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We analyse the process of convective mixing in two-dimensional, homogeneous and
isotropic porous media with dispersion. We considered a Rayleigh–Taylor instability in
which the presence of a solute produces density differences driving the flow. The effect of
dispersion is modelled using an anisotropic Fickian dispersion tensor (Bear, J. Geophys.
Res., vol. 66, 1961, pp. 1185–1197). In addition to molecular diffusion (D∗

m), the solute
is redistributed by an additional spreading, in longitudinal and transverse flow directions,
which is quantified by the coefficients D∗

l and D∗
t , respectively, and it is produced by

the presence of the pores. The flow is controlled by three dimensionless parameters: the
Rayleigh–Darcy number Ra, defining the relative strength of convection and diffusion, and
the dispersion parameters r = D∗

l /D∗
t and Δ = D∗

m/D∗
t . With the aid of numerical Darcy

simulations, we investigate the mixing dynamics without and with dispersion. We find
that in the absence of dispersion (Δ → ∞) the dynamics is self-similar and independent
of Ra, and the flow evolves following several regimes, which we analyse. Then we analyse
the effect of dispersion on the flow evolution for a fixed value of the Rayleigh–Darcy
number (Ra = 104). A detailed analysis of the molecular and dispersive components of
the mean scalar dissipation reveals a complex interplay between flow structures and solute
mixing. We find that the dispersion parameters r and Δ affect the formation of fingers
and their dynamics: the lower the value of Δ (or the larger the value of r ), the wider, more
convoluted and diffused the fingers. We also find that for strong anisotropy, r = O(10), the
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role of Δ is crucial: except for the intermediate phases of the flow dynamics, dispersive
flows show more efficient (or at least comparable) mixing than in non-dispersive systems.
Finally, we look at the effect of the anisotropy ratio r , and we find that it produces only
second-order effects, with relevant changes limited to the intermediate phase of the flow
evolution, where it appears that the mixing is more efficient for small values of anisotropy.
The proposed theoretical framework, in combination with pore-scale simulations and bead
packs experiments, can be used to validate and improve current dispersion models to obtain
more reliable estimates of solute transport and spreading in buoyancy-driven subsurface
flows.

Key words: convection in porous media, geophysical and geological flows, dispersion

1. Introduction
The transport and mixing of a solute or a dispersed phase within a fluid-saturated
porous medium are key processes common to many subsurface flows, including petroleum
migration (Simmons, Fenstemaker & Sharp 2001), geological sequestrations of carbon
dioxide (Emami-Meybodi et al. 2015) and underground hydrogen storage (Krevor et al.
2023). These processes are controlled by a convective flow driven by the local fluid density
differences, due to a non-uniform solute distribution within the domain. The evolution of
these systems is hard to monitor due to the inaccessibility of the sites, typically located
hundreds of metres underground. Nevertheless, an accurate prediction of solute transport
in subsurface buoyancy-driven flows is required to address key environmental challenges,
including also the design of subsurface storage sites for radioactive waste (Woods 2015)
and the development of remediation strategies for contaminated regions (LeBlanc 1984;
Van Der Molen & Van Ommen 1988; Bear & Cheng 2010). For instance, to design ground-
water remediation strategies for light and dense non-aqueous petroleum liquids, resulting
from spillage of fuels or chemicals, it is key to determine the area over which these
contaminants spread, and then where the remediation should take place (Woods 2015).

Accurate predictions of the above-mentioned flows are made further complex by the
interplay of convective and diffusive processes, representing the driving and dissipative
mechanics, respectively, of these systems (De Paoli 2023), and therefore controlling
mixing. At the pore scale and in the absence of flow, solute transport is regulated by
molecular diffusive mixing, acting to reduce local gradients of solute concentration:
caused by the Brownian motion of the molecules, it produces a flux of solute from regions
of high concentration towards regions of low concentration. When the fluid moves within
the intricate interstitial pore channels, the fluid and the solute cannot penetrate into the
solid obstacles (e.g. rock grains) forming the porous matrix, and will follow random-
walk-type paths resulting in a further solute redistribution in the flow (longitudinal)
direction (Woods 2015). In addition, the velocity at the pore scale varies in magnitude
and direction from point to point within the fluid present in the void space. This causes
fluid particles travelling along their own microscopic streamline to spread out, contributing
to further disperse in the flow direction any solute contained in it. The velocity gradient
existing within the pores in the direction perpendicular (also defined as transverse) to
the flow causes a differential transport of solute in that direction, leading to gradients of
concentration, and ultimately producing solute fluxes in the transverse direction due to
molecular mixing. The mechanisms of spreading produced by a flow through a porous
medium are referred to as ‘mechanical’ dispersion, to indicate a spreading due to fluid
mechanical phenomena. Unlike molecular diffusion which occurs also in a still fluid, both
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the flow and the porous medium are required for mechanical dispersion to take place.
We refer the reader to Bear & Cheng (2010) for an extensive presentation of this
processes. We remark that molecular diffusion is a pore-scale process purely controlled by
concentration gradients. Despite being originated by a very different physical mechanism,
mechanical dispersion (which is a macroscopic flow property) has been modelled through
a functional form analogous to that of molecular diffusion, since both contribute to
spread the solute. In addition, the effects of mechanical dispersion may overcome those
of molecular diffusion in the absence of flow by several orders of magnitude. At the
macroscopic (Darcy) level, the combination of molecular diffusion and mechanical
dispersion is also indicated as hydrodynamic dispersion (Bear & Cheng 2010; Wen,
Chang & Hesse 2018). For simplicity, we refer to ‘mechanical dispersion’ as ‘dispersion’.
Some of the modelling approaches proposed to describe the spreading of a solute in a
porous medium include modelling of the shear (Taylor 1953), of the no-slip condition at
the solid boundaries (Saffman 1959) and of the dead-end pores (Coats & Smith 1964).

Deriving a unified model reproducing all these effects is challenging, due to the large
space of the governing parameters (depending on fluid, medium and flow properties)
and the different nature of the physical mechanisms involved. An approach commonly
adopted consists of introducing a dispersion tensor in the transport equation governing
the scalar phase (solute). This tensor combines molecular diffusion (quantified by the
diffusivity coefficient D∗

m) and dispersion, modelled as an equivalent (or effective) value
of solute diffusivity. Two coefficients are used to describe the spreading of solute in
longitudinal (i.e. aligned with the flow) and transverse (i.e. perpendicular to the flow)
directions (Delgado 2007), and are indicated with D∗

l and D∗
t , respectively. In general,

these coefficients are obtained through laboratory experiments in constant-displacement
flows through uniform porous media, but analogous results can be also achieved using
pore-network models (Bijeljic, Muggeridge & Blunt 2004). It has been shown that the
dispersion coefficients depend on the relative importance of flow velocity to solute
diffusivity (Péclet number), among other parameters (e.g. Schmidt number and surface
tension), and several flow regimes have been identified and well characterised theoretically
(Saffman 1959; Koch & Brady 1985; Puyguiraud, Gouze & Dentz 2021).

