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Abstract

We deal with a random graph model evolving in discrete time steps by duplicating and
deleting the edges of randomly chosen vertices. We prove the existence of an almost
surely asymptotic degree distribution, with stretched exponential decay; more precisely,
the proportion of vertices of degree d tends to some positive number cd > 0 almost surely

as the number of steps goes to ∞, and cd ∼ (eπ)1/2d1/4e−2
√

d holds as d → ∞.
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1. Introduction

In the last decades, inspired by the examination of large real networks, various types of
random graph models with preferential attachment dynamics (meaning that vertices with larger
degree have grreater chance to add new edges as the graph evolves randomly) were introduced
and analysed. After some early work (see [23], [17], [8], and [19]) this area of research started
with the seminal papers of Barabási and Albert [2] and Bollobás et al. [5]. Among many others,
we mention the model of Cooper and Frieze for the Internet [3] or the model for social networks
of Sridharan et al. [18].

An important feature of these graph sequences is the scale-free property: the proportion of
vertices of degree d tends to some positive number cd almost surely (a.s.) as the number of
steps goes to ∞, and cd ∼ Kd−γ holds as d → ∞, where K and γ are some positive constants
(throughout this paper, ad ∼ bd means that ad/bd → 1 as d → ∞). To put it in another way,
the asymptotic degree distribution (cd) is polynomially decaying. See [2], [10], and [22] and
the references therein regarding the scale-free property of the internet.

However, the scale-free property captures only the behaviour of the degrees of the vertices,
and does not examine other kinds of structures. In biological networks, for example, proteomes
(as protein-protein interaction networks, i.e. the nodes are proteins, and two of them are
connected if they interact in a natural biological processes), we can find groups of vertices
having a similar neighbourhood, that is, most of their neighbours are the same. One can say
that these networks are highly clustered; loosely speaking, there are large cliques, in which
almost every vertex is connected to almost every other one, and there are only a few edges
available between cliques.
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A simple process to generate cliques is duplication: when a new vertex is added, we choose
an old vertex randomly, and connect the new vertex to the neighbours of the old vertex. In
other words, the new vertex becomes a copy of the old vertex. Note that if the old vertex is
chosen uniformly at random, then the probability that a vertex of degree d gets a new edge
is just the probability that one of its neighbours is chosen, which is proportional to its actual
degree. Hence, this model is also driven by a kind of preferential attachment dynamics.

After the duplication, we can add some extra edges randomly, or we can delete some of them
to guarantee that the network remains sparse. The graph may still have some large cliques due
to the duplication.

Duplication is not only a technical step that proved to be useful: it is inherent. To quote
Chung [6] ‘This may be because duplication of the information in the genome is a dominant
evolutionary force in shaping biological networks (like gene regulatory networks and protein–
protein interaction networks)’ .

These types of models – where the duplicated vertex is chosen uniformly at random – were
examined, for example, by Kim et al. [13]. In their model the new vertex is connected to
each neighbour of the chosen vertex with probability 1 − δ, independently. In addition, the
new vertex is connected to each old vertex independently with probability β/n at the nth step
(δ, β are the parameters of the model). The Scale-free property is claimed for this model.
However, Pastor-Satorras et al. [14] stated that, instead of polynomial decay, for the limit cd

of the expected value of the proportion of vertices of degree d, the degree distribution has a
polynomial decay with exponential cut-off cd ∼ Kd−γ e−λd with some positive constant λ.
However, Chung et al. [6] claimed that for β = 0, when we do not have any extra edges, the
asymptotic degree distribution exists, and (cd) is decaying polynomially. None of these papers
contained a mathematically rigorous proof.

However, Bebek et al. [4] disclaimed the results of [14] and [6]. In the latter case, it was
shown that the fraction of isolated vertices (that have no edges) increased with time in the pure
duplication model, where β = 0. The model was modified to avoid singletons by adding a
fixed number of edges to the new vertex, chosen uniformly at random. They assumed without
any proof that the asymptotic degree distribution exists, and they claimed that it is decaying
polynomially.

Hamdi et al. [11] presented a model where the probabilities of adding a duplicated edge
depends on the state of a hidden Markov chain. Polynomial decay is stated for the limit of the
mean of degree distribution. We also mention the somewhat different model of Jordan [12], and
the duplication model of Cohen et al. [7], where the duplicated vertex is chosen not uniformly,
but with probabilities proportional to the actual degrees.

