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The aeroacoustic characteristics of flying vehicles with pitch-fixed rotors differ from
traditional helicopters with pitch-controlled rotor blades. Accurate predictions of rotor
noise are still challenging because many uncertainty factors and unsteadinesses exist.
This work investigates the aeroacoustic effects of rotational speed deviation, rotation
speed fluctuation, blade vibration and blade geometric asymmetry. The analysis is based
on the efficient computation of rotor noise under different working conditions. The
mean aerodynamic variables are computed using the blade element moment theory,
while small-amplitude fluctuations are introduced to account for the unsteadiness and
uncertainty factors. It is shown that periodic rotation speed fluctuations and blade
vibrations can produce significant extra tones. By contrast, if the fluctuations and
vibrations are random, the noise level in a wide frequency range is increased. The
intriguing result reminds us of the need to revisit the rotor broadband noise sources
commonly attributed to turbulent flows. The influences are observer angle dependent, and
the extra noise production is more significant in the upstream and downstream directions.
The asymmetric blade geometry can cause extra tonal noise at the harmonics of the blade
shaft frequency. The noise features of dual rotors are also investigated. Usually, the noise is
sensitive to the initial phase difference and rotation directions due to the interference effect.
However, the noise features are vastly altered if there are slight differences in the rotation
speeds. Although the influences of some factors on rotor noise were already known, the
present study provides a more comprehensive analysis of the problem. The results also
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highlight the need to consider these practical factors for accurate noise prediction of
multi-rotor flying vehicles.
Key words: aeroacoustics

1. Introduction

In the last decade, small-sized drones have been rapidly developed and widely employed
in many civilian applications (Floreano & Wood 2015; Yao, Wang & Su 2016). With the
tremendous success of the relevant industry and applications of drones, the development of
urban air mobility vehicles with larger sizes and weights has attracted interest (Rajendran
& Srinivas 2020; Donateo et al. 2021). However, one likely limiting factor of the
development will be the annoying noise pollution during operations of the vehicles in
urban regions (Al Haddad et al. 2020; Watkins et al. 2020). Multiple rotors are often
used in these vehicles to provide the needed forces and to realise manoeuvred flights.
Consequently, the rotor operations can generate significant aerodynamic noise containing
tonal and broadband contents.

Many studies have been conducted to understand the mechanisms of rotor noise
generation. A few pioneering and landmark studies linking noise emission with
aerodynamic flow variables were performed by Gutin (1948), Deming (1937), Deming
(1940), Arnoldi (1956), Lowson (1965), Lowson & Ollerhead (1969), Garrick & Watkins
(1953) and Hubbard (1953), among others. A systematic approach to analysing the
rotor noise is based on an acoustic analogy, which was initiated by Lighthill (1952)
in unbounded flows and extended to problems with static boundaries by Curle (1955)
and moving surfaces by Ffowcs Williams & Hawkings (1969) (FW-H). At low Mach
numbers, the dominant noise sources are thickness noise and loading noise (Brentner &
Farassat 1998). In the presence of background mean flows, Goldstein (1974) proposed
an acoustic analogy with an inhomogeneous convected wave equation, which was the
basis for the rotor noise prediction model by Hanson & Parzych (1993). The noise sources
estimations were based on flow velocities and loadings on the blade surfaces, which can
be obtained from computational fluid dynamics or computational aeroacoustics (CAA).
Notably, near-field aerodynamic flows are resolved and employed as inputs of the surface
integration to compute sound at given observers (Jiang & Zhang 2022). Usually, off-body
integral solutions can suffer from spurious wave contamination if turbulent fluctuations
pass through the integration surface (Wright & Morfey 2015), which was investigated in
several recent studies (Shur, Spalart & Strelets 2005; Ikeda et al. 2013; Zhong & Zhang
2017, 2018).

However, rotor noise study is still challenging because the flow states are complex. Flow
transitions can exist because of considerable differences in the Reynolds number from
rotor tips to hubs. In addition, a tip vortex is formed on the pressure side of the rotor
blade, rolled up to the suction side and eventually shed from the surface. The shedding
frequency also depends on the total velocity and blade thickness (Kurtz & Marte 1970;
Hubbard, Lansing & Runyan 1971). The tip vortex shedding can cause unsteady surface
pressure and, therefore, significant noise generation (Preisser, Brooks & Martin 1994; Kim,
Park & Moon 2019). The process is also influenced by the induced velocity of the vortex
passing by the tip (George & Chou 1986; Preisser et al. 1994; Yung 2000). Moreover,
in flight conditions, the vortex shed from a blade interacting with the adjacent blades can
produce significant noise (Yung 2000) with varying directivity and strength (Splettstoesser
et al. 1997). For small-sized drone rotors, experiments are essential, and various studies
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Unsteady and uncertain rotor noise

have been conducted (Sinibaldi & Marino 2013; Zawodny, Boyd & Burley 2016; Ning,
Wlezien & Hu 2017; Zhou & Fattah 2017; Fattah et al. 2019; Wu et al. 2020; Bu et al.
2021). However, there is an issue that the results are often laboratory dependent because
the noise measurements are sensitive to various factors (Wu et al. 2022). For example, in
confined chambers, the noise measurements can suffer from the flow recirculation effect
(Stephenson, Weitsman & Zawodny 2019). There are other sources of uncertainty and
unsteady factors due to the rotor motion and actual flying (Xu et al. 2020).

This study aims at understanding the influence of various unsteady and uncertain factors,
which can present in practice, on rotor noise emission. The acoustic impact of some factors
was partly known in the past, but a comprehensive analysis using a unified framework
is still favoured. First, in practical applications, the torque ripples of electric motors (to
drive the rotors) can cause rotation speed fluctuation (Islam et al. 2007), which was shown
to significantly affect drone noise (Kim et al. 2021). The key reason is that the temporal
variations of rotational speed can substantially increase the noise level (Wright 1971; Mani
1990) and alter noise spectra (Tinney & Sirohi 2018; McKay & Kingan 2019). Moreover,
unsteadiness is inevitable in practical flying vehicles since the rotor speeds are adjusted
by the real-time flight control (Davoudi et al. 2020; Djurek et al. 2020). Second, the rotor
blades may experience oscillation (Marqués & Da Ronch 2017), which is common for
helicopters with pitch control mechanisms and an aeroelastic effect (Leishman 2006). For
fixed-pitch rotors for drones, vibration can exist due to the use of light and cost-effective
materials. Notably, the flexibility of rotor blades can cause coupled oscillations (Biot
1940), which has been noticed for drone applications (Niemiec & Gandhi 2017; Nowicki
2017; Kuantama et al. 2021; Semke, Zahui & Schwalb 2021; Niemiec, Gandhi & Kopyt
2022). The effect of flow-induced vibrations is also an active research area for marine
propellers (Tian et al. 2017). However, the corresponding aeroacoustic studies are rare.
Last, the inevitable manufacturing tolerance, wear and looseness in practical applications
can cause the long-standing problem of mass imbalance and aerodynamic asymmetry
of rotor blades (Best 1945; Darlow 2012; Huo et al. 2020). The imbalance can result
in structural vibration and extra noise generation (Altinors, Yol & Yaman 2021; Semke
et al. 2021). For drones, many studies have been conducted to detect and control the rotor
imbalance effect (Bondyra et al. 2017; de Jesus Rangel-Magdaleno et al. 2018; Ghalamchi,
Jia & Mueller 2019; Iannace, Ciaburro & Trematerra 2019). Despite the (possibly) small
amplitudes of these uncertainties and unsteadiness, the noise features will be significantly
altered as sound contains only a tiny portion of the fluid energy.

It is difficult to quantify the effect of each factor experimentally because various
mechanisms can coexist and be coupled in practice. Different factors can lead to similar
impacts, making the exact causes indistinguishable. Capturing the instantaneous rotation
speed variation and blade vibrations is also challenging for the instruments. Therefore,
it is vital to understand the influence of each factor using more controllable approaches.
In this view, high-fidelity numerical simulations could be helpful but are still too costly
for parametric study. Therefore, theoretical analysis is still favoured to understand the
key acoustic characteristics with various unsteady and uncertainty factors. The efficient
computations using a unified framework will be helpful for more accurate and reliable
noise assessment in complex working conditions.