In the above-mentioned works, the flow field is imposed a priori, and it is independent of
the solute distribution within the system. In the case of buoyancy-driven flows, however,
the solute field determines the flow, and the effects of dispersion have been quantified
only for a few configurations. Menand & Woods (2005) provided measurements of the
longitudinal dispersion coefficient for two miscible fluid layers with different density,
and driven by either a gravitationally stable or unstable linear displacement flow, and
therefore with dispersion provided by both displacement- and buoyancy-induced flows.
They found that when buoyancy dominates, representing the case of interest in this work,
dispersion controls the initial diffusive growth of the mixing zone and the formation and
growth of the instabilities. From a macroscopic perspective, buoyancy-driven flows have
been investigated by Hesse & Woods (2010). They observed that the effect of dispersion
associated with the presence of barriers is different from that relative to small-scale
dispersion and, depending on the geometry of the barriers, may exceed the latter by several
orders of magnitude. The role of dispersion in solute transport in buoyancy-driven flows
has been partially explored via numerical simulations in semi-infinite systems (Hidalgo
et al. 2012; Emami-Meybodi 2017; Liang et al. 2018; Michel-Meyer et al. 2020; Dhar et al.
2022) and in confined steady-state flows with constant driving (Wen et al. 2018; Gasow
et al. 2021). Despite these efforts, the effects of dispersion on buoyancy-driven flows in
closed systems (i.e. in the absence of an external driving) remain largely unexplored, and
we aim precisely at bridging this gap.
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We analyse the role of dispersion in convective mixing in two-dimensional,
homogeneous and isotropic porous media. We consider a Rayleigh–Taylor instability,
obtained by stacking, in an unstable configuration, two fluid layers initially divided by
a horizontal interface. The fluids are fully miscible, so there is no stabilising effect
introduced by the presence of a surface tension, and a solute is responsible for the density
differences which drive the flow. This flow configuration represents the archetypal problem
used to study closed systems, and has been extensively studied in previous numerical
works, in two dimensions and without dispersion (see e.g. De Wit 2016, 2020; De Paoli
et al. 2019b; Gopalakrishnan, Knaepen & De Wit 2021, and references therein). Recently
this problem has been also investigated in detail in three dimensions (Boffetta, Borgnino &
Musacchio 2020; Boffetta & Musacchio 2022), allowing one to explore the role of the
flow dimensionality. In this work, we include also the effect of dispersion of solute
using the anisotropic Fickian dispersion tensor formulation proposed by Bear (1961).
In this modelling framework, dispersion is controlled by the dimensionless parameters
r = D∗

l /D∗
t , defined as the anisotropy ratio, and the relative importance of molecular

diffusion to transverse dispersion, Δ = D∗
m/D∗

t . While Δ may vary over several orders
of magnitude (e.g. 0.02 �Δ� 100; see Liang et al. (2018)), r is restricted to a narrower
range, namely 1 � r � O(10), where r ≈ 10 is appropriate for advection-dominated flows
with solute transport (Bijeljic & Blunt 2007). The relative strength of buoyancy and
molecular diffusion is quantified by the Rayleigh–Darcy number (Ra). With the aid
of numerical Darcy simulations, we investigate the mixing dynamics at Ra = 104, in
correspondence of which multiple flow regimes are present (unlike at lower values of Ra).
We employ the anisotropic dispersion tensor formulation to simulate high-Ra convection
in a closed system. We use the model proposed by Wen et al. (2018), who investigated a
statistically steady porous Rayleigh–Bénard system, to analyse a transient flow. Moreover,
while in the Rayleigh–Bénard case heat or mass transfer at the boundaries is possible, the
problem investigated here is a closed system with no external forcing, where the driving
is uniquely given by the initial available potential energy. Finally, this work complements
recent studies on Rayleigh–Taylor convection in porous media at high Rayleigh–Darcy
numbers (De Paoli et al. 2019a,b; Boffetta et al. 2020; Boffetta & Musacchio 2022) by
systematically investigating the effect of dispersion.

The paper is organised as follows. In § 2 we present the flow configuration and the
numerical method employed. The theoretical framework developed to carry out a detailed
analysis of the molecular and dispersive components of the mean scalar dissipation is
presented in § 3. The flow evolution is first studied in the absence of dispersion (Δ → ∞;
§ 4), and then the effects of Δ (§ 5) and r (§ 6) are considered. Finally, the conclusions, an
example of relevance to geophysical applications and limitations of the current approach
are discussed in § 7.

2. Methodology
We study a convective flow in a porous medium at the Darcy scale. In this framework,
the equations are written for quantities averaged over a reference (or representative)
elementary volume (REV) (Whitaker 1998), consisting of an intermediate scale larger than
the individual pores, but smaller than the characteristic size of the macroscopic domain
and of the flow structures. A thorough description of how to select an appropriate size of
the REV is discussed by Whitaker (1998) and Nield & Bejan (2006). In general, the results
of the averaging procedure should be independent of the size of the REV. For buoyancy-
driven flows, this procedure can be applied when: (i) the dissipative mechanisms, such as
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z/Ra = 1/2

z/Ra = −1/2

z

x

L
w = 0 , ∂zC = 0

w = 0 , ∂zC = 0

1

0

C = 1

C = 0

g

Ra C

Figure 1. Sketch of the flow configuration with all quantities shown in dimensionless units. An example of ini-
tial concentration field, C , consisting of a heavy fluid layer with maximum solute concentration at top (C = 1)
and minimum at bottom (C = 0), is shown. The flow reference frame (x, z), the boundary conditions and the
direction of the gravitational acceleration (g) are indicated, as well as the domain size in horizontal (L) and
vertical (Ra) directions.

molecular diffusion and viscous dissipation, dominate over inertia (De Paoli 2023); and
(ii) the flow structures are large compared with the characteristic pore size (Hewitt 2020).