In our paper we present a simple random graph model based on the duplication of a vertex
chosen uniformly at random, and the erasure of the edges of another vertex also chosen
uniformly at random. We prove that for all d, the proportion of vertices of degree d tends
to some cd with probability 1 as the number of steps goes to ∞. Here cd is a positive number;
we will determine the asymptotics of the sequence (cd) as d → ∞, showing that it has a
stretched exponential decay. Hence, this model does not have the scale-free property. We
use the methods of martingale theory for proving a.s. convergence, and generating function
and Taylor series techniques for deriving the integral representation and the asymptotics of the
sequence (cd).
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2. Definition of the model and main results

Our model starts with a single vertex. The graph evolves in discrete time steps; each step
has a duplication and an erasure part. At each step a new vertex will be born; therefore the
number of vertices after n steps is n + 1. The graph is always a simple graph; it has neither
multiple edges nor loops. At each step we do the following.

Version 1. We choose two (not necessarily different) old vertices independently, uniformly
at random. Then the new vertex is added to the graph; we connect it to the first vertex and to
all its neighbours. After that we delete all edges emanating from the second old vertex we have
selected, with the possible exception that edges of the new vertex cannot be deleted.

Our main results are about the model above. However, in the proofs, we will use a helpful
simplification of this model which is defined as follows.

Version 2. We choose two (not necessarily different) old vertices independently, uniformly
at random. The new vertex is connected to the first one and to its neighbours. Then, we delete
all edges of the second vertex without any exceptions.

That is, the new edges are protected in the erasure part of the same step in version 1, but they
might be deleted immediately in version 2. We will see that the version 2 graph has a simple
structure that enables us to describe its asymptotical degree distribution. Then, using this and
a coupling of the two models, we can prove similar results for version 1.

Let us remark that the presence of deletion makes the analysis more difficult than in the usual
recursive graph models, since it causes intensive fluctuation in the behaviour of the model.

Our model is a type of coagulation–fragmentation model: the effect of duplication is
coagulation, and deletion results in fragmentation. Coagulation–fragmentation models are
frequently used in several areas; see, e.g. [9]. These models have been applied to random graph
models [15], namely, for the Erdős–Rényi model, which is completely different from ours.

The basic property of version 2 is that the evolving graph always consists of separated
complete graphs. That is, it is a disjoint union of cliques. Within a component, every pair of
vertices is connected, and there are no edges between the components. Indeed, we start from
a single vertex, which is a clique of size one, and both duplication and erasure make cliques
from cliques. Moreover, it is easy to see that if we start the model with an arbitrary graph, all
edges of the initial configuration are deleted after a while, and after that the graph will consist
of separated cliques. So the initial configuration does not make any difference asymptotically.

We may formulate the second version as follows. At each step we choose two components
independenty such that the probability that a given clique is chosen is proportional to its size.
The new vertex is attached to the first clique, so its size is increased by 1; the size of the secondly
chosen clique is decreased by 1, and an isolated vertex (the deleted one) comes into existence.
Note that if we choose an isolated vertex to be deleted, then it remains isolated.

This structure of version 2 makes it easier to handle, as the number of d-cliques does not
vary so vehemently as the number of degree d vertices; the fluctuation is bounded by 2. This
will lead to the description of the asymptotic degree distribution of version 1 in an a.s. sense.
Our main results are the following.

Theorem 1. Denote by X[n, d] the number of vertices of degree d after n steps in version 1.
Then

X[n, d]
n + 1

→ cd
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holds a.s. as n → ∞, where (cd) is a sequence of positive numbers satisfying

c0 = 1 + c1

3
, cd = d + 1

2d + 3
(cd−1 + cd+1) for d ≥ 2. (1)

For the asymptotic analysis, we first present an integral representation for the limiting
sequence (cd). As a corollary, it follows that the sum of this sequence is 1; it is really a
probability distribution.

Theorem 2. For the sequence (cd) of Theorem 1, we have

cd = (d + 1)

∫ ∞

0

yde−y

(1 + y)d+2 dy for d ≥ 0

and
∑∞

d=0cd = 1.

Using this equation we can derive the asymptotics of cd .

Theorem 3. For the sequence (cd) of Theorem 1, we have

cd ∼ (eπ)1/2d1/4e−2
√

d as d → ∞.

Our model was devised to ensure high degree clustering. Finally, let us quantify this property.
The local clustering coefficient of a vertex of degree d is defined to be the fraction of

connections that exist between the
(
d
2

)
pairs of neighbours (which means 0 when d < 2). Watts

and Strogatz [21] defined the clustering coefficient of the whole graph as the average of the
local clustering coefficients of all the vertices. Let us call this quantity the average clustering
coefficient. Another possibility for a such a measure is the ratio of three times the number of
triangles divided by the number of connected triplets (paths of length 2); see [20]. This version
is sometimes called transitivity; we will refer to it as the global clustering coefficient.

Since the graph in version 2 consists of disjoint cliques, its global clustering coefficient is
obviously 1, while the average clustering coefficient is equal to the proportion of vertices with
degree at least 2. By Theorem 1 it converges to 1 − c0 − c1 = 2 − 4c0 a.s. as n → ∞. We
note that the limit is equal to 0.385 38 . . . by Theorem 2. These results can be transferred to
version 1.