For rotor noise prediction, Hanson & Parzych (1993) developed a frequency-domain
model incorporating unsteady motions. Based on the model, Zhong et al. (2020)
showed that periodic fluctuations can significantly increase the tonal noise levels at high
frequencies. However, it only explained the behaviours of tones at harmonics of the
blade passing frequency (BPF). For more generic applications, the unsteady motions
might be transient and random, suggesting that noise computations based on time-domain
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formulations will be more convenient. Like other aeroacoustic problems, rotor noise
computation (Farassat 1981, 1986; Farassat & Brentner 1988; Farassat, Dunn & Spence
1992; Casalino 2003) can be based on the integral solution of the FW-H equation,
especially the widely used Farassat formulation 1A (Farassat & Succi 1980). However,
most of the studies were conducted for rotors with constant rotation speed, even though
unsteady flows were considered (Gennaretti, Testa & Bernardini 2013). For unsteady
manoeuvres, e.g. in the helicopter noise study by Gennaretti et al. (2015), a nonlinear
equation was solved to estimate the time delay that is dependent on observer location,
flight trajectory and blade kinematics. For rotors experiencing unsteady motion, evaluating
the retarded time with the temporally varied source locations is difficult. This work will
make efforts to ease the computations to facilitate the parametric studies.

In the following, § 2 introduces the rotor noise computation formulations with the
unsteady motions and uncertainties considered. Section 3 presents verification and
validation of the computation model, followed by the parametric study of rotation speed
variation, blade vibration and asymmetry effects. Section 4 discusses the aeroacoustic
influence on dual rotors, and § 5 is the summary.

2. Formulations for rotor noise computation

In this work, we start from the acoustic analogy by Goldstein (1974) to compute the rotor
aerodynamic noise generation(

1
a2∞

D2

D t2
− ∇2

) [
p′H( f )

] = D

D t

[
Qδ( f )

]− ∂

∂xi

[
Liδ( f )

]+ ∂2

∂xi∂xj

[
T ijH( f )

]
, (2.1)

where p′ is sound pressure, a∞ is speed of sound, u∞ is the oncoming flow velocity and
D/D t = ∂/∂t + u∞ · ∇ is the material derivative. Also, δ( f ) and H( f ) are the Dirac-δ
function and Heaviside function with the argument of f (x(t)) = 0 defining the blade
surface geometry. The normal vector of the blade surface is n = ∇f , and the location
x(t) satisfying f (x(t)) = 0 varies in time due to the blade rotation. The tensor T ij is
represented as T ij = ρuiuj + [( p − p∞) − c2∞(ρ − ρ∞)]δij − σij, where ρ, p and u are the
density, pressure and flow velocity. The subscript ( · )∞ means the variables in the uniform
medium, δij is the Kronecker-δ function and σij is the viscosity tensor. Further, ∂2T ij/∂xi∂xj
corresponds to the quadrupole noise source and can be omitted at low Mach numbers.
Usually, ui, p and σij can be obtained by high-fidelity numerical simulations to evaluate
Li, corresponding to the aerodynamic loadings. However, for fast noise estimation, Li
can be approximated as the aerodynamic forces acting on the blade surfaces. Finally,
Q = [ρ(uj + u∞,j − vj) + ρ∞(vj − u∞,j)]nj corresponds to the thickness noise, and vj
denotes velocity of the blade surface. At low Mach numbers, ρ ≈ ρ∞ such that

Q ≈ ρ∞ujnj. (2.2)

2.1. Solution for rotor noise with unsteady motions
In this section, we introduce the solution to (2.1) for a rotor noise computation with the
unsteady factors considered. Figure 1 illustrates the coordinates for both the observers x =
(x1, x2, x3) and source points y = ( y1, y2, y3). The two coordinate systems are aligned,
( · )1 is in the axial direction, and ( · )2 corresponds to the direction when the rotation
phase angle φ = 0. An observer described in the Cartesian system is related to the observer
distance ro, azimuthal angle ϕ and polar angle θ as

x1 = ro cos θ, x2 = ro sin θ cos ϕ, x3 = ro sin θ sin ϕ. (2.3a–c)
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The source point is linked to the radial location η and phase angle φ as

y1 = y1, y2 = η cos φ, y3 = η sin φ. (2.4a–c)

Equation (2.1) can be solved by using the Green’s function (Blokhintzev 1946;
Najafi-Yazdi, Brès & Mongeau 2011)

G(x, t; y, τ ) = δ(g)

4πR
= δ(t − τ − R/a∞)

4πR
, where g = t − τ − R

a∞
, (2.5)

where t and τ are the observer and source times. The two distances R and R are

R = β
√

r2 + (αM∞ · r)2, R = α2(R − M∞ · r), (2.6)

where r = |r| = |x − y|, α = 1/β, β =
√

1 − |M∞|2 and M∞ = u∞/a∞. The spatial
derivatives of R and R are computed

R̃i = ∂R

∂xi
= ri + α2(M∞ · r)M∞,i

α2R
, R̃i = ∂R

∂xi
= α2(R̃i − M∞,i). (2.7)

Then the sound pressure at the observer x and time t is computed as

p′(x, t) = ∂

∂t

∫ t

−∞

∫
R3

Qδ(g)δ( f )
4πR

dy dτ − ∂

∂xi

∫ t

−∞

∫
R3

(Li − u∞,iQ)δ(g)δ( f )
4πR

dy dτ.

(2.8)
By using the property of the δ( f ), each spatial integration in R3 will be reduced to a
surface integration on f = 0, i.e. (2.8) is written as

p′(x, t) = ∂

∂t

∫ t

−∞

∫
f =0

Qδ(g)

4πR
dS(y) dτ − ∂

∂xi

∫ t

−∞

∫
f =0

(Li − u∞,iQ)δ(g)

4πR
dS(y) dτ.

(2.9)

In the second term, spatial derivatives ∂/∂xi are applied to the computed integration term,
which are undesired in practical applications. Fortunately, using the chain rule, we have
(see also Brentner & Farassat 2003; Zhong & Zhang 2017)

∂

∂xi

(
δ(g)

R

)
= − 1

a∞
∂

∂t

(
R̃iδ(g)

R

)
− R̃i

R2 δ(g). (2.10)

Therefore, the solution for p′(x, t) is written as

p′(x, t) = ∂

∂t

∫ t

−∞

∫
f =0

{
Q + (Li − u∞,iQ)R̃i/a∞

4πR

}
δ(g) dS(y) dτ

+
∫ t

−∞

∫
f =0

{
(Li − u∞,iQ)R̃i

4πR2

}
δ(g) dS(y) dτ. (2.11)

The argument of the δ-function g = t − τ − R/a∞ is a smooth function of the source
time τ . By using the composition rule of the Dirac-δ function, i.e. by making a change of
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Rotor plane 0

x3

x1

x2

r0

x

y3

y2

θ
y1

η φ

Wake
ϕ

Figure 1. A schematic of the coordinate systems of the observer x and source points y.

variables from τ to g, the temporal integrations in (2.11) can be reduced to only evaluating
values of the remaining terms when g = 0, i.e.

p′(x, t) = ∂

∂t

∫
f =0

[
Q + (Li − u∞,iQ)R̃i/a∞

4πR|∂g/∂τ |

]
∗

dS(y)

+
∫

f =0

[
(Li − u∞,iQ)R̃i

4πR2|∂g/∂τ |

]
∗

dS(y), (2.12)

where [·]∗ means the values are evaluated at the retarded time τ = τ∗ = t − R/a∞.
Equation (2.12) is the integral solution to the acoustic analogy that considers the
convection effect of oncoming flows. Similar processes in deriving the solution were also
employed in several previous aeroacoustic studies (Najafi-Yazdi et al. 2011; Ghorbaniasl,
Siozos-Rousoulis & Lacor 2016; Zhong & Zhang 2017). For rotor noise, a remaining
difficulty is considering the influences of unsteady motions in estimating the retarded
time and |∂g/∂τ |. In this case, the rotation phase angle φ of a point on the blade can
be computed as

φ(τ) = φ0 +
∫ τ

0
Ω(s) ds, (2.13)

where φ0 is the initial value, and Ω is the time-dependent rotational speed. From (2.4a–c),
the temporal derivative of y2 = η cos φ(τ) with respect to τ is

∂y2

∂τ
= −η sin φ

∂

∂τ

[
φ0 +

∫ τ

0
Ω(s) ds

]
= −Ωη sin φ(τ) = −Ωy3. (2.14)

Similarly, we have ∂y3/∂τ = Ωy2. Then, |∂g/∂τ | is evaluated as∣∣∣∣ ∂g
∂τ

∣∣∣∣ = 1 + 1
a∞

∂R
∂yi

∂yi

∂τ
= 1 + 1

a∞

[
R̃1v1 − Ω(R̃2y3 − R̃3y2)

]
, (2.15)

where v1(τ ) is the vibration speed of the blade in the axial direction, and the effects of
unsteady motion are explicitly written as functions of Ω and the local coordinates y2 and
y3, making it easy to evaluate the impact of each factor on noise radiation.
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Wake

y1

y3

u θc

v

h

FD

FL

F1

αi
Φ

Fφ

y2

η

φ

(b)(a)

Figure 2. An illustration of the variables for rotor noise source estimation. (a) Rotor coordinate system.
(b) Variables on a section.