We consider a fluid-saturated porous medium in a two-dimensional domain having
uniform porosity φ and permeability K . We assume the flow is incompressible and
governed by the Darcy equation, and it is characterised by an unstable density difference
(�ρ∗) induced by the presence of a solute concentration field, C∗ (the superscript ∗ is
used to indicate dimensional variables). The system is periodic in the horizontal direction
x∗ and confined by two walls that are impermeable to fluid and solute in the vertical
direction z∗, along which the gravitational acceleration g acts. The domain extension is L∗

x
and L∗

z in horizontal and vertical directions, respectively. A sketch of the computational
domain with indication of the boundary conditions is reported in figure 1. The scalar
field C∗ varies between C∗

min and C∗
max. The evolution of this field is controlled by the

advection–dispersion equation (Nield & Bejan 2006):

φ
∂C∗

∂t∗
+ u∗ · ∇∗C∗ = ∇∗ · (φD∗∇∗C∗) , (2.1)

where t∗ is time and u∗ = (u∗, w∗) is the velocity field. The effect of dispersion is
accounted for by the hydrodynamic dispersion tensor D∗ that depends on the local flow
conditions. We follow the formulation proposed by Bear (1961) and later widely employed
(Bear & Bachmat 2012; Emami-Meybodi 2017; Wen et al. 2018) to model dispersion
effects, and D∗ reads

D∗ = D∗
m I + (α∗

l − α∗
t )

u∗(u∗)T

|u∗| + α∗
t I|u∗|, (2.2)

where I is the identity matrix, D∗
m the molecular diffusion coefficient, α∗

l the longitudinal
dispersivity and α∗

t the transverse dispersivity (where α∗
l � α∗

t ; Delgado 2007). Note that
the advection–diffusion form of the tensor (D∗ = D∗

m I ) is recovered when u∗α∗
l /D∗

m � 1.
We consider the fluid density, ρ∗, to be a linear function of the concentration:

ρ∗(C∗) = ρ∗ (C∗
min
)+ �ρ∗ C∗ − C∗

min
�C∗ , (2.3)

with �C∗ = C∗
max − C∗

min and �ρ∗ = ρ∗(C∗
max) − ρ∗(C∗

min). Assuming the validity of the
Boussinesq approximation, which is reasonable, e.g. in the context of brine transport
in porous media (Landman & Schotting 2007), the flow field is fully described by the
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continuity and the Darcy equations:

∇∗ · u∗ = 0, u∗ = − K

μ

(∇∗ P∗ + ρ∗gk
)
, (2.4a,b)

with μ the fluid viscosity (constant), P∗ the pressure and k the vertical unit vector.
Additional correction terms to account for inertial effects can be included (Nield & Bejan
2006), but lie beyond the scope of this work. Since the walls are impermeable to the fluid,
the boundary condition reads

u∗ · n = 0 ⇒
{

w∗ (z∗ = −L∗
z /2
)= 0

w∗ (z∗ = +L∗
z /2
)= 0

(2.5)

with n the unit vector perpendicular to the boundary (note that slip at the walls is possible).
At the upper and lower walls, no-flux (∂z∗C∗ = 0) conditions are considered. Periodicity
is forced in the wall-parallel directions.

2.1. Dimensionless equations
A natural velocity scale relevant to the convective system examined is the buoyancy
velocity, U∗ = g�ρ∗K/μ. After the onset of convection, fingers start to develop vertically
from the centreline (z∗ = 0), and the domain height is relevant only after the fingers
reach the walls. Therefore, it may be convenient to make the equations dimensionless
with respect to flow units that are independent of the domain geometry. In particular, as
proposed by Fu, Cueto-Felgueroso & Juanes (2013), one can use as a reference length
scale �∗ = φD∗

m/U∗, where the vertical domain extension L∗
z is not included. Using these

scales we obtain the following set of dimensionless variables:

C = C∗ − C∗
min

C∗
max − C∗

min
, x = x∗

�∗ , u = u∗

U∗ , (2.6)

t = t∗

φ�∗/U∗ , p = p∗

�ρ∗g�∗ , (2.7)

where we introduced the reduced pressure p∗ = P∗ + ρ∗(C∗
min)gz∗. We finally derive the

dimensionless form of the governing equations (2.1)–(2.4):

∂C

∂t
+ u · ∇C = ∇ · (D∇C), (2.8)

∇ · u = 0, (2.9)
u = − (∇ p + C k), (2.10)

where

Ra = g�ρ∗K L∗
z

φD∗
mμ

= U∗L∗
z

φD∗
m

(2.11)

is the Rayleigh–Darcy number (indicated as the Rayleigh number in the following). We
recall here that K and φ represent the medium permeability and porosity, respectively,
and are considered uniform here. Finally, the dispersion tensor D∗ introduced in (2.2) and
expressed in dimensionless form reads

D = I + 1
Δ

[
(r − 1)

uuT

|u| + I|u|
]
, (2.12)
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where

Δ = D∗
m

D∗
t

, r = D∗
l

D∗
t

= α∗
l

α∗
t

(2.13)

with D∗
m the molecular diffusion coefficient, D∗

t = α∗
t U∗ the transverse dispersion

coefficient, D∗
l = α∗

l U∗ the longitudinal dispersion coefficient and r the dispersivity ratio.
The flow is completely defined by four dimensionless parameters: Ra, L = L∗

x/�
∗, Δ and r .

This formulation is similar to that proposed by Wen et al. (2018). However, in this case the
governing parameter Ra does not appear explicitly in the equations, and it corresponds to
the dimensionless domain height (Ra = L∗

z /�
∗; see also figure 1). In addition, provided L

is sufficiently large to allow the formation of multiple flow structures and to minimise the
effects of the periodic forcing, the flow is also independent of L itself.

2.2. Numerical solution of the equations
The set of equations (2.8)–(2.10) is solved numerically with the aid of the second-order
finite-difference code AFiD-Darcy open-sourced by our research group (De Paoli 2025).
The code consists of an efficient solver for massively parallel simulations of convective,
wall-bounded and incompressible porous media flows, and it is based on the initial version
of AFiD developed for turbulent flows (Van Der Poel et al. 2015). The algorithm is
based on a pressure-correction scheme and employs an efficient fast-Fourier-transform-
based solver. The parallelisation method is implemented in a two-dimensional pencil-like
domain decomposition, which enables efficient parallel large-scale simulations. The
implementation in the absence of dispersion was validated against different canonical
flows in porous media, including Rayleigh–Taylor instability (Boffetta et al. 2020).
Additional numerical details of the solution algorithm are provided by De Paoli et al.
(2025a). In addition, in this work we solve the flow including the effect of dispersion
(2.12) (see Appendix B.1 for further details on the numerical treatment of the dispersive
terms). The algorithm with dispersion is validated against the work of Wen et al. (2018)
repeating their simulations in Rayleigh–Bénard–Darcy configuration, and comparing the
results in terms of molecular, dispersive and total Nusselt numbers.