Theorem 4. In version 1, the global clustering coefficient converges to 1, and the average
clustering coefficient converges to 1 − c0 − c1 a.s. as n → ∞.

The high clustering property of our model shows that it is a so-called small-world graph [21].

3. Proofs

3.1. Preliminaries

First, we formulate the lemma from martingale theory that we will use several times and
whose proof can be found in [1].

Lemma 1. Let (Fn) be a filtration, (ξn) a nonnegative adapted process. Suppose that the
following holds with some δ > 0,

E{(ξn − ξn−1)
2 | Fn−1} = O(n1−δ). (2)

Let (un), (vn) be nonnegative predictable processes such that un < n for all n ≥ 1. Finally,
let (wn) be a regularly varying sequence of positive numbers with exponent μ ≥ −1.
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(i) Suppose that

E{ξn | Fn−1} ≤
(

1 − un

n

)
ξn−1 + vn,

and limn→∞ un = u, lim supn→∞ vn/wn ≤ v with some random variables u > 0,

v ≥ 0. Then

lim sup
n→∞

ξn

nwn

≤ v

u + μ + 1
a.s.

(ii) Suppose that

E{ξn | Fn−1} ≥
(

1 − un

n

)
ξn−1 + vn

and limn→∞ un = u, lim infn→∞ vn/wn ≥ v with some random variables u > 0,

v ≥ 0. Then

lim inf
n→∞

ξn

nwn

≥ v

u + μ + 1
a.s.

3.2. Asymptotic degree distribution in version 2

Recall that in this case the graph is always a disjoint union of complete graphs.
First, we prove the following analogue of Theorem 1.

Proposition 1. Denote by Y [n, k] the number of cliques of size k after n steps in version 2.
Then for all positive integers k, we have

Y [n, k]
n

→ yk a.s. as n → ∞,

where (yk) is a sequence of positive numbers satisfying

y1 = 1 + 2y2

3
, yk = (k − 1)yk−1 + (k + 1)yk+1

2k + 1
for k ≥ 2. (3)

Note that (3) (as well as (1)) is not a recursion. This prevents us proceeding simply in the
usual, direct way, with induction over k.

Proof. For n = 0, we have Y [0, 1] = 1 and all others equal to 0. The total number of
vertices is n after n − 1 steps. Let Fn denote the σ -field generated by the first n steps.

We enumerate the events that can happen to the cliques of different sizes during one step.
At the nth step an isolated vertex may become

• a clique of size 2 (increased but not decreased) with probability (1/n)(1 − (1/n)),

• an isolated vertex (any other cases).

A clique of size k ≥ 2 may become a clique of size

• k − 1 (not increased but decreased) with probability (k/n)(1 − (k/n)),

• k + 1 (increased but not decreased) with probability (k/n)(1 − (k/n)),

• k (any other cases).

The deleted vertex will be a new isolated vertex unless one of them is chosen for erasure but
not for duplication, which has probability (1/n)(1 − (1/n)) for each vertex.
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Putting this together with the fact that the random choices are independent and the proba-
bilities are proportional to clique sizes, we can compute the conditional expectation of Y [n, k]
with respect to Fn−1, which is the σ -field generated by the first n − 1 steps. Thus,

E{Y [n, 1]|Fn−1} = Y [n − 1, 1]
[

1 − 1

n

(
1 − 1

n

)
− 1

n

(
1 − 1

n

)]

+ 1 + Y [n − 1, 2]2

n

(
1 − 2

n

)
,

E{Y [n, k]|Fn−1} = Y [n − 1, k]
[

1 − 2
k

n

(
1 − k

n

)]
+ Y [n − 1, k − 1]k − 1

n

(
1 − k − 1

n

)

+ Y [n − 1, k + 1]k + 1

n

(
1 − k + 1

n

)
for k ≥ 2.

Let Ak = lim infn→∞(Y [n, k]/n) and Bk = lim supn→∞(Y [n, k]/n) for k ≥ 1. It is clear
that 0 ≤ Ak ≤ Bk ≤ 1 holds for these random variables.

We will derive a sequence of lower bounds for (Ak), and, similarly, a sequence of upper
bounds for (Bk); then we will show that their limits are equal to each other. First, let a

(0)
k = 0

for k ≥ 1. Having constructed the sequence (a
(j)
k )k≥1, we define

a
(j+1)
1 = 1 + 2a

(j)
2

3
, a

(j+1)
k = (k − 1)a

(j)
k−1 + (k + 1)a

(j)
k+1

2k + 1
for k ≥ 2. (4)

We obtain a
(j)
k recursively for every k ≥ 1 and j ≥ 1.

We prove by induction on j that a
(j)
k ≤ Ak for k ≥ 1. Since Y [n, k] ≥ 0, this is clear for

j = 0. Suppose that this is satisfied for some j for every k. For k = 1, we apply Lemma 1 with

ξn = Y [n, 1], un = 2 − 2

n
−→ 2, vn = 1 + Y [n − 1, 2]2

n

(
1 − 2

n

)
.