There are several differences between (2.12) and the widely used Farassat formulation
1A (Farassat & Succi 1980). First, the convected wave equation accounts for the convection
effect of oncoming flows. Second, the temporal derivative to the observer time t is kept
in (2.12) to simplify the overall computation. Third, the term 1/|∂g/∂τ | corresponding to
the Doppler effect is explicitly expressed in the source coordinates, making it convenient
to account for the impact of non-uniform rotational speed and blade vibration. A remark
on the numerical implementation considering the challenges due to unsteady motions is
given in Appendix A.

2.2. Estimating the source terms
Section 2.1 presents the mathematical framework of rotor noise computation with the
effects of unsteady motions incorporated. To compute the rotor noise, we need to evaluate
Q and Li at each surface point. An approach to computing the flow variables is to use
high-fidelity numerical simulations, which, however, are too expensive for the parametric
study of the influential factors. Nevertheless, in this work, CAA simulations will also be
conducted for validation.

A reduced-order approach to computing the rotor noise source is the mean surface
method (Hanson & Parzych 1993; Zhong et al. 2020). An illustration of the coordinate
system and blade section elements is presented in figure 2. The rotor blade (the phase
angle is φ) is divided into various small segments in the radial direction, and the width is
dη. At each section, we assume the flow is two-dimensional, and the axial and azimuthal
velocities are u and v, respectively. Here, u contains the inflow projection and induced flow
in the axial direction and v contains inflow projection, blade rotation and induced flow in
the tangential direction. Then, the term Q dS in (2.12) can be estimated as

Q dS = ρ∞u · n dS. (2.16)

In the mean surface method (Hanson & Parzych 1993; Zhong et al. 2020), the projection
of u on the normal vector n is linked to the local pitch angle θc and thickness h as

Q dS = ρ∞[u sin θc + v cos θc] dη dh, (2.17)

where dh is the variation of blade thickness in the chord direction.
The aerodynamic loading acting on the blade surface will contribute to Li. For each

section shown in figure 2, the forces per unit area in the axial and azimuthal directions are
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denoted as F1 and Fφ , respectively. The projections in the y-coordinate are

L1 = −F1, L2 = ζFφ sin φ, L3 = −ζFφ cos φ, (2.18a–c)

where ζ = 1 if the blade rotates in the anti-clockwise direction and ζ = −1 otherwise. As
shown in figure 2, the angle of total velocity with the rotation plane is denoted as Φ. Then
the equivalent angle of attack αi is computed as

αi = θc − Φ. (2.19)

Under the assumption that the sectional flow is two-dimensional, at the given αi and
Reynolds number (based on the velocity and chord length), the lift and drag are computed
as

FL = ρ∞(u2 + v2)

2
CL, FD = ρ∞(u2 + v2)

2
CD, (2.20a,b)

where CL and CD are the lift and drag coefficients. As shown in figure 2(b), FL and FD
are perpendicular and parallel to the total velocity that has an angle of Φ to the rotational
plane. Then the force projections in the axial and azimuthal directions are

F1 = ρ∞(u2 + v2)

2
(CD sin Φ − CL cos Φ), Fφ = ρ∞(u2 + v2)

2
(CL sin Φ + CD cos Φ),

(2.21a,b)

which are substituted to (2.18a–c) to estimate Li, and LidS is computed as

Li dS ≈ Lic dη, (2.22)

where c is the chord length.

2.3. Incorporating the effects of unsteady motions and uncertainty factors
For a parametric study of unsteady motions and uncertainty factors on rotor noise, we
use a cost-effective method based on the blade element moment theory (BEMT) to obtain
the aerodynamic variables for source modelling. At a given working state, the sectional
flow velocity u, lift and drag coefficients CL and CD and therefore the sources based
on using (2.17) and (2.22) can be computed. Therefore, the surface integrations in (2.12)
are replaced by line integrations. This compact formulation is valid for slender surfaces
such as rotors (Bernardini, Gennaretti & Testa 2016; Lopes 2017). The same approach
was employed in our previous study of the frequency-domain formation of rotor noise
computation (Zhong et al. 2020).

However, it is still challenging to consider the unsteady aerodynamic effects in BEMT
because of the possible random and complex motions. Fortunately, for practical problems,
the amplitudes of these unsteadinesses are often small compared with the mean values.
Therefore, we assume the lift coefficient CL and drag coefficient CD of the sectional airfoil
are the same as in ideal operations. A justification of this assumption is made in the next
section using CAA. However, fluctuations in both u and v can still lead to perturbations
in the source terms Q and Li. The term |∂g/∂τ | is also altered. In the future, the effects
of unsteady velocity on aerodynamic properties (Van der Wall & Leishman 1994) can also
be considered in the model.

More specifically, in this work, we mainly focus on the rotor operations without oblique
flow, i.e. the oncoming flow at the speed of u∞ = |u∞| is aligned with the rotor axis.
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The target rotational speed is Ω0, and the chord length at each radial location (denoted as
η) is c0. To describe the unsteady motion, we denote the actual rotation speed as

Ω(τ) = Ω0[1 + ε0 + ε1(τ )], (2.23)

where ε0 is a parameter describing the relative deviation of the actual rotation speed Ω

from the target value Ω0, and ε1 describes the temporal variations. In this case, the actual
velocity in the tangential direction is

v(τ) = Ω(τ)η = Ω0η[1 + ε0 + ε1(τ )]. (2.24)

Similarly, if the blade is vibrating, we introduce the parameter ε2 to quantify the
corresponding velocity fluctuation in the axial direction as

u(τ ) = u0 + ε2(τ )v0 = u∞ + u∗ + Ω0ηε2(τ ), (2.25)

where u∗ is the induced velocity by the rotor, and it can be computed by using BEMT. As
for the geometry asymmetry, in this work, we focus on the possible chord variation

c(η) = c0(η)[1 + ε3(η)], ⇒ dS = [1 + ε3]c0 dη. (2.26)

The parameter ε3 is time invariant but may vary with the radial location. In practice,
other factors such as pitch angle variation and section geometry difference can also
cause asymmetry. However, the description and following analysis will be similar and are,
therefore, not repeated. In this work, we assume the amplitudes of these unsteady motions
and uncertainty factors are small, i.e.

|ε0|, |ε1|, |ε2|, |ε3| � 1. (2.27)

3. Influences on the aeroacoustics of an isolated rotor

This section will present the parametric study of influences of various unsteadiness and
uncertainty factors on the rotor noise. Before that, justification, verification and validation
of the noise computation model in § 2 will be presented.

3.1. Verification of the noise computation model implementation
First, we will verify the implementation of the noise computation model by comparing
results with experimental measurements in an anechoic chamber (Yi et al. 2021; Wu et al.
2020). The two-bladed rotors APC 9 × 5 (with the tip radius of rtip = 11.43 cm) and APC
11 × 5 (with the tip radius of rtip = 13.97 cm) are investigated. The sectional profile of
both blades is close to the NACA4412 airfoil, and the chord and pitch angle distributions
in the radial directions are shown in figure 3. Ten microphones at a distance of 1.5 m
from the rotor centres are used, and the equivalent observer angle ranges from θ = 55◦
to 118◦. In experiments, both rotors are operated at various revolutions per second (RPS).
However, there are inevitable deviations and fluctuations in the rotation speeds, which are
measured using an optical encoder, and the results are shown in figure 4. The averaged
values are kept relatively stable when the speeds are increased after a short time interval.
The sampling frequency for RPS measurement is 50 Hz. The unsteadiness quantified by
ε1 = (RPS − RPS0)/RPS0, where RPS0 is the target/nominal rotation speed, is shown in
figure 4(b), and the amplitude is within ±0.01.