We employ here a uniform grid spacing with cells of size �x ≈ �z < 10 (expressed
in dimensionless units as discussed in § 2.1) in horizontal and vertical directions,
respectively. The present simulations are over-resolved compared with the minimum
requirements of the case without dispersion (corresponding to �x = �z = 15.625; see
De Paoli et al. 2025a). The minimum number of grid points in the vertical direction
used here is 128, making the grid even further over-resolved in the low-Ra case. In
the horizontal direction, the domain size is fixed (L = 105), as well as its resolution
(Nx = 10 240, �x = L/Nx < 10), for all simulations except for the smallest Δ considered
here (Δ = 5 × 10−2), for which the resolution is doubled and the domain width halved in
order to keep the computational cost affordable. The details of all simulations performed
are listed in table 1. The flow is initialised with a step-like profile obtained from the
analytical diffusive solution (2.8). Additional details of the initial condition and the grid
requirements are also provided in Appendix B.2.

3. Global budgets and mixing indicators
Exact global conservation equations relative to the transport of the scalar quantity can
be derived and employed to investigate the mixing process. We consider here the case of
an incompressible and dispersive flow governed by (2.8)–(2.12), and we derive the first-
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Ra Δ r L L/Ra Nx × Nz γ

1 × 102 ∞ — 1 × 105 1000 10 240 × 128
2 × 102 ∞ — 1 × 105 500 10 240 × 128
5 × 102 ∞ — 1 × 105 200 10 240 × 128
1 × 103 ∞ — 1 × 105 100 10 240 × 128
2 × 103 ∞ — 1 × 105 50 10 240 × 256
5 × 103 ∞ — 1 × 105 20 10 240 × 512
1 × 104 ∞ — 1 × 105 10 10 240 × 1024 0.59
2 × 104 ∞ — 1 × 105 5 10 240 × 2048

1 × 104 1 × 105 10 1 × 105 10 10 240 × 1024 0.59
1 × 104 1 × 101 10 1 × 105 10 10 240 × 1024 0.59
1 × 104 1 × 100 10 1 × 105 10 10 240 × 1024 0.53
1 × 104 1 × 10−1 10 1 × 105 10 10 240 × 1024 0.49
1 × 104 5 × 10−2 10 5 × 104 5 10 240 × 2048 0.40

1 × 104 1 × 10−1 1 1 × 105 10 10 240 × 1024 0.46
1 × 104 1 × 10−1 2 1 × 105 10 10 240 × 1024 0.44
1 × 104 1 × 10−1 5 1 × 105 10 10 240 × 1024 0.44
1 × 104 1 × 10−1 10 1 × 105 10 10 240 × 1024 0.49
1 × 104 1 × 10−1 20 1 × 105 10 10 240 × 1024 0.48

Table 1. Summary of the parameters employed in the simulations. The governing parameters of the flow
(Rayleigh number Ra, domain width L and domain aspect ratio L/Ra) and the dispersion parameters (Δ and
r ; see (2.13)) are indicated, as well as the grid resolution employed. Finally, the dimensionless growth rate of
the mixing layer, γ , defined in (4.4), is reported for the simulations with Ra = 104.

and second-order global budgets in §§ 3.1 and 3.2, respectively. Finally, we introduce the
degree of mixing, representative of the current mixing state of the system, in § 3.3.

3.1. First-order global budget
We apply the volume-average operator 〈·〉 = 1/V

∫
V · dV to (2.8). Using the divergence

theorem, the incompressibility of the flow and the no-penetration/periodic boundary
conditions, we derive the global flux of solute in the domain:

d〈C〉
dt

= 1
V

∫
S=∂V

[
(D∇C)z=−Ra/2 + (D∇C)z=+Ra/2

] · n dS (3.1)

= 1
RaS

∫
S

[
−
(

Dzz
∂C

∂z

)
z=−Ra/2

+
(

Dzz
∂C

∂z

)
z=+Ra/2

]
dS (3.2)

= 1
Ra

[
F (z = Ra/2) − F (z = −Ra/2)

]
, (3.3)

where Dzz = 1 + Δ−1[|u| + (r − 1)w2/|u|] (see Appendix A) and F(zi ) is the dispersive
flux at the walls, defined as

F(zi ) = 1
S

∫
S

[(
∂C

∂z

)
z=zi

+
( |u|

�

∂C

∂z

)
z=zi

]
dS (3.4)

with S = Lx or S = Lx × L y in two and three dimensions, respectively. Note that (3.4)
corresponds to the definition of (10) proposed by Wen et al. (2018). In the present
configuration, due to the no-flux condition at the boundaries (∂zC = 0), we have that F = 0
1020 A24-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
68

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10684


Journal of Fluid Mechanics

and then

d〈C〉
dt

= 0. (3.5)

3.2. Second-order global budget
Following previous works on convection in semi-infinite layers (Hidalgo et al. 2012),
Rayleigh–Bénard flows (Otero et al. 2004; Hassanzadeh; Chini & Doering 2014; Zhu,
Fu & De Paoli 2024; Hu & Yang 2024) and Hele-Shaw flows (Letelier, Mujica &
Ortega 2019; Ulloa & Letelier 2022; Ulloa, Noto & Letelier 2025), we multiply (2.8)
by C and apply the volume-average operator 〈·〉. We use the divergence theorem and the
incompressibility of the flow to derive the global budget (De Paoli 2023):

1
2

d〈C2〉
dt

= 1
V

∫
S

[
(CD∇C)z=−Ra/2 + (CD∇C)z=+Ra/2

] · n dS − 〈(∇C) · (D∇C)〉
(3.6)

= 1
Ra

[
−(C F)z=−Ra/2 + (C F)z=+Ra/2

]
− 〈(∇C) · (D∇C)〉 (3.7)

with n a unit vector normal to the boundary. Since we refer to a Rayleigh–Taylor
configuration, i.e. ∂zC(z = ±Ra/2) = 0, we have that

1
2

d〈C2〉
dt

= −〈(∇C) · (D∇C)〉. (3.8)