Now, (ξn) is nonnegative adapted. We see that (un) and (vn) are clearly nonnegative
predictable sequences; we can choose wn = 1, μ = 0, u = 2 > 0, and, finally, v =
1 + 2a

(j)
2 ≥ 0 due to the induction hypothesis. Note that at each step at most one of the

isolated points vanishes and at most two may appear. Thus, (2) is clearly satisfied. Lemma 1
implies that

A1 = lim inf
n→∞

Y [n, 1]
n

= lim inf
n→∞

ξn

n
≥ v

u + 1
= 1 + 2a

(j)
2

3
= a

(j+1)
1 a.s.

Similarly, for k ≥ 2 if we have Ak ≥ a
(j)
k for some j ≥ 1, we can choose

ξn = Y [n, k], un = 2k − 2k2

n
−→ 2k, v = (k − 1)a

(j)
k−1 + (k + 1)a

(j)
k+1,

vn = Y [n − 1, k − 1]k − 1

n

(
1 − k − 1

n

)
+ Y [n − 1, k + 1]k + 1

n

(
1 − k + 1

n

)
.

At each step at most three cliques are changed, which implies that (2) holds. Thus, in this case
from Lemma 1, we obtain

Ak = lim inf
n→∞

Y [n, k]
n

≥ v

u + 1
= (k − 1)a

(j)
k−1 + (k + 1)a

(j)
k+1

2k + 1
= a

(j+1)
k a.s.

By induction on j it follows that Ak ≥ a
(j)
k holds a.s. for k ≥ 1 and j ≥ 0.
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Now, we verify that for fixed k the sequence (a
(j)
k ) is monotone increasing in j . Since

a
(0)
k = 0 for every k, from (4) it is clear that a

(1)
k ≥ a

(0)
k . Suppose that for some j ≥ 1, we have

a
(j)
k ≥ a

(j−1)
k for every k. From (4), it follows that

a
(j+1)
1 = 1 + 2a

(j)
2

3
≥ 1 + 2a

(j−1)
2

3
= a

(j)
1 ,

a
(j+1)
k = (k − 1)a

(j)
k−1 + (k + 1)a

(j)
k+1

2k + 1
≥ (k − 1)a

(j−1)
k−1 + (k + 1)a

(j−1)
k+1

2k + 1
= a

(j)
k .

Thus, by induction on j it follows that that a
(j)
k ≥ a

(j−1)
k for k, j ≥ 1.

The sequence (a
(j)
k )j≥0 is uniformly bounded from above by 1, because Ak is at most 1 for

all k (being the the limit inferior of a sequence of certain proportions), and we have proved that
a

(j)
k ≤ Ak holds for all j . Using monotonicity, we define

ak = lim
j→∞ a

(j)
k for k ≥ 1.

From (4), it follows that (ak) satisfies (3), i.e.

a1 = 1 + 2a2

3
, ak = (k − 1)ak−1 + (k + 1)ak+1

2k + 1
for k ≥ 2.

On the other hand, since Ak ≥ a
(j)
k for k ≥ 1 and j ≥ 0, we have Ak ≥ ak a.s.

Similarly, we define b
(0)
k = 1 for every k, and then

b
(j+1)
1 = 1 + 2b

(j)
2

3
, b

(j+1)
k = (k − 1)b

(j)
k−1 + (k + 1)b

(j)
k+1

2k + 1
for k ≥ 2.

Using part (a) of Lemma 1 it follows by induction on j that Bk ≤ b
(j)
k holds a.s.

In this case, for fixed k the sequence b
(j)
k is decreasing, and for the limits bk = limj→∞b

(j)
k ,

we also have

b1 = 1 + 2b2

3
, bk = (k − 1)bk−1 + (k + 1)bk+1

2k + 1
for k ≥ 2.

In addition, Bk ≤ bk a.s. Since b
(0)
k = 1, and the sequence (b

(j)
k ) is decreasing for fixed k, it

follows that bk ≤ b
(j)
k ≤ 1 for every k.

By definition, 0 ≤ Ak ≤ Bk ≤ 1 and 0 ≤ ak ≤ bk ≤ 1 hold. Let dk = bk − ak ≥ 0 for
all k. We have the same equations for (ak) and (bk). This yields

d1 = 2d2

3
, dk = (k − 1)dk−1 + (k + 1)dk+1

2k + 1
for k ≥ 2.

By rearranging, we obtain

d2 = 3

2
d1, dk+1 = (2k + 1)dk − (k − 1)dk−1

k + 1
for k ≥ 2. (5)

Suppose that dk ≥ ((k + 1)/k)dk−1 holds for some k ≥ 2. (For k = 2 this is true with
equality.) Since dk−1 is nonnegative, dk ≥ dk−1 follows also from this assumption. From (5),
we obtain

dk+1 ≥ (k + 2)dk

k + 1
.