In the rotor noise prediction model, constant RPS with the averaged values RPS0 shown
in figure 4 and fluctuated RPS are employed as input. For the fluctuated RPS, random
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Figure 3. Chord and pitch angle distributions of the two tested APC blades in the radial directions. (a) Chord
distribution, (b) pitch angle distribution.
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Figure 4. Examples of the measured RPS of a rotor at different target rotation speeds. (a) Measured RPS,
(b) relative error ε1.

fluctuations with the amplitude of 0.01RPS0 are added to the averaged value at each time
step. In the experiments, it is found that the sound pressure level (SPL) at the blade passing
frequency (BPF), which is equal to 2 × RPS0 for the two-bladed rotors, is often insensitive
to the unsteady fluctuations. To this end, in figure 5, we compare the predicted SPL result
at different observers with the experimental measurements, showing a close agreement.
However, the sampling frequency of the RPS measurements in experiments is only 50 Hz,
and variations at high rates are not captured. Therefore, predictions using the fluctuated
RPS cannot reproduce the impact of rotation speed unsteadiness on the sound radiation
at high frequency. Nevertheless, the close results at the BPF by different approaches, i.e.
experiments, constant RPS and fluctuated RPS predictions, suggested the implementation
of the prediction model outlined in § 2 is well verified.

3.2. Validation using CAA
We also conduct CAA simulations for the APC 9×5 rotor with unsteady rotation speeds
to validate the prediction model and justify some assumptions taken in § 2.3. The acoustic
preserved artificial compressibility equations suitable for low Mach number aeroacoustic
simulations were implemented using an open-source library (Jiang & Zhang 2022). The
time marching is realised using a low-dissipation and low-dispersion Runge–Kutta scheme
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Figure 5. Comparisons of the predicted SPL of the tonal noise at BPF with experiments; (a) APC 9 × 5,
(b) APC 11 × 5.

(Hu, Hussaini & Manthey 1996). In the near field, locally orthogonal grids are employed
to resolve flow evolution and noise generation. The overall mesh consists of around 15 ×
106 cells in the computational domain. The accuracy of the CAA solver for rotor noise
simulation has been validated by comparing the predictions with experimental test results
(Jiang & Zhang 2022; Jiang et al. 2022). In the study, RPS0 = 90 and the actual RPS is
configured as

RPS = RPS0[1 + ε1 cos(2πf̃t)], where ε1 = 0.01, f̃ = 10 × RPS0. (3.1)

The unsteady thrust predicted by the CAA simulation is shown in figure 6(a). The
time-averaged thrust is T0 ≈ 2.62 N, which is close to the steady rotor simulation result
using CAA. The thrust prediction by BEMT is approximately 2.6 N. In § 2.3, we assume
that CL and CD are unchanged in the presence of the unsteady motion, which should be
examined using the CAA results. For simplicity, we denote the thrust coefficient for the
steady rotor as C0, i.e. T0 = C0Ω

2
0 , where Ω0 = 2π × RPS0. The thrust coefficient of the

unsteady rotor is denoted as C such that

T(t) = CΩ2 = CΩ2
0 [1 + ε1 cos(2πf̃t)]2 ≈ T0

C
C0

[1 + 2ε1 cos(2πf̃t)], (3.2)

where Ω = 2π × RPS. Then, we perform Fourier transform of T(t) (normalised by T0)
obtained by CAA, and the result is shown in figure 6(b). At f /RPS0 = 10, the amplitude
of the normalised spectrum is close to 2ε1, as indicated by the red dot, suggesting that
C/C0 ≈ 1, i.e. the thrust coefficient remains unchanged. Therefore, the assumption of
constant CL and CD employed in the prediction model is indirectly justified.

In the numerical simulation, sound pressures at different observer points are also
obtained and compared with the prediction results. Figure 7 shows the comparisons of
noise spectra at ro = 0.2 m and 0.4 m. Both observers have the same observer angle of
θ = 90◦, but the spectra are quite different because they are located in the near field. At
BPF and its harmonics, the predicted SPLs are close to the high-fidelity CAA simulation.
The computation times for the prediction model and high-fidelity CAA are a few seconds
and more than 24 h, respectively. However, the broadband noise, mainly caused by the
turbulence interaction at both the leading edge and trailing edge of the blades, is not
contained in the prediction model.
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Figure 6. The computed time signal and spectrum of the rotor with fluctuated rotation speed using
high-fidelity CAA simulation. For this case, RPS0 = 90. (a) Thrust signal, (b) thrust spectrum (scaled by T0).
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Figure 7. Comparisons of the predicted SPL spectra with high-fidelity CAA simulations at θ = 90◦ and
different observer distances ro. For this case, RPS0 = 90; (a) ro = 0.2 m, (b) ro = 0.4 m.

3.3. Influence of rotation speed variation
In the following, we will conduct a parametric study of the unsteady motion and
uncertainty factors based on the two-bladed rotor APC 9 × 5, i.e. the blade number B = 2,
in the hover state. The target rotation speed is RPS0 = 100. The observer distance is set as
ro = 1.5 m ≈ 13rtip, where rtip is the rotor radius.

In this section, we study the influence of rotation speed variation using the proposed
time-domain formulations in § 2. The additional source strengths of �Q, �FL and �FD
are linearly dependent on the parameters ε0 and ε1. However, the variation of ε1 also
influences the estimated retarded time and the associated time derivatives, affecting the
sound in a wide frequency range. In this section, we rewrite the relative difference between
Ω0 and Ω defined in (2.23) as

ε0 + ε1(τ ) = ε0 +
∑

An cos(2πfnτ + γn) + ε∗
1(τ ), (3.3)

where ε0 means the static deviation, and ε1 and ε∗
1 describe the periodic and random

fluctuations.
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Figure 8. The influence of the static deviation of the rotational speed; (a) spectra, (b) OASPL.

3.3.1. Static deviation of rotation speed
If the uncertainty factor in the rotation speed only contains the static deviation ε0, the
actual rotation angular frequency Ω has a deviation from the target value of Ω0. One
consequence is that the BPF has a variation of ε0 × BPF. The effect is shown in figure 8(a),
where the frequency of each harmonic of BPF varies with ε0 linearly. Moreover, in this
case, the noise is dominated by the tonal noise at the BPF. The varied rotation speed
can alter the strength of noise emission, and the acoustic scaling law (Zhong et al. 2020)
suggests the sound pressure amplitudes have a dependence of (Ω/Ω0)

h, i.e. the difference
in the SPL is

�SPL = 20 log10

(
Ω

Ω0

)h

= 20h log10(1 + ε0) ≈ 20h
log 10

ε0. (3.4)

The coefficient h is dependent on the order of the BPF harmonics and observer angle
(Zhong et al. 2020). The dependence of the overall sound pressure level (OASPL)
computed in the frequency range of 50–5000 Hz with ε0 at different observers is shown
in figure 8(b). At θ = 90◦, the coefficient is h = B + 2 = 4 for the tone at BPF, which
is a significant contribution to sound if the steady aerodynamic forces are considered.
By contrast, at θ = 30◦ and θ = 150◦, the noise at BPF is less significant while the
contributions by tones at higher frequencies, which have other dependencies on Ω , are
increased, leading to different slopes. In the figure, the low noise levels at −160 dB, i.e.
the sound pressure amplitudes tend to 0, are presented, which, however, might be covered
by other noise components in practice.

For a single rotor, when ε0 is small, e.g. |ε0| < 0.01, the influence on the SPL is
negligible. The difference in the peak location is distinguishable due to the finite frequency
resolution. However, it does not mean that the RPS deviation effect is unimportant. For
example, in dual rotor applications, the difference in the rotation speed can lead to a
varying phase difference between the rotating blades, altering the interference effect of
the sound waves. The effect will be investigated in § 4.

3.3.2. Periodic fluctuation of rotation speed
In this section, we consider cases such that the rotational speed fluctuation is periodic, i.e.
the influence of sinusoidal terms in (3.3) is studied. The frequency of the RPS fluctuation is
fn, and it is not necessarily a harmonic of BPF as in the frequency-domain solver (Hanson
& Parzych 1993; Zhong et al. 2020).
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Figure 9. Computed rotor noise spectra at different observers if there are periodic fluctuations in the rotation
speed. The frequency of periodic fluctuation is fn = 500 Hz; (a) θ = 30◦, (b) θ = 90◦.