Inspired by the Grossmann–Lohse theory (Grossmann & Lohse 2000, 2001; Lohse &
Shishkina 2024) where the key idea is to spatially split the viscous dissipation rate into
boundary-layer and bulk contributions, here we divide the scalar dissipation into two parts,
one ascribed to the molecular component and the other to the dispersive component of the
dispersion tensor. Expressed in terms of mean scalar dissipation, (3.8) reads

1
2

d〈C2〉
dt

= − 1
Ra

χ, (3.9)

where

χ = χm + χd , χm = Ra〈|∇C |2〉, χd = Ra
〈
(∇C) · (D∇C) − |∇C |2〉. (3.10a,b,c)

The components of the mean scalar dissipation introduced in (3.10) are defined as the
total, molecular and dispersive contributions, respectively. Note that in the absence of
dispersion (Δ → ∞) we obtain D = D∗

m I and then χd = 0. The choice to introduce Ra in
the definition of mean dissipation is required to obtain results that are self-similar when
different Ra are considered, i.e. to make the results independent of the domain height until
the fingers reach the horizontal boundaries (De Paoli et al. 2019a). In dimensional terms,
the components of the mean dissipation defined in (3.10) read

χ∗ = χ∗
m + χ∗

d , χ∗
m = D∗

m〈|∇∗C∗|2〉 = U∗(�C∗)2

φH∗ χm, (3.11)

χ∗
d = 〈(∇∗C∗) · (D∗∇∗C∗) − |∇∗C∗|2〉 = U∗(�C∗)2

φH∗ χd . (3.12)

Note that χ∗
m in (3.11) matches the definition of dissipation used by De Paoli et al. (2024).
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3.3. Quantification of mixing
Following the approach proposed by Jha, Cueto-Felgueroso & Juanes (2011), we introduce
the degree of mixing, a quantity that varies between 0 and 1, and is representative of
the current mixing state of the flow. The initial state of the system is characterised by
two uniform layers having different concentration and divided by a sharp interface, i.e.
C(x, z > 0, t = 0) = 1 and C(x, z < 0, t = 0) = 0. Ultimately, the system will achieve
a well-mixed condition and the concentration field will be uniform, corresponding to
C(x, z, t → ∞) = 1/2. As a result, the mean concentration variance, defined as σ 2 =
〈C2〉 − 〈C〉2, is initially maximum and equal to σ 2(t = 0) = σ 2

max = 1/4, and ultimately
minimum and corresponding to σ 2(t → ∞) = 0. The variance is representative of the
mixing state, which we quantify using the degree of mixing:

M(t) = 1 − σ 2(t)

σ 2
max

. (3.13)

Such definition gives M(t = 0) = 0 when the two layers are perfectly segregated and
M(t → ∞) = 1 when a perfect mixing is achieved. Also in this case, we split the degree of
mixing into two contributions resulting from the partition of the dissipation (Grossmann &
Lohse 2000, 2001). Given the definition of σ 2 and the budget (3.9), one can rewrite
(3.13) as

M(t) = 1 − σ 2(t)

σ 2
max

= 1 −
〈C2(0)〉 − 〈C(t)〉2 + ∫ 〈C2(t)〉

〈C2(0)〉 d〈C2〉
σ 2

max

= 2
σ 2

maxRa

∫ t

0
(χm + χd) dτ = Mm(t) + Md(t), (3.14)

where the degree of mixing has been split into the molecular and dispersive components,
respectively:

Mm(t) = 2
σ 2

maxRa

∫ t

0
χm dτ, Md(t) = 2

σ 2
maxRa

∫ t

0
χd dτ. (3.15a,b)

4. Flow evolution without dispersion (Δ → ∞)
We consider the simulations performed without dispersion corresponding to Δ → ∞
in (2.12), and we explore the dynamics for different values of Rayleigh number Ra.
We cover a wide range of Ra, namely 102 � Ra � 2 × 104, and we simulate domains
having constant width L = 105. The details of all simulations performed are listed
in table 1. In the absence of dispersion, the influence of Ra on the flow dynamics
has been previously investigated in several two-dimensional works (De Wit 2004;
De Paoli et al. 2019a,b; Borgnino, Boffetta & Musacchio 2021). Here we complement
these analyses, which are essential to derive a clear picture of the flow dynamics
also in the case of dispersive flows. For all Ra considered, we report in figure 2
the evolution of the molecular component of the mean scalar dissipation χm (for
Δ → ∞, χd = 0). The dimensionless set of variables used is particularly suitable to
highlight the self-similar behaviour of the system. In particular, the flow evolution is
independent of Ra until the domain walls have an effect on the flow, i.e. until the
fingers grow and their flow field feels the influence of the horizontal impermeable walls.
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Figure 2. Evolution of the molecular mean scalar dissipation χm in the absence of dispersion and for different
Rayleigh numbers Ra (solid lines). The flow evolution is independent of Ra until the flow field of the fingers
is significantly influenced by the presence of the horizontal walls. The analytical diffusive solutions in the
unconfined (4.2) (dotted line) and confined (C5) (dashed line) cases are also reported.

For very small values of Ra (Ra � 103), the dynamics is soon influenced by the presence
of the walls, and convective instabilities may not form or only partially develop.

In the following, to analyse in detail the flow dynamics, we focus on the simulation at
Ra = 104, which serves also as a reference for the dispersive cases studied in §§ 5 and 6.
The system behaviour relative to different Ra can be inferred from the analysis presented.
The flow evolution is initially characterised by inspecting the concentration fields and
the concentration profiles in figure 3, together with the corresponding mixing indicators
in figure 4. The process is also illustrated in supplementary movie S1 available at
https://doi.org/10.1017/jfm.2025.10684. We identified several flow regimes characterising
the evolution of the system, which we discuss individually in the following.