Therefore, this inequality holds for every k.
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This implies that dk ≥ (k + 1)d1 for every k. Since 0 ≤ dk = bk − ak ≤ 1, it follows that
d1 = 0.

From (5), we obtain dk = 0 for all k, which implies that ak = bk . Since these were the
lower and upper bounds for the limit inferior and limit superior of Y [n, k]/n, it follws that the
latter must converge a.s. as n → ∞, and the limits satisfy (3).

Corollary 1. In version 2, the proportion of vertices of degree d tends to cd , satisfying (1) a.s.
as n → ∞.

Proof. For a fixed d , we have d + 1 vertices of degree d in each clique of size k = d + 1.
Therefore, the proportion of vertices of degree d tends to (d+1)yd+1 by Proposition 1. From (3),
we obtain

c0 = y1 = 1 + 2y2

3
= 1 + c1

3
cd = (d + 1)yd+1 = d + 1

2d + 3

(
cd−1 + cd+1

)
for d ≥ 2.

3.3. Asymptotic degree distribution in version 1

When proving the results for version 2, we essentially used the property that the graph
consists of a disjoint union of cliques: at most three of the cliques may change at any one step,
but the number of vertices whose degree is changed is not bounded uniformly. However, we
can advance the results by a kind of coupling of versions 1 and 2.

Proof of Theorem 1. In versions 1 and 2, two old vertices were selected with replacement,
independently and uniformly at random. Thus, we can couple the models such that the selected
vertices are the same in all steps. The duplication part is the same for both versions. The
difference is in the deletion: in version 1, the edges of the new vertex cannot be deleted. So
in version 1, we do the following. In the deletion part, we colour an edge red if it is saved
in version 2. That is, if it connects the new vertex with the old vertex to be deleted. In the
duplication part, copies of red edges are also red: if there is a red edge between the duplicated
vertex and one of its neighbours then the new edge connecting this neighbour to the new vertex
is also red. All other new edges are originally black, but they may turn red in the deletion part
of the same step.

The colouring is defined in such a way that the graph sequence of the black edges is a
realization of version 2. Indeed, edges turning red are deleted and, hence, the copies of them
do not appear in this model, but all other edges are black.

Our goal is to prove that the number of vertices having red edges divided by n tends to 0 a.s.
This implies that the results of Corollary 1 hold for version 1 as well.

First, we need an upper bound for the total number of edges.

Lemma 2. Denote by Sn the number of edges (both black and red) after n steps in version 1.
Then for all ε > 0, we have Sn = O

(
n log1+ε n

)
with probability 1.

Proof. Let δn = Sn − Sn−1. As before, Fn denotes the σ -field generated by the first n

steps, and X[n, d] is the number of vertices of degree d after n steps. Let Un, respectively Vn,
denote the degree of the old vertex selected for duplication, respectively deletion, at step n.
The new vertex is connected to the duplicated vertex with an edge that cannot be deleted; this
increases the number of edges by 1 for sure. Thus, δn = Un − Vn + 1. Clearly, Un and Vn

are conditionally independent and indentically distributed (i.i.d.) with respect to Fn−1, hence,
Sn − n = ∑n

j=1(δj − 1) is a zero mean martingale. Consequently, ESn = n for every n.
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Clearly,

E{|δn − 1| | Fn−1} ≤ 2E{Un | Fn−1} =
n∑

d=0

X[n − 1, d]
n

d = 2Sn−1

n
.

Hence,

E

{ ∞∑
n=2

|δn − 1|
n log1+ε n

}
< ∞,

therefore, the series
∞∑

n=2

δn − 1

n log1+ε n

is convergent with probability 1. Then Kronecker’s lemma [16, Lemma IV.3.2] implies that

Sn − n

n log1+ε n
→ 0 a.s. as n → ∞.

Now we will colour some of the vertices red in such a way that the remaining black vertices
cannot have any red edges. We will be able to provide an upper bound for the number of red
vertices.

At the duplication step the new vertex becomes red if and only if the duplicated vertex is red.
If this old vertex is black and has no red edges then the same holds for the new vertex at that
moment. After that if there is an edge between the new vertex and the deleted vertex this edge
may turn red, as we defined above. We colour both endpoints of this new red edge red. On the
other hand, if the old vertex chosen for deletion loses all its edges then its new colour will be
black. Note that black vertices still have only black edges, but it may happen that an old vertex
has only one red edge which is deleted, because its other endpoint is chosen for deletion; in
this case the vertex stays red without having any red edges.

The proof continues with giving an upper bound for the number of red vertices.

Lemma 3. Denote by Zn the number of red vertices after n steps. Then for all ε > 0, we have
Zn = O(log2+ε n) a.s.