Figure 9 shows the acoustic spectra with fn = 500 Hz (i.e. 5 × RPS0) at θ = 30◦ and
90◦, respectively. When An = 0, which means the rotation has a constant speed, tonal
noise is produced at the BPF = 2 × RPS0 and its harmonics. However, the SPL is rapidly
reduced with the increase of harmonic number. For example, the SPL at 2 × BPF is lower
than that at BPF by approximately 40 dB. By contrast, if there is a slight variation in
the rotation speed, e.g. for cases with An = 1 × 10−3, 2 × 10−3 and 4 × 10−3, additional
tonal noise is produced at fn, and the SPL is comparable to that at BPF. Multiple peaks are
also found at other frequencies of fn + k × RPS0, where k is an integer. As shown in the
zoomed regions in figure 9, at f = fn, the SPL increases by approximately 6 dB when An is
doubled, suggesting that the magnitude of produced sound is proportional to the periodic
fluctuation amplitude An. It should be emphasised that the extra tones at the harmonics
of RPS0 cannot be captured by the frequency-domain method (Hanson & Parzych 1993;
Zhong et al. 2020).

To further consider how the periodic unsteady motion affects the additional tonal noise
components, we investigate the two close frequencies of fn = 1200 Hz and 1230 Hz. The
computed noise spectra at θ = 90◦ are shown in figure 10. When fn = 1200 Hz, which is
an integer multiple of the BPF, the noise peaks in the high-frequency range only appear
at the harmonics of the BPF. By contrast, as shown in figure 10(b), when fn = 1230 Hz,
amplitudes of the tonal noise at the harmonics of BPF are unchanged. There are significant
tones at (12.3 + 2k) × RPS0, where k is an integer. Also, the amplitudes of those tones
are close to those at (12 + 2k) × RPS0 in figure 10(a). There are several slight peaks
with a difference of ±0.3 × RPS0 from the main peaks. The results suggest that the
periodic motions can produce significant tones related to both fn, the frequency of the
RPS fluctuation, and the mean rotation speed RPS0.

To better understand the dependence of noise features on the frequency of the periodic
motion, we compute the sound radiation with the parameter fn ranging from 0 to
1600 Hz. The mean rotation speed is RPS0 = 100. The corresponding acoustic spectra
are computed, and the results at θ = 30◦ and 90◦ are shown in figure 11. For different fn,
the peak values are always high at the BPF and its harmonics, which are likely contributed
to by the mean rotation speed. Besides, there are high levels of sound at the frequency
of f = fn, and there are relatively low but discernible peaks at the alternative frequencies
of f = fn ± l × BPF, where l is an integer. In figure 10(b), there are also peaks at the
frequencies that seem to be the combination of the BPF and fn, although the levels are
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Figure 10. Computed spectra of the rotor noise at θ = 90◦. There are periodic fluctuations with different fn in
the rotation speed; (a) fn = 1200 Hz, (b) fn = 1230 Hz.
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Figure 11. Computed spectra of a two-bladed rotor with periodic fluctuation in RPS. The amplitude of the
periodic fluctuations is An = 2 × 10−3, and fn ranges from 0 to 1600 Hz; (a) θ = 30◦, (b) θ = 90◦.

relatively low. Figure 11 shows that there is a complex dependence of the observed peak
locations on fn, especially when fn is high. By contrast, at low perturbation frequency, e.g.
fn < 2 × RPS0, the periodic motion only produces several peaks at low frequencies, and
the influence on the tonal noise at high frequencies is relatively unimportant. At θ = 90◦,
clear tones are produced at high fn. The results suggest that the periodic motion can
equivalently produce an additional sound source at fn, which is then modulated by the
rotational motion of the blade at RPS0.

The investigation of the acoustic spectra suggested that the periodic fluctuation of the
rotation speed can produce additional tonal noise. The locations of the peaks are sensitive
to fn and are related to RPS0. Figure 9 shows that, if additional peaks are produced due
to the periodic motion, the amplitudes of the sound pressure are likely proportional to
the amplitude An. However, the noise due to the overall aerodynamic force due to the
rotation is also significant, especially at BPF. To this end, in this work, we consider the
extra acoustic energy estimated by integrating the sound power from 50 to 5000 Hz, due
to the unsteady periodic fluctuation. The dependence of the extra sound energy on fn and
A2

n is shown in figure 12. In the results, A2
n indicates the amplitude of the equivalent sound

source that is likely proportional to the amplitude of the unsteady fluctuation. The values
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Figure 12. The dependence of additional acoustic energy �E on fn and An of the periodically fluctuated
rotation speed at different observer angles; (a) θ = 30◦, (b) θ = 90◦.
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Figure 13. A comparison of directivities with rotation speed variations at different fn; (a) fn = 500 Hz,
(b) fn = 1200 Hz.

are multiplied by 100 for convenience. When fn is relatively high, e.g. fn > 9 × RPS0, a
relatively even increase of �E with A2

n is achieved, suggesting that the strength of the extra
sound pressure is dependent on An linearly. By contrast, at low fn, there is a lower increase
of �E with the same A2

n. Moreover, the amplitudes of the extra acoustic energy at θ = 90◦
are much lower than that at θ = 30◦.

The acoustic directivity of the SPL at BPF, and the OASPL (calculated from 50 to
5000 Hz) with fn = 500 Hz and 1200 Hz, respectively, is computed. The observer angles
range from θ = 30◦ to 150◦, and the amplitudes of An = 1 × 10−3, 2 × 10−3 and 4 × 10−3

are considered. The results are shown in figure 13. At both frequencies, little difference is
found at θ = 90◦ for different An. The reason is that the original noise level at the BPF is
relatively high; meanwhile, the extra acoustic energy due to the unsteady factor is relatively
low, slightly changing the noise level. By contrast, the unsteady effect is more profound
in the upstream and downstream directions, while the original levels at the corresponding
locations are low, leading to a significant increase.

3.3.3. Random fluctuation of rotation speed
This section studies the influence of random fluctuations in the actual RPS, described by
the term ε∗

1 in (3.3). In experiments, determining the property of ε∗
1 is difficult as a high
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Figure 14. The spectra of the random fluctuations denoted by ε∗
1 in the rotation speed and the synthesised

time signals. (a) Spectra, (b) time signals.

sampling frequency is needed to obtain the instantaneous rotation speed. Therefore, we
assume that the inevitable random fluctuations (see figure 4) have power spectral density
(PSD) with Gaussian distributions

E∗
1( f ) = AG exp[−ΛA( f − fc)2], (3.5)

where f is the frequency, AG is the amplitude and ΛA and fc control the shape of the
spectrum. In this work, ΛA = 10−4 is studied without loss of generality. Figure 14(a)
shows the two spectra with fc = 500 Hz and fc = 1000 Hz with AG = 5 × 10−8. The
spectra in the frequency domain are realised as randomly varying time signals ε∗

1(t) shown
in figure 14(b), based on which we recomputed the PSD, and the results reproduce the
target spectra satisfactorily, as indicated by the dots in figure 14(a). With the time signals
of ε∗

1(t), we can compute the corresponding fluctuations in RPS. The fluctuating rotational
speed is within 1 % of RPS0.

Using the formulations outlined in § 2, we are able to compute the noise spectra with
randomly fluctuated RPS. Figure 15 shows the results with AG ranging from 0.5 × 10−8

to 5 × 10−8. The observer angles are θ = 30◦ and 90◦, and the results are compared with
those with steady rotational speed (red dashed curves). The random fluctuations can lead
to broadband-type noise features, while the tonal noise at BPF is slightly altered. The
noise level due to the RPS fluctuation is much higher than the tonal noise peaks in a wide
frequency range. At θ = 90◦, the tonal noise at 2 × BPF is relatively high, and values are
not altered by the random RPS fluctuations either. Furthermore, there are maximum values
of a bump-shaped spectrum around fc = 500 Hz, relating to the PSD of ε∗

1. However, the
bump shapes are observer angle dependent.

As indicated by arrows in figure 15, the levels of the humps increase with AG. In
this work, we extract the broadband noise spectra linked to the randomly perturbed RPS
by using a robust locally weighted regression method (Cleveland 1979). Moreover, the
results due to different AG are scaled to that of AG0 = 0.5 × 10−8, i.e. we define a new
variable of SPL∗ = SPL − 10 log10 (AG/AG0), and the results are shown in figure 16. The
humped peaks are collapsed around fc = 500 Hz and 1000 Hz, respectively, suggesting the
strengths of the equivalent broadband noise sources are proportional to AG. In addition,
the results are close for θ = 30◦ and 150◦, and they are higher than that at θ = 90◦.
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Figure 15. Computed noise spectra with random fluctuations in RPS. The fluctuations have Gaussian
distributions, and fc = 500 Hz and AG ranges from 0.5 × 10−8 to 5 × 10−8; (a) θ = 30◦, (b) θ = 90◦.
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Figure 16. Computed equivalent broadband noise spectra with different random fluctuations in RPS. The
SPL is scaled by BG, the amplitude of the random fluctuations; (a) fc = 500 Hz, (b) fc = 1000 Hz.