The flow is initialised with a step-like concentration profile (figure 3a) with a thin
interface dividing the two fluid layers and no flows (u = 0). Therefore, the interface
will initially grow driven by diffusion, making the concentration gradient (and then the
mean scalar dissipation χ = χm ; see figure 4a) progressively reduce. This trend continues
until the first convective instabilities appear at t ≈ 103; see figure 3(b-iii). Similarly to
what has been previously observed in convection in semi-infinite domains (Elenius &
Johannsen 2012), the precise time at which this growth starts, as well as the maximum
values of scalar dissipation later achieved, depend on the initial perturbation. However, the
overall dynamics is qualitatively comparable to that described here for the initial condition
considered discussed in detail in Appendix B.2. The flow is initially purely controlled
by diffusion. An analytical solution of the advection–dispersion equation (2.8) can be
obtained for an unconfined domain, in the absence of convection (u = 0) and assuming
homogeneity in wall-parallel directions (∂x · = 0), which reads (De Paoli et al. 2019b)

C(z, t) = 1
2

[
1 + erf

(
z

2
√

t

)]
. (4.1)

Results relative to the horizontally averaged concentration profiles reported in figure 5(b)
indicate an excellent agreement with (4.1) (dotted line). Employing (4.1) in the definition
(3.10), it follows that the contributions of the mean scalar dissipation during the initial
phase (assuming u = 0) are

χm = 1√
8π t

, χd = 0, χ = 1√
8π t

, (4.2a,b,c)
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Figure 3. Evolution of the concentration field relative to the simulation Ra = 104. (a–e) A portion of the
domain is shown, corresponding to half of the domain width (left panels, indicated with (i)) and 1/20 of the
domain width (right panels, indicated with (ii) and corresponding to the white rectangle in the corresponding
panels (i)). The entire domain simulated is shown in (d–h). The data correspond to the points indicated in
figure 4.

and they are very well captured by the simulation (see figure 4a). Correspondingly, (3.15)
predicts the degree of mixing to evolve as

Mm = 8
√

t√
2π

, Md = 0, M = 8
√

t√
2π

. (4.3a,b,c)

Note that for very low Rayleigh numbers (Ra = 102), the solution (4.2) does not represent a
good approximation due to the effect of confinement: a no-flux boundary condition should
be employed to determine the analytical solution. In Appendix C.1, we derive the analytical
diffusive solution (C5) relative to the confined case, which we report in figure 2 (dashed
line), which describes very well the evolution observed numerically.
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Figure 4. Evolution of the mean scalar dissipation for the simulation Ra = 104 without dispersion (see table 1
for additional details). The concentration fields and profiles correspond to the instants indicated by the letters
shown in figure 3. The diffusive solution (4.2) is also reported in (a). The flow regimes identified are indicated
in (b).

Similarly to what has been observed in semi-infinite domains (see Slim (2014); De Paoli
et al. (2025b) and references therein), the flow is later characterised by a dissipation growth
(figures 3b,c). When the newly formed fingers have grown, they accelerate vertically
sharpening the concentration gradient at their interface, corresponding to the increase in
the mean dissipation observed in figure 4(a) between t ≈ 103 and t ≈ 2.5 × 103.

Later, fingers grow further, but in an uneven manner (figures 3c,d): some fingers extend
vertically at large velocity and invade regions of the domain with uniform concentration,
and far from other fingers. In this situation, the strong concentration difference between the
inner and outer finger region, combined with the absence of neighbouring flow structures
(and then no strong shear) prevents the fingers from expanding laterally, and makes the
interface to grow diffusively while the fingers continue to extend vertically. As a result, the
concentration gradients reduce and so does and the mean scalar dissipation in figure 4(a).

The velocity field generated by each finger induces interactions with the neighbouring
ones, eventually leading to merging: The pioneering fingers perturb the velocity field of
the neighbouring shorter fingers, compressing and forcing them to retreat and eventually
to merge (figure 3d,e). In this phase, similarly to what has been discussed in the uneven
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Figure 5. Evolution of the horizontally averaged concentration profiles, C , relative to simulation Ra = 104,
Δ → ∞. Profiles reported correspond to instants taken preceding the finger impact on the walls. Specifically,
they are in the range 400 � t � 16 000 (a), in the initial diffusive regime (t � 1.4 × 103) (b) and in the finger
merging and growth regime (t � 7 × 103) (c). In (b), the dashed line indicates the initial diffusive solution
(4.1). In (c), the wall-normal coordinate is rescaled with t − t0, where t0 = 4 × 103. The dashed line represents
(4.4).

finger growth regime, the fingers keep growing vertically in unexplored regions of the flow,
but now there is a large and nearly uniform reservoir of solute at the core of the fingers.
The gradient of concentration at the finger interface still decreases, but at a lower rate
compared with the increase of interfacial extension of the fingers, driven by their vertical
growth. As a result, the overall behaviour corresponds to an increase of the mean scalar
dissipation in figure 4(a).

During the finger merging and growth phase, the mixing region grows approximately
linearly in time (namely, ∼t1.2; see De Paoli et al. 2019b, 2022). Indeed, rescaling the
profiles in figure 5(c) with respect to z/t , they result in being well approximated by the
linear function

C = 1
2

+ z

γ (t − t0)
(4.4)

(dashed line in figure 5c), where t0 = 4 × 103 corresponds (approximately) to the time at
which this regimes starts and γ = 0.59 is the dimensionless growth rate of the mixing
layer, in good agreement with the measurements of Boffetta & Musacchio (2022), who
reported a value of 0.67 obtained at larger Ra. The value of γ computed for all the
simulations is reported in table 1. It has been obtained as a best fit of (4.4) for the
concentration profile within the range 0.05 � C � 0.95, with t0 = 4 × 103 and within
the interval 7 × 103 � t � 1.6 × 104. For simulations Δ = 5 × 10−2 and r = 20, in which
the finger development is slower, the profiles are considered in the interval 1.5 × 104 �
t � 2.7 × 104.

When the fingers reach the horizontal boundaries of the domain (t ≈ 2 × 104), the
growth of mean scalar dissipation arrests. At this time, the concentration profile is nearly
linear and still unstable (figure 3e-ii), indicating that the upper portion of the system is
still characterised by a higher concentration of solute, and then larger density, compared
with the lower layer. The density contrast between the upper and lower domains, however,
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is much smaller than at the beginning. There is no further fresh fluid available to mix with
the fluid at the core of the fingers, and the local concentration gradient across the interface
of the fingers decreases progressively. At the same time, the situation at the domain
centre (z = 0) is steady, with no new fingers forming and no fingers merging, and with
the solute being transported along the finger path already created. This process occurs
from the unstably stratified configuration in figure 3(e) until a stably stratified solute
distribution is achieved (figure 3g). Note that the footprint of the fingers persists for a long
time (figure 3f ), and it smoothly disappears when the residual convective driving dies out.
Indeed, despite being separated by approximately 1.2 × 105 dimensionless time units, the
difference between the horizontally averaged concentration profiles in figures 3( f ) and
3(g) is very limited.

