 
daily new-snow depth. In Figure 7, we can see many 
landings with several scales in time. 

From the viewpoint of fractals , the number of snow 
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layers contained in a snow cover is dependent on scale 
and becomes infinite in the limit of microscale. This is 
consistent with the fact that the total time of snowfall also 
depends on scale and becomes zero in the limit of 
microscale. Therefore, it does not make sense to obtain 
the total time of snowfall or the number of snow layers 
absolutely, i.e. independently of scale. 

FRACTAL DIMENSION OF SNOWFALL 

We obtain a fractal dimension for snowfall from a set of 
snowfall times by using a box-counting method (Feder, 
1988). In this method, the objective period is divided into 
small sections Ll in length, and the number N(Ll) of the 
sections in which snowfall is included is counted. If the 
snowfall is successive without pause and can be considered 
as a continuous segment on the time axis, then the total 
time of snowfall is 

T(Ll) = Ll x N(Ll) . (1) 

It is independent of the time scale Ll, and is constant. As 
mentioned above, however, the total of snowfall time T 
depends in general on the time scale .1 and is not 
constant. 

When the number N can be represented by the 
following power function 

N(Ll) = ex Ll-D, (2) 

this index D is called the fractal dimension. As a 
particular case, when D = I, T becomes constant. This 
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Fig. 8. Log- log plots of precipitation in Nagaoka, Japan, 
in the winter of December 1985-March 1986. 
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indica tes that snowfall is one-dimensional if it is 
continuous, therefore it coincides with the concept of 
dimension which we usually use. In this method, the 
fractal dimension is obtained from a slope of the straight 
line drawn by the log-log plots of Nand ..1. 

Figure 8 shows an example of these log-log plots of the 
records of precipitation measured by an overflow type 
rain/snowgauge in the winter of December 1985-March 
1986 in N agaoka. In this analysis, only precipitation 
which is equal to or more than a threshold value is 
considered as snowfall. The three lines a, band c in 
Figure 8 correspond to threshold values 0.5, 1.0 and 
2.0 mm h- 1

, respectively. T he absolute values of the 
gradients of the straight lines decrease with increasing 
threshold values. Therefore , the fractal dimension 
depends on them. This indicates that the fractal 
dimension depends on the method used to measure 
snowfall, because, in general, a threshold value (an 
accuracy to detect or recognize snowfall) differs according 
to each method. 

Figure 9 shows examples of the log-log plots on the 
records of daily new-snow depth in Nagaoka. Table I 
summarizes fractal dimensions obtained by these log- log 
plots of daily new-snow depth , maximum snow depths in 
Nagaoka and Shinjo in winter (Abe and others, 1985), 
and total sum of daily new-snow depths. 

CONCLUSION 

In this paper, time variation of snowfall and a layered 
structure of snow cover are interpreted from the 
viewpoint of fractals, because they have a structure 
endlessly repeated to a finer structure. In this model, both 
the total time of snowfall and the number of snow layers 
depend on scale. Therefore, they cannot be determined 
absolutely. 

It is well known that the shape of clouds is a fractal 
related to atmospheric turbulence. In the same way, time 
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Fig. 9. Log-log plots of daily new-snow depth In 

Nagaoka, Japan . 
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Table 1. Fractal dimension, maximum snow depth and 
total sum of daily new-snow depth in Nagaoka and Shinjo, 
Japan 

Site Year 

Nagaoka 1976-77 
1977-78 
1978-79 
1979-80 
1980-81 
1981-82 
1982-83 
1983- 84 
1984--85 
1985- 86 
1986-87 
1987-88 
1988- 89 

Shinjo 1974--75 
1975- 76 
1876-77 
1977-78 
1978- 79 
1979- 80 
1980-81 
1981 - 82 
1982- 83 

Fractal 
dimension 

0.75 
0.67 
0.68 
0.57 
0.85 
0.55 
0.58 
0.77 
0.70 
0.69 
0.63 
0.66 
0.41 
0.78 
0.78 
0.84 
0.81 
0.65 
0.72 
0.75 
0.70 
0.68 

Maximum 
snow depth 

m 

217 
123 
74 

240 
282 
117 
181 
260 
211 
254 
110 
145 
63 

126 
131 
146 
147 
75 

166 
183 
144 
122 

Total sum of 
daily new-snow 

depth 

m 

894 
680 
347 
747 

1052 
576 
783 

1130 
1070 
1256 
716 
717 
248 
771 
612 
813 
732 
389 
766 
926 
785 
653 

variation of precipitation also is affected by atmospheric 
turbulence. Therefore, snow cover, which is a record of 
snowfall, keeps a measure of the fractal of atmospheric 
phenomena in its layered structure. 

Snowflakes are famous fractals for their shape 
(Mandelbrot, 1981 ) and also a letter from heaven 
(N akaya, 1938) in a microscopic sense. Similarly, snow 
cover also is interesting as both a fractal geometry and a 
record, in a macroscopic sense, of how the heavens inform 
us of atmospheric-turbulence phenomena. 
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