3.4. Influence of blade vibration
This section investigates the influence of blade vibration in the axial direction. Equation
(2.25) introduces the parameter ε2(t) for quantification, which, similarly, can be
decomposed into the periodic motion and random fluctuation, i.e.

ε2(τ ) =
∑

Bn cos(2πfnτ + ϕn) + ε∗
2(τ ), (3.6)

where Bn and fn are the amplitude and frequency of the periodic motion, respectively, and
ε∗

2 corresponds to the possible random vibration.
First, the influence of periodic vibrations with fn = 100 Hz and 1000 Hz on rotor noise

is studied. For both cases, the vibration amplitude is assumed as Bn = 2 × 10−3, and the
computed spectra results are shown in figure 17. At θ = 30◦, for each periodic frequency
fn, peaks are found at fn + l × BPF, where the l values are integers. For example, when
fn = 100 Hz (the green curves), extra peaks are found at 300 Hz, 500 Hz and 700 Hz, . . .,
with decreasing amplitudes. Similarly, when fn = 1000 Hz (the black curves), levels of the
tonal noise at 800 Hz, 1000 Hz, 1200 Hz and 1400 Hz are significantly increased. However,
at θ = 90◦, the noise spectra are little affected, being close to that of the steady blade. The
results suggest that the blade variation can hardly affect the tonal noise on the rotational
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Figure 17. Computed noise spectra at different observers with periodic blade vibrations. Here,
Bn = 2 × 10−3 and fn = 100 Hz and 1000 Hz are studied; (a) θ = 30◦, (b) θ = 90◦.
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Figure 18. Computed noise spectra at different observer angles with periodic blade vibration. Cases with
Bn = 2 × 10−3, and fn ranges from 0 to 1600 Hz are studied; (a) θ = 30◦, (b) θ = 90◦.

plane because the blade vibrations can cause pulsating motions in the axial direction,
resulting in an equivalent acoustic dipole. This conclusion is also applicable to other fn.
Figure 18 shows the spectra at θ = 30◦ and θ = 90◦ with fn ranging from 0 to 1600 Hz.
Clear tones at BPF and its harmonics are found at both observer angles. Moreover, at
θ = 30◦, there are also multiple parallel lines at f = fn + l × BPF. At θ = 90◦, the tonal
noise only occurs at the harmonics of BPF.

The vibration can also be random, as described by ε∗
2 in (3.6). In this case, we assume

the PSD of the random fluctuation has a Gaussian distribution

E∗
2( f ) = BG exp[−ΛB( f − fc)2]. (3.7)

In practical applications, time signals of ε∗
2(t) are realised by using the PSD in the

frequency domain with ΛB = 1 × 10−4, fc = 500 Hz and BG ranges from 0.5 × 10−8 to
5 × 10−8. A comparison of the resulting noise spectra at different observers is shown
in figure 19. Again, the random vibrations do not alter the tonal noise components at
the BPF harmonics (if discernible) in the spectra. Instead, they equivalently produce
broadband-type spectra, and the noise level increases with BG. At θ = 30◦, the broadband
content is bumped shaped with the peak locations around f = fc. At θ = 90◦, there are
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Figure 19. Computed noise spectra at different observers with random blade vibration with a Gaussian
distribution. Here, fc = 500 Hz and BG ranges from 0.5 × 10−8 to 5 × 10−8; (a) θ = 30◦, (b) θ = 90◦.
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Figure 20. Computed directivity patterns of the equivalent broadband noise due to the random blade vibrations
with fc = 500 Hz and 1000 Hz, respectively. Here, BG ranges from 0.5 × 10−8 to 5 × 10−8; (a) fc = 500 Hz,
(b) fc = 1000 Hz.

also broadband-shaped noise spectra, the amplitudes of which are much lower than that at
θ = 30◦ (approximately 70 dB). As a result, the peaks of the tonal noise are discernible
at that observer angle. In this work, we also compute the OASPL (from 50 to 5000 Hz)
of the equivalent components having a random vibration at different observer angles
ranging from θ = 30◦ to 150◦. The results for fc = 500 Hz and fc = 1000 Hz are shown
in figure 20. High noise levels are found in the upstream and downstream directions
due to the dipole property of the equivalent noise sources. The SPL data scaled by the
amplitude as SPL∗ = SPL − 10 log10(BG/BG0) with BG0 = 0.5 × 10−8 are shown in the
insets in figure 20. The collapsed results suggest the strength of equivalent broadband
noise is proportional to the amplitudes of the random vibration. Additionally, levels of the
equivalent broadband noise increase with fc.

3.5. Influence of geometry asymmetry
This section investigates the influence of geometry asymmetry on rotor noise emission.
For the two-bladed rotor under investigation, we assume the chord of one blade is c =
c0(1 + ε3), while the other one remains c0. In this work, small values of ε3 = 0.01, 0.02
and 0.04 are investigated. First, we assume the rotor has a constant rotation speed, and
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Figure 21. Computed noise spectra of asymmetric blades with constant RPS = RPS0; (a) θ = 30◦,
(b) θ = 90◦.

the computed noise spectra at different observer angles are shown in figure 21. Compared
with the symmetric rotor, which corresponds to ε3 = 0, multiple extra peaks are found
at k × RPS0 + l × BPF with k and l as integers. Moreover, for those additional peaks,
as indicated by the zoomed-in insets in figure 21, a difference of 6 dB is found when
ε3 is doubled. Meanwhile, compared with the symmetric blade, the noise levels of the
asymmetric blades at BPF harmonics are nearly unchanged.

Similarly, we can compute the noise spectra of the asymmetrical blades experiencing
a periodic unsteady motion as quantified in (3.3). The frequency is fn = 1000 Hz and
the amplitude is An = 2 × 10−3. The results at different observer angles are shown in
figure 22. Due to the periodic fluctuation of the rotation speed, the tonal noise around
10 × RPS0 is increased, as investigated in § 3.3.2. Those peaks are not altered even though
the blade geometries are asymmetric. Instead, there are additional tones between the
peaks due to the periodically fluctuating rotation speed. The amplitudes of those tones
(at 1 × RPS0, 3 × RPS0, 5 × RPS0, . . .) are increased by approximately 6 dB when ε3 is
doubled. We can also compute the noise spectra of the asymmetric blade when the rotation
speed has random fluctuations. The PSD of the random fluctuation is described in (3.3)
with AG = 5 × 10−8 and fc = 500 Hz. Again, as shown in figure 23, bump-type broadband
noise is produced due to the fluctuated rotation speed, which overwhelms most of the tonal
noise in the spectra. However, discernible peaks at 100 Hz are found, and the amplitude
increases with ε3, while the noise level at BPF is unchanged.

In this work, the asymmetry is described by introducing variations in the chord. A more
generic configuration with spatially dependent ε3 can be considered as well. Technically,
the effects of other uncertainties in pitch angle distribution can also be investigated
using the same approach in this section. However, the blade asymmetry can cause mass
imbalances in practice, resulting in structural vibration and altering the noise emission
feature.

4. Influences on the aeroacoustics of dual rotors

In practical applications, a flying vehicle is often equipped with multiple rotors, and the
rotation speed of each rotor is continuously adjusted for flight control. Studies on the
aerodynamic noise features of multiple rotors have been conducted (Shukla & Komerath
2018; Alvarez & Ning 2020; Bernardini et al. 2020; de Vries et al. 2021; Bu, Ma &
Zhong 2022). However, the influence of the multi-rotor interaction on noise generation
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Figure 22. Computed noise spectra of asymmetric blades with periodically fluctuated RPS. The frequency of
the periodic motion is fn = 1000 Hz and the amplitude is An = 2 × 10−3; (a) θ = 30◦, (b) θ = 90◦.

is still debated as contradictory conclusions were made in previous studies (Zhou et al.
2017; Zhou & Fattah 2017). The numerical studies by Lee & Lee (2020) showed a noise
variation of up to 20 dB. By contrast, the experiments by Bu et al. (2021) suggested
both aerodynamic forces and noise features are insensitive to the separation distances
and initial configurations. The observations might be linked to the fact that the dual rotor
aeroacoustics have been influenced by unsteady motions and uncertainty factors, which
are studied in this section.