Proof. At each step, every old vertex has the same probability to be duplicated or deleted.
If a red vertex is duplicated, then the new vertex becomes red; if it is deleted, then Zn decreases
by 1 unless the deleted vertex is connected to the new one which turns this edge red. Therefore,
without the exceptional new red edge, the conditional expectation of Zn with respect to Fn−1
would equal Zn−1. The deleted vertex and the new vertex are connected if and only if the deleted
and duplicated vertices are identical or they are connected to each other. Since we carried out
sampling with replacement, the probability of the first event is 1/n; while the probability of
the second event is 2Sn−1/n2. In the first case, the new vertex is red originally, but the other
vertex stays red instead of turning back to black when deleted; Zn is increased by an extra 1.
In the other case, both endpoints of the edge turning red may be also red vertices. To sum up,
we obtain

E{Zn | Fn−1} ≤ Zn−1 + 1

n
+ 4

Sn−1

n2 .

Set ηn = Zn − Zn−1. With this notation

E{ηn | Fn−1} ≤ 1

n
+ 4

Sn−1

n2 . (6)

We have already shown that ESn−1 = n − 1, hence, Eηn ≤ 5/n, and EZn = O(log n).
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Note that the number of red vertices cannot change by more than three at a single step,
because if an old vertex is neither deleted, nor duplicated, it cannot be coloured red. Hence,
|ηn| ≤ 3 for all n. Moreover, we can provide an upper bound on the probability that the number
of red vertices changes at step n. Namely, it can change only if

• we duplicate and delete the same vertex; this has (conditional) probability 1/n,

• the duplicated and the deleted vertices are connected to each other; this has probability
2Sn−1/n2, because there are Sn−1 edges,

• a red vertex is duplicated; this has probability Zn−1/n,

• a red vertex is deleted; this has probability Zn−1/n.

Thus,

P{Zn 	= Zn−1 | Fn−1} ≤ 1

n
+ 2

Sn−1

n2 + 2
Zn−1

n
. (7)

Therefore,

E|ηn| ≤ 3P{Zn 	= Zn−1} = O
( log n

n

)
,

which implies that

E

{ ∞∑
n=2

|ηn|
log2+ε n

}
< ∞.

The proof can be completed with the help of Kronecker’s lemma, as in the proof of Lemma 2.

Now we can complete the proof of Theorem 1.

Proof of Theorem 1. The total number of vertices is n+1 after n steps, hence the proportion
of red vertices converges to 0 a.s. as n → ∞. Since we defined the colours in such a way that
red edges are exactly the edges that are present in version 1 but not present in version 2, and
only red vertices may have red edges, it follows that the proportion of vertices having different
degree in the two versions converges to 0. Corollary 1 states that for every d the proportion
of vertices of degree d in version 2 converges a.s. to cd . Now the same follows for version 1,
which is the statement of Theorem 1.

Remark 1. We could have provided an upper bound for the conditional expectation of the
number of red edges. The advantage of using red vertices is the uniform bound on the total
change in their number; there is no such bound for the change in the number of red edges.

Remark 2. It follows that version 1 has a quite specific structure: it consists of cliques that
are connected with relatively few edges (those are coloured red). An edge can be red only if
both its endpoints are red, hence Lemma 3 provides an O(log4+ε n) bound for the number of
red edges.

This is not sharp; however, the estimates of Lemmas 2 and 3 can be further improved, which
might be, as pointed out above, of independent interest. Thus, before turning to the proof of
Theorem 2, we present the following improvement.

Proposition 2. We have Sn ∼ n a.s. In addition, Zn = O(log1+ε n) for every ε > 0 a.s. as
n → ∞.

Proof. First, we provide a crude bound for the maximal degree Mn = max{d : X[n, d] > 0}.
According to Lemma 2, Sn = O(n log1+ε n) holds also for the number of edges in version 2.
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Since a clique of size k contains
(
k
2

)
edges it follows that the size of the maximal clique

is O(n1/2+ε). The same holds for the maximal degree in version 2; and, by Lemma 3, in
version 1. Thus, Mn = O(n1/2+ε) for every ε > 0.

Next, consider the martingale Sn −n = ∑n
j=1(δj −1) from the proof of Lemma 2. In order

to prove that Sn − n = o(γn) for a positive increasing predictable sequence (γn) it is sufficient
to show that ∞∑

n=1

γ −2
n E{(δn − 1)2 | Fn−1} < ∞

with probability 1 (see [16, Theorem VII.5.4]). To this end, we need to estimate the conditional
variance of the martingale differences.

var(δn − 1 | Fn−1) = 2 var(Un | Fn−1)

≤ 2E{U2
n | Fn−1}

= 2
n∑

d=1

X[n − 1, d]
n

d2

≤ 2

n
Mn−1

n∑
d=1

X[n − 1, d]d

= 2

n
Mn−1Sn−1

= O(n1/2+ε)

for every positive ε. Hence,

∞∑
n=1

E{(δn − 1)2 | Fn−1}
n3/2+ε

< ∞,

implying that
Sn − n = o(n3/4+ε).