When the stably stratified distribution (figure 3g-ii) is achieved, the buoyancy effects are
negligible, and diffusion drives mixing from now on. The system enters a final diffusive
regime that, despite being characterised by a very low value of the mean dissipation
(figure 4a), is responsible for approximately 14 % of the overall mixing, i.e. (see figure 4b)
M grows from ≈ 0.86 in (g) to ≈ 1 in (h). Similarly to what we have derived for Ra = 102

for the initial confined diffusive evolution (see Appendix C.1), we can derive here an
analytical solution for the mean scalar dissipation during the late stage. Again, we use
(2.8), assume that the fluid is still (u = 0) and consider the system uniform in the horizontal
direction (∂x C = 0). At large Ra a different initial condition has to be considered, namely
a linear concentration profile, representative of a stably stratified flow that starts at t = t f
(see Appendix C.2 for addition details). The solution (C7) computed using n = 100 is
shown in figure 6(a) for three values of Ra, namely Ra = 102, 103 and 104 (with the
case 104 previously discussed throughout the entire flow evolution). The accuracy of the
analytical solution in predicting the decay of dissipation obtained in the simulations is
excellent. As already observed in the initial confined diffusion for Ra = 102, also in (C7)
we have that ∂C/∂ z̄ ∼ exp(−n2), indicating a fast decay with n. Therefore, to leading
order the dissipation can be approximated as

χm(t) ∼ exp
[
−2
( π

Ra

)2
t

]
, (4.5)

which we show in figure 6(a) and indicate with n = 1. Also in this case, the agreement
is excellent, and we conclude that (4.5) can be employed to approximate the behaviour
during the final diffusive phase. For long times, the well-mixed condition is achieved,
corresponding to the asymptotic equilibrium profile:

C(z̄, t → ∞) = 1/2, (4.6)

with the mean scalar dissipation (C7) and degree of mixing given by

χm(t → ∞) = 0 and Mm(t → ∞) = 1, (4.7a,b)

respectively. One can indeed observe in figure 6(b) that the well-mixed condition is
ultimately achieved. Note that, for ease of comparison, the degree of mixing Mm is shown
rescaled by Ra, and the corresponding diffusive solution is Mm × Ra = 8Ra

√
t/(2π).

5. Flow evolution with dispersion: influence of Δ

We present here the results relating to the effect of Δ at Ra = 104 and r = 10. The choice
of Ra is motivated by the fact that at such Ra all the phases of the flow evolution described
in § 4 can be observed. Since the dispersion model (2.12) considered in this work relies
on two parameters, Δ and r defined in (2.13), to keep the computational costs affordable,
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Figure 6. Scalar dissipation rate (a) and rescaled degree of mixing (b) are reported as a function of time t
for three values of Rayleigh number, Ra, namely 102, 103, 104. The system is self-similar and at early times
it follows the analytical solutions (initial unconfined diffusion), (4.2) for χm and (4.3) for Mm , indicated here
with black dotted lines. As soon as the system achieves a stably stratified condition, it enters the final diffusive
phase. The scalar dissipation evolves according to (C7) indicated in (a) by the black solid lines and computed
using n = 100 (note that for Ra = 102, the initial confined solution (C5) is used). However, these solutions are
very well approximated also when n = 1, scales as (4.5) and is indicated by the blue dashed lines. Ultimately,
the domain attains the fully mixed condition (4.7) (black dashed line in b).

we decided to vary Δ and fix the anisotropy ratio to r = 10. Determining which value
is more appropriate for r is a matter of debate (Delgado 2007), since the longitudinal
(D∗

l ) and transverse (D∗
t ) components of dispersion depend on several flow parameters

(e.g. Schmidt number, Reynolds number, tortuosity of the medium, Péclet number, fluid
phases involved; see De Paoli (2023) and references therein). The value of r varies with
the dispersion regime, and in general it is not appropriate to take D∗

t to be one order of
magnitude smaller than D∗

l , which is the most common choice in numerical studies of
dispersion. However, when studying solute transport in the advection-dominated regime,
this assumption holds (Bijeljic & Blunt 2007), and therefore we consider our findings
representative of this case.

5.1. Flow dynamics
In the presence of dispersion, the evolution of the flow follows a behaviour that is
similar to the case discussed in § 4, and eventually with fewer regimes as Δ is decreased
(see supplementary movie S2 for the time-dependent evolution of the simulation with
Δ = 10−1, reported in figure 7e). The concentration distribution over the entire field at
t = 2 × 104 is reported in figure 7 for different values of Δ. The effects of Δ on the flow
morphology, which are discussed in the following, are multiple.

Results relating to the horizontally averaged concentration profiles are reported in fig-
ure 8, where different times, namely 400 � t � 16 000, are shown for the simulation with
Δ = 0.1 and r = 10 (figure 8a). At early times (figure 8b), the profiles follow the diffusive
growth ((4.1), dashed line). Later, the mixing region extends approximately linearly in time
and the profiles are very well fitted by the linear function (4.4) (dashed line in figure 8c),
where t0 = 4 × 103 and γ = 0.49. Note that in this case the dimensionless growth of the
mixing layer γ is lower compared with the case without dispersion (γ = 0.59). This can
be easily verified comparing the concentration fields of figures 7(a) and 7(e).

1020 A24-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
68

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10684
https://doi.org/10.1017/jfm.2025.10684


Journal of Fluid Mechanics

(b)

Δ = 105

(c)

Δ = 101

(d )

Δ = 100

(e)

Δ = 10−1

( f )

Δ = 5 × 10−2

x/Ra0 5

0 1

(a)

Δ → ∞
−0.5

0.5

z/
Ra

−0.5

z/
Ra

0.5

−0.5

0.5

z/
Ra

−0.5

0.5

z/
Ra

−0.5

0.5

z/
Ra

−0.5

0.5
z/

Ra
C

10

Figure 7. Concentration fields at t = 2 × 104 for (a–f ) different values of the dispersion parameter Δ. The field
(a) corresponds to the case without dispersion (Δ → ∞). See supplementary movie S2 for the time-dependent
evolution of the simulation with Δ = 10−1 (e).
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Figure 8. Evolution of the horizontally averaged concentration profiles, C , relative to simulation Ra = 104,
Δ = 0.1 and r = 10. Profiles reported correspond to instants taken preceding the finger impact on the walls.
Specifically, they are in the range 400 � t � 16000 (a), in the initial diffusive regime (t � 1.4 × 103) (b) and
in the finger merging and growth regime (t � 7 × 103) (c). In (b), the dashed line indicates the initial diffusive
solution (4.1). In (c), the wall-normal coordinate is rescaled with t − t0, where t0 = 4 × 103. The dashed line
represents (4.4).
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Figure 9. The distributions of (a) molecular (Ra|∇C |2, see (3.10)) and (b) dispersive (Ra[(∇C) · (D∇C) −
|∇C |2]) scalar dissipation taken at time t = 104. The case without dispersion is shown in (i) (Ra = 104, Δ →
∞) and the case with dispersion in (ii) (Ra = 104, Δ = 10−1, r = 10). For better visualisation, only a small
region in the core of the domain is shown (0 � x/Ra � 1/2, −1/4 � z/Ra � 1/4). The dashed lines represent
the iso-contours C = 1/4 and C = 3/4. (c) The probability density function (p.d.f.) of the components of
the molecular, dispersive and total dissipation normalised by their respective root mean squares (r.m.s.) and
relative to the specific fields considered. For better visualisation the limits of the colourbars in (a,b) are reduced
compared with the maximum/minimum values present in the field.