In the following study, we assume that the dual rotors, either co-rotating or
counter-rotating, have identical geometry and are placed on the same plane. The separation
distance of the centres is 1.1D, where D is the rotor diameter. For this configuration,
the effect of mutual interactions of the rotors on the aerodynamic force is regarded
as insignificant (Bu et al. 2021). Therefore, we assume the sound source generated
aerodynamically by each rotor is the same as that of an isolated rotor.

4.1. Co-rotating dual rotors
Usually, the sound waves produced by the sources on the rotor blade surface experience
different time delays as the source locations vary with the rotation. Therefore, for a dual
rotor system, the difference in the initial phase angle �φ0 of the blades might significantly
alter the noise feature. First, we study the co-rotating dual rotors at the constant rotation
speed of RPS0 and �φ0 = 0◦ and 90◦. The resultant noise spectra at different observers
quantified by the polar angle θ and azimuthal angle ϕ (cf. the schematic in figure 1) are
shown in figure 24. The results due to a single rotor are also included for comparison.
The tonal noise components are only found at the harmonics of BPF, and the amplitudes
decrease with frequency because there is no fluctuation in the rotation speed. At ϕ = 0◦
(on the rotation plane), as shown in figure 24(a), the results at both �φ0 = 0◦ and 90◦ are
close, and they are slightly higher than those of the single rotor. By contrast, because of
the interference effect, the noise level of the �φ0 = 90◦ case is lower than the �φ0 = 0◦
case by 20 dB at ϕ = 90◦ (on the perpendicular plane). The results suggest that significant
noise reduction at particular observers might be achieved via phase control.

Next, we will investigate the influence of rotational speed fluctuations on the sound
interference. As described previously, for both �φ0 = 0◦ and �φ0 = 90◦ cases, we
assume the rotation speed has a periodic fluctuation at fn = 1000 Hz, and the amplitude
is An = 10−3. A comparison of the computed noise spectra at different observer angles

956 A16-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1097


Unsteady and uncertain rotor noise
S

P
L

 (
d
B

)

0 5 10 15 20

–140

–100

–60

–20

20

60
ε3 = 0.04

ε3 = 0.02

ε3 = 0.01

Symmetric

1

20

30

f / RPSf / RPS
0 5 10 15 20

–140

–100

–60

–20

20

60
ε3 = 0.04

ε3 = 0.02

ε3 = 0.01

Symmetric

1

20

30

(b)(a)

Figure 23. Computed noise spectra of asymmetric blades with random fluctuations in RPS (AG = 5 × 10−8

and fc = 500 Hz); (a) θ = 30◦, (b) θ = 90◦.
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Figure 24. Computed sound spectra of two rotors with identical and constant rotation speeds. The observers
are at (a) θ = 90◦ and ϕ = 0◦, (b) θ = 90◦ and ϕ = 90◦.

is shown in figure 25. Consequently, the tonal noise levels in the high-frequency range
are increased due to periodic fluctuations. However, the impact of the mechanism of
phase difference �φ0 on the perceived noise is similar to that with constant rotation
speed. At ϕ = 0◦, the noise spectra of both configurations are close; at the observer angle
of ϕ = 90◦, a difference in SPL of up to 10 dB is found between the �φ0 = 90◦ and
�φ0 = 0◦ cases. Ideally, the temporal variation of the rotation speed can yield different
phase angle differences of the sources and therefore affect the interference of sound waves.
However, the accumulated phase difference remains small if the rotation speed fluctuation
is periodic and the amplitude An � 1. More importantly, the frequency of the periodic
fluctuation is high, making the actual variation in �φ due to unsteady motion negligible.
In other words, �φ(t) ≈ �φ0 and the effect of phase delay on the acoustic interference is
the same as in the cases with constant rotation speeds. A comparison of the time signals
at different observers is shown in figure 26. Again, this shows that the difference in the
results at ϕ = 0◦ is relatively small, while destructive superposition makes the acoustic
amplitudes very small at ϕ = 90◦ if �φ0 = 90◦.

However, if there is a slight difference in the mean rotation speeds RPS(1)
0 and RPS(2)

0
due to the static deviations described by ε0, the phase difference �φ will vary with
time. As a result, the interference effect due to �φ0 is likely unimportant. To examine
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Figure 25. Computed sound spectra of two rotors with periodic fluctuations in RPS with fn = 1000 Hz and
An = 10−3. The observers are at (a) θ = 90◦ and ϕ = 0◦, (b) θ = 90◦ and ϕ = 90◦.

1 2 3 4 5
–0.05

–0.03

–0.01

0.01

0.03

0.05

Dual rotor, 	φ0 = 0° 
Dual rotor, 	φ0 = 90° 
Single rotor

1.02 1.03 1.04 1.05
–0.05

0

0.05

1 2 3 4 5
–0.05

–0.03

–0.01

0.01

0.03

0.05

1.02 1.03 1.04 1.05
–0.05

0

0.05

t (s)

p’
(P

a)
p’

(P
a)

1 2 3 4 5

t (s)
1 2 3 4 5

–0.05

–0.03

–0.01

0.01

0.03

0.05

1.02 1.03 1.04 1.05
–0.05

0

0.05

–0.05

–0.03

–0.01

0.01

0.03

0.05

1.02 1.03 1.04 1.05
–0.05

0

0.05

(a) (b)

(c) (d)

Figure 26. Computed time signals of two rotors with periodic fluctuations in RPS with fn = 1000 Hz and
An = 10−3; (a) θ = 30◦ and ϕ = 0◦, (b) θ = 90◦ and ϕ = 0◦, (c) θ = 30◦ and ϕ = 90◦, (d) θ = 90◦ and
ϕ = 90◦.

this conjecture, we conducted computations with RPS(1)
0 = 99.5 and RPS(2)

0 = 100.5 and
compare the results for �φ0 = 0◦ and 90◦, respectively. Moreover, we assume the actual
RPS has periodic fluctuations with fn = 1000 Hz and An = 10−3. The computed sound
spectra at ϕ = 0◦ and 90◦ (and the polar angle is θ = 90◦ for both cases) are shown in
figure 27. Compared with the single rotor, the noise spectra in the dual rotor configuration
are higher, but both results for �φ0 = 0◦ and �φ0 = 90◦ are close, as expected.
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Figure 27. Computed sound spectra of two rotors with slight difference in RPS0. The actual RPS is perturbed
with periodic fluctuations (with fn = 1000 Hz and An = 10−3); (a) θ = 90◦ and ϕ = 0◦, (b) θ = 90◦ and
ϕ = 90◦.

In addition, unlike the results shown in figure 25, the difference in the results at different
azimuthal angles is small.

Apart from the periodic fluctuation, we can also study the influence of random
fluctuations in the rotation speed. Figure 28 shows the noise spectra with fc = 500 Hz and
AG = 0.5 × 10−8. Again, the random fluctuations produce bump-type broadband spectra,
and some tonal noise is overwhelmed. However, at high frequencies, i.e. f ≥ 10 × RPS0,
the peaks are observed again as their levels are higher than the broadband contents. The
results with different �φ0 are close, and the tones at the BPF are nearly unchanged.
Meanwhile, the results of both dual rotor configurations are approximately 3 dB higher
than that of the single rotor, similar to the experimental observations (Bu et al. 2021).
Figure 29 shows comparisons of the time signals of different configurations at different
observers in the presence of deviations and unsteady fluctuations in the rotation speed
variation. At θ = 30◦ (downstream), stochastic signals are seen as the random fluctuations
of rotation speed that can lead to profound broadband noise contents. For both dual rotor
configurations, clusters of sound signals occasionally appear, suggesting that wave packets
are formed due to the slight difference in the mean rotation speeds. The phenomenon is
more apparent at θ = 90◦, and the frequency of the wave packet is approximately 1 Hz,
which is the rotation speed difference between the rotors. Consequently, the amplitudes of
the sound signals are close despite the phase differences of the wave packets, explaining
why the spectra are comparable.