Thus, Sn ∼ n a.s.
Finally, let us consider the martingale ζn = ∑n

j=1(ηj − E{ηj | Fj−1}), where ηn = Zn −
Zn−1, and derive an upper bound for the conditional variance of the differences. Keeping in
mind that |ηn| ≤ 3 and using (7), we have

E{(ζn − ζn−1)
2 | Fn−1} = var(ηn | Fn−1)

≤ E{(Zn − Zn−1}2 | Fn−1)

≤ 9P{Zn 	= Zn−1 | Fn−1}
≤ 9

(
1

n
+ 2

Sn−1

n2 + 2
Zn−1

n

)

= O

(
1 + Zn−1

n

)
.

Now suppose that Zn = O(logα n) is satisfied for some α > 0. Then

E{(ζn − ζn−1)
2 | Fn−1} = O

(
logα n

n

)
.
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Hence,
∞∑

n=2

E{(ζn − ζn−1)
2 | Fn−1}

logα+1+ε n
< ∞

with probability 1. Again, by [16, Theorem VII.5.4], we have

ζn = o(log(α+1)/2+ε) a.s. (8)

for every positive ε.
Clearly,

Zn =
n∑

j=1

ηj = ζn +
n∑

j=1

E{ηj | Fj−1},

where the last sum can be estimated with the help of (6) in the following way. Since Sn−1 ∼ n,
we have E{ηn | Fn−1} = O(1/n). Hence,

n∑
j=1

E{ηj | Fj−1} = O(log n).

This, combined with (8) proves that Zn = O(log(α+1)/2+ε) holds a.s. for all ε > 0. Using
Lemma 3, we can start from α = 2+ε and repeating the argument we arrive at the a.s. estimation
Zn = O(log1+ε) for all ε > 0.

Proof of Theorem 2. Let G(z) denote the generating function of the sequence (cd), i.e.

G(z) =
∞∑

d=0

cdzd, |z| ≤ 1.

Multiplying (d + 1)(cd−1 + cd+1) = (2d + 3)cd by zd then summing from d = 1 to ∞ and
using the fact that c0 = (1 + c1)/3, we obtain an inhomogeneous linear differential equation
for G(z).

(1 − z)2G′(z) = (3 − 2z)G(z) − 1, G(0) = c0.

Solving this equation we obtain the following expression:

G(z) = c(z)

(1 − z)2 exp

(
z

1 − z

)
,

where

c(z) = c0 −
∫ z

0
exp

(
− y

1 − y

)
dy.

By definition, cd is the a.s. limit ofX[n, d]/(n+1), which is the proportion of vertices of degreed

after n steps. Hence, for each fixed D, we have
∑D

d=0cd = limn→∞
∑D

d=0X[n, d]/(n+1) ≤ 1.
This implies that G(1) = ∑∞

d=0cd ≤ 1. It follows that

c0 =
∫ 1

0
exp

(
− y

1 − y

)
dy,

hence, via the substitution x = 1 − y,

c(z) =
∫ 1

z

exp

(
− y

1 − y

)
dy =

∫ 1−z

0
exp

(
1 − 1

x

)
dx.
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Thus, we have

G(z) =
∫ 1−z

0
exp

(
1 − 1

x

)
dx

1

(1 − z)2 exp

(
z

1 − z

)
,

from which, by substituting y = 1/x − 1/(1 − z), we obtain

G(z) =
∫ ∞

0

e−y

(1 + (1 − z)y)2 dy

=
∫ ∞

0

e−y

(1 + y)2(1 − z(y/(1 + y)))2 dy

=
∫ ∞

0

∞∑
d=0

(d + 1)
zdyd e−y

(1 + y)d+2 dy

=
∞∑

d=0

zd (d + 1)

∫ ∞

0

yde−y

(1 + y)d+2 dy, (9)

completing the proof of the first statement of the theorem.
In addition, note that the first equality of (9) immediately implies that

∑∞
d=0cd = G(1) = 1.

Proof of Theorem 3. In order to approximate the integral of Theorem 2, we first analyse the
behaviour of the integrand around the point where it attains its maximum. Let

yd = arg max
yde−y

(1 + y)d+2 = arg max f (y),

where
f (y) = d log y − (d + 2) log(1 + y) − y.

Clearly,

f ′(y) = d

y
− d + 2

y + 1
− 1 = −y2 + 3y − d

y(y + 1)
,

f ′′(y) = − d

y2 + d + 2

(y + 1)2 = 2y2 − 2dy − d

y2(y + 1)2 , f ′′′(y) = 2d

y3 − 2(d + 2)

(y + 1)3 .