4.2. Counter-rotating dual rotors
We can also study the influence of the counter-rotating dual rotors. In this case, when
computing the loadings using (2.18a–c), the value of ζ is taken as +1 and −1 for
anti-clockwise and clockwise rotating blades, respectively. The rotation direction will
affect the source locations and the projections of aerodynamic loading in different
directions. Firstly, we assume the averaged rotation speeds of both rotors are RPS0 = 100,
on top of which there are periodic fluctuations with An = 10−3 and fn = 500 Hz. The
initial phase difference is �φ0 = 45◦. Computations are also conducted for the co-rotating
dual rotors for comparison. Figure 30 shows the computed spectra at azimuthal observers
of ϕ = 0◦ and 90◦, respectively. The polar angle for both observers is θ = 90◦. At ϕ = 0◦,
the results for both co-rotating and counter-rotating configurations are close at BPF.
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Figure 28. Computed sound spectra of two rotors with slight difference in RPS0 of 99.5 and 100.5. The
actual RPS is perturbed with periodic (with fn = 1000 Hz and An = 10−3) and random (with fc = 500 Hz and
AG = 0.5 × 10−8) fluctuations; (a) θ = 90◦ and ϕ = 0◦, (b) θ = 90◦ and ϕ = 90◦.
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Figure 29. Computed time signals at different observers of two rotors with slight difference in RPS0 of
99.5 and 100.5. The actual RPS is perturbed with periodic (with fn = 1000 Hz and An = 10−3) and random
(with fc = 500 Hz and AG = 0.5 × 10−8) fluctuations; (a) θ = 30◦ and ϕ = 0◦, (b) θ = 30◦ and ϕ = 90◦,
(c) θ = 90◦ and ϕ = 0◦, (d) θ = 90◦ and ϕ = 90◦.

There are discernible differences at higher frequencies, but the levels are much lower. By
contrast, significant differences are found at ϕ = 90◦. Particularly, the tonal noise at the
BPF is not seen for counter-rotating rotors, which is likely cancelled due to interference.
In this work, we also compute the OASPL (from 50 to 5000 Hz) at different observer
angles to better visualise the directivity. As shown in figure 31, the noise levels have
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Figure 30. Computed noise spectra for dual rotors with different configurations. Both rotors have the same
averaged rotation speed RPS0 = 100. Here, �φ0 = 45◦ and there are periodic fluctuations in RPS (fn = 500 Hz
and An = 10−3); (a) θ = 90◦ and ϕ = 0◦, (b) θ = 90◦ and ϕ = 90◦.
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Figure 31. Computed directivity of dual rotors with different configurations. Both rotors have the same
averaged rotation speed RPS0 = 100. Here, �φ0 = 45◦ and there are periodic fluctuations in RPS (fn = 500 Hz
and An = 10−3); (a) co-rotating, (b) counter-rotating.

distinguishable patterns for both configurations. Both rotation direction and initial phase
angle difference can affect the noise directivity. However, if there are slight differences in
the mean rotation speeds, e.g. RPS0 = 99.5 and 100.5, respectively, the interference effect
will be significantly altered. As shown in figure 32, the spectra by both co-rotating and
counter-rotating configurations are close. Also, for the same polar observer angle θ = 90◦,
the results at different azimuthal angles ϕ = 0◦ and 90◦ are close. Figure 33 shows the
directivity patterns of the OASPL computed from 50 to 5000 Hz. The noise radiation in
different angles is axisymmetric, and the results for co-rotating and counter-rotating rotors
are close.

5. Summary

This work studies the influence of rotation speed variation and deviation, blade vibration
and geometry asymmetry on rotor noise using a time-domain theoretical formulation. The
effects of irregular motions are explicitly included in the source coordinate to simplify the
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Figure 32. Computed noise spectra for different dual rotor configurations. There mean rotation speeds of the
rotors are RPS0 = 99.5 and 100.5, respectively. Here, �φ0 = 45◦ and there are periodic fluctuations in RPS
(fn = 500 Hz and An = 10−3); (a) θ = 90◦ and ϕ = 0◦, (b) θ = 90◦ and ϕ = 90◦.

(a) (b)

OASPL (dB)

65

50

OASPL (dB)

65

50

x3

x2

x1

x3
x2

x1

Figure 33. Computed directivity of dual rotors for different dual rotor configurations. The mean rotation
speeds of the rotors are RPS0 = 99.5 and 100.5, respectively. Here, �φ0 = 45◦ and there are periodic
fluctuations in RPS (fn = 500 Hz and An = 10−3); (a) co-rotating, (b) counter-rotating.

computation and efficiently estimate the retarded time. The noise sources are modelled
using aerodynamic variables from the BEMT method. The amplitudes of the factors
under investigation are assumed to be small. The accuracy of the prediction model is
validated by comparing it with experiments and high-fidelity CAA simulations. The
rotation speed deviation due to the motor control accuracy can alter the BPF and SPLs. If
periodic fluctuations are present, multiple tonal noise components at various frequencies
dependent on both BPF and fn will be produced. The increment is more significant when
fn is high. If the rotation speed fluctuation is random, broadband-type noise is produced,
especially in the upstream and downstream directions. The blade vibration can produce
dipole-like noise perpendicular to the rotation plane. The periodic vibration can cause
multiple tones, while the random fluctuation can lead to broadband noise increase. The
asymmetric geometry of the rotor blades, which can cause a mass imbalance in practice,
will lead to tonal noise at multiple frequencies that results from combinations of the RPS
and the original peaks in the spectra. The acoustic feature of the dual rotor system is

956 A16-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1097


Unsteady and uncertain rotor noise

also investigated. If the rotation speeds are identical, the initial phase angle difference
�φ0 and relative rotation directions can significantly affect the sound distribution due to
the interference effect. However, if the uncertainty factor is such that slight deviations
of the rotation speeds exist for both blades, wave packets are formed due to the rotation
speed difference. The phase angle difference varies with time, making the resulting spectra
insensitive to �φ0.
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Appendix A. Remarks on numerical implementation

At x, the computed sound pressure based on (2.12) is represented at the observer time t.
The noise contributions by both Q and Li are evaluated at the retarded time τ = t − R/a∞,
which, unfortunately, is challenging because R = R(x(t), y(τ )) is implicitly dependent on
the source τ . Moreover, when the rotation speed Ω varies with time, the source locations
are computed as

y2(τ ) = η cos
(

φ +
∫ τ

0
Ω(s) ds

)
, y3(τ ) = η sin

(
φ +

∫ τ

0
Ω(s) ds

)
, (A1a,b)

making the nonlinear integral solution difficult to solve. Alternatively, in practical
application, it is common that the observer location x is unchanged with the observing
time t. In this case, it is easy to use the source-time-dominant algorithm to account for the
retarded time effect (Brentner & Farassat 2003). Nevertheless, the detailed procedures for
the current formulation is presented for completeness.

For a given source time τ , the source coordinates y(τ ) can be determined, and the
delayed observing time t is explicitly computed as

t = τ + R(x, y(τ ))

a∞
. (A2)

However, for different source points emitting sound at time τ , the resulting observing times
t at a given observer x are different. For convenience, the blade surface is discretised into
N panels, and the centre of each panel is denoted as yn ∈ [y1, y2, . . . , yN]. Both the source
location and source strength are evaluated at different time steps of τm ∈ [τ 1, τ 2, . . . , τM].
The two integral kernels in (2.12) are denoted as Θ and Π . The values at the source
location yn and time τm can be evaluated as Θm

n and Πm
n , respectively. In addition, the

corresponding observing time tmn is evaluated by using (A2). Therefore, when m ranges
from m = 1 to M, we have an array of observing time T n = [t1n, t2n, . . . , tMn ] and the
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corresponding arrays of Θ and Π as

Θn(T n) = [Θ1
n (t1n), Θ

2
n (t2n), . . . , Θ

M
n (tMn )],

Πn(T n) = [Π1
n (t1n), Π

2
n (t2n), . . . , Π

M
n (tMn )].

}
(A3)

Therefore, to ensure noise contribution by all discretised panels can be accounted for, we
define a constant observing time array T = [t1, t2, . . . , tM ] with a constant interval of �t.
Therefore, the values of Θn(T n) and Πn(T n) in (A3) are employed to evaluate the values
at the time steps in T (i.e. by using interpolation) as

Θn(T ) = [Θ1
n (t1), Θ2

n (t2), . . . , ΘM
n (tM )],

Πn(T ) = [Π1
n (t1), Π2

n (t2), . . . , ΠM
n (tM )].

}
(A4)

Then, an array of sound pressure at T = [t1, t2, . . . , tM ] can be computed as

P(x, T ) = [p′(x, t1), p′(x, t2), . . . , p′(x, tM )] = ∂

∂t

( N∑
n=1

Θn(T )

)
−

N∑
n=1

Πn(T ), (A5)

and the temporal derivative can be easily evaluated by using a finite difference method
using the temporal arrays.
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