Since yd satisfies f ′(yd) = 0, we obtain

yd = − 3
2 +

√
d + 9

4 = √
d − 3

2 + o(1).

We introduce the new variable t = t (y) = y
−1/2
d (y − yd), i.e. y = yd + y

1/2
d t . This will turn

out to be useful, because the function f is concentrated around yd of the order of y
−1/2
d (which

is just d−1/4); i.e. f (yd + y
1/2
d t) converges as d goes to ∞. Then

g(t) := f (y) − f (yd) = yd

2
f ′′(yd + θy

1/2
d t)t2,

where θ = θ(d, t) belongs to the interval [0; 1]. For every fixed t ,

f ′′(yd + θy
1/2
d t) ∼ −2y−1

d ,

thus, g(t) → −t2 as d → ∞. Moreover, for y ≤ yd , i.e. for y
1/2
d ≤ t ≤ 0, we have f ′(y) ≥ 0.
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Thus, d/y−(d+2)/(y+1) > 0 holds, and after rearranging, we obtain (d+2)/d < (y+1)/y.
This yields (d + 2)/d < (y + 1)3/y3 is satisfied, which implies that f ′′′(y) ≥ 0. Hence,

g(t) ≤ yd

2
f ′′(yd)t2 = adt2,

where ad → −1, as d → ∞. On the other hand, let yd ≤ y ≤ (3/2)yd , i.e. 0 ≤ t ≤ (1/2)y
1/2
d .

In this domain f ′′′ is increasing, hence, f ′′′(y) ≤ f ′′′(yd) ∼ 6dy−4
d ∼ 6d−1. Thus,

g(t) ≤ yd

2
f ′′(yd)t2 + 1

6
y

3/2
d f ′′′(yd)t3 ≤

(
yd

2
f ′′(yd) + y2

d

12
f ′′′(yd)

)
t2 = bdt2,

where bd → − 1
2 as d → ∞.

Thus, by the dominated convergence theorem,

∫ 3yd/2

0
ef (y) dy = y

1/2
d

∫ (1/2)y
1/2
d

−y
1/2
d

exp(f (yd) + g(t)) dt

∼ y
1/2
d exp(f (yd))

∫ +∞

−∞
exp(−t2) dt

= √
πy

1/2
d exp(f (yd)).

We have

f (yd) = −2 log yd − (d + 2) log

(
1 + 1

yd

)
− yd,

and

(d + 2) log

(
1 + 1

yd

)
= (d + 2)

(
1

yd

− 1

2y2
d

)
+ o(1)

= yd + (d + 2)(2yd − 1) − 2y3
d

2y2
d

+ o(1)

= yd + (y2
d + 3yd + 2)(2yd − 1) − 2y3

d

2y2
d

+ o(1)

= yd + 5y2
d + yd − 2

2y2
d

+ o(1),

where we used the fact that y2
d + 3yd = d . Thus,

f (yd) = −2 log yd − 2yd − 5
2 + o(1) = −2 log yd − 2

√
d + 1

2 + o(1).

Finally,

∫ ∞

3yd/2
ef (y) dy ≤ (2yd)−2

∫ ∞

3yd/2

(
1 − 1

1 + y

)d

e−yy.

≤ (2yd)−2
∫ ∞

3yd/2
exp

(
− d

y + 1
− y

)
dy.
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The exponent on the right-hand side can be estimated with the help of the inequality of arithmetic
and geometric means as follows:

− d

y + 1
− y = − d

y + 1
− y + 1

2
− y − 1

2
≤ −√

2d − y − 1

2
.

Hence,
∫ ∞

3yd/2
ef (y) dy ≤ (2yd)−2 exp

(−√
2d + 1

2 − 3
4yd

) = o
(
y−2
d exp

(−2
√

d
))

.

From all these, we obtain

cd = (d + 1)

∫ ∞

0
ef (y) dy ∼ (eπ)1/2d1/4e−2

√
d

as claimed.

Proof of Theorem 4. Black vertices have the same local clustering coefficient in both ver-
sions. Since the proportion of red vertices tends to be negligible as n → ∞, the limit of the
average clustering coefficient is also the same in both versions. The global clustering coefficient
of version 2 is identically equal to 1. In its defining fraction the numerator and the denominator
are proportional to n. When turning to version 1 the denominator has to be increased by the
number of triplets containing at least one red edge. Such a triplet must have a red central vertex
and at least one more red vertex. Hence, the increment of the denominator cannot exceed
MnZ

2
n, where Mn denotes the maximal degree, and Zn the number of red vertices. In the

proof of Proposition 2, we have shown that Mn = O(n1/2+ε) and Zn = O(log1+ε n), thus, the
increment of the denominator is asymptotically negligible with respect to n. Hence, the global
clustering coefficient of version 1 must converge to 1.
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