A first macroscopic observation is that reducing Δ has the effect of diminishing the
number of fingers. This is apparent for Δ� 1 (figure 7d–f ), but it occurs also for Δ = 10
(figure 7c), while no difference is observed when Δ = 105 (figure 7b) compared with
the case without dispersion (Δ → ∞; figure 7a). Since for small Δ the neighbouring
fingers are further away compared with the case without dispersion, each finger has more
space available to diffusively grow horizontally. This morphological effect combines with
the additional spreading provided by dispersion, which further reduces the concentration
gradient across the finger interface. A visual interpretation of this mechanisms is reported
in figure 9. The distribution of the molecular component of the scalar dissipation
(Ra|∇C |2) is shown in figures 9(a-i) and 9(a-ii), for a case without dispersion (Ra =
104, Δ → ∞) and with dispersion (Ra = 104, Δ = 10−1, r = 10), respectively. The
concentration fields refer to time t = 104, at which the fingers have grown to less than
half domain height (only a small region in the core of the domain is shown in figure 9a,b).

1020 A24-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
68

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10684


Journal of Fluid Mechanics

t
103 104 105

t
103 104 105

t
103 104 105

0.01

0

0.03

0.02

0.04

χ
 =

 χ
m

 +
 χ

d

(c)

0.01

0

0.03

0.02

0.04

χd

(b)

0.01

0

0.03

0.02

0.04

χm

(a)

Δ
∞
100000
10
1
0.1
0.05
Diffusive

Figure 10. Evolution of the mean scalar dissipation for different values of Δ. The red line refers to the case in
the absence of dispersion. The (a) molecular (χm ), (b) dispersive (χd ) and (c) total (χ = χm + χd ) dissipation.
The initial diffusive solution (4.3) (dotted line) is also indicated.

In the absence of dispersion (Δ → ∞; figure 9a-i), the fingers are constrained to grow
vertically within the narrow space between two neighbouring fingers. This produces large
values of dissipation at their side interface and also at their tips. Other regions of high
dissipation are identified as the portion of domain near the centreline, where the finger
pattern is more complex. In the dispersive case (Δ = 10−1; figure 9a-ii), high values of
dissipation are still localised in the same regions (side interface, tips and near the domain
centreline), but corresponding values are much lower. This matter is further discussed
from a global perspective in § 5.2.

A long-term consequence of the lower growth of the mixing region (γ = 0.49) compared
with the case without dispersion (γ = 0.59) is that it will take longer for the fingers
to reach the walls, and then to achieve the maximum value of mean scalar dissipation.
When this happens, however, the subsequent dynamics is similar to that described in the
unstably stratified and final diffusive regimes, leading to a progressive homogenisation
of the concentration distribution. In the following section, the global mixing dynamics is
presented.

5.2. Mixing
A behaviour similar to that discussed in § 4 is observed also in this case, with some
variations: after an initial diffusion-dominated phase still well described by (4.3), χm
reported in figure 10(a) decreases when Δ is reduced, as a result of the thickening of
the finger interface, leading to smoother gradients of concentration. The same trend was
observed in previous studies in different flow configurations (Dhar et al. 2022).

Understanding the distribution of the dispersive scalar dissipation within the domain,
Ra[(∇C) · (D∇C) − |∇C |2] reported in figure 9(b), is less trivial. In general, large values
are found where both concentration gradient and velocity are large. In the absence
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of dispersion (figure 9b-i), large (in magnitude, either positive or negative) values of
dispersive dissipation correspond to finger tips and core. In contrast, when dispersion
is considered (figure 9b-ii), the whole mixing region is characterised by non-negligible
values of dispersive dissipation. A more quantitative evaluation is provided by the
probability density functions of the components of the molecular, dispersive and total
dissipation relative to the specific fields considered, and reported in figure 9(c). Globally
the results appear very different: without dispersion (figure 9c-i) the distribution of
dispersive dissipation is nearly symmetric and gives zero as mean global value, while
in the dispersive case (figure 9c-ii) the probability density function is skewed towards
positive values. As a result, we have that the smaller the value of Δ, the larger the values of
dispersive dissipation (see figure 10b). Since the flow is initialised as still (u = 0), at early
times the dispersion tensor (2.12) corresponds to D = I, leading to a dispersive dissipation
that is zero. As soon as convective instabilities form, D grows in magnitude, as well as χd .
The convective onset occurs earlier when dispersion is considered (see figure 10b,c). In
agreement with previous findings obtained in a different configuration (Dhar et al. 2022),
we find that for this large value of Ra the effect of dispersion on the onset time is not
very significant, while it may be much more pronounced at lower Ra. In addition, the
onset time is also non-monotonic with Δ. Eventually, for long times, the flow achieves a
stably stratified configuration, and the strength of convective instabilities diminishes. As a
result, D reduces again leading to a decrease of the total dissipation.

The total mean dissipation χ is obtained combining the molecular (χm , figure 10a)
and dispersive (χd , figure 10b) contributions, and it is reported in figure 10(c). Despite
an earlier onset observed when dispersion is considered, which makes χ depart sooner
from the initial diffusive dissipation ((4.3), dotted line), simulations with large Δ initially
exhibit larger values of total dissipation. For instance, it takes about t ≈ 8 × 103 for
the case Δ = 0.1 to achieve values of χ comparable to those at larger Δ, and even
later the maximum total dissipation achieved is smaller compared with cases without
dispersion. However, the situation changes dramatically after the fingers reach the walls,
corresponding to the maximum of χ in figure 10(c), between t ≈ 2 × 104 and t ≈
5 × 104, depending on Δ. For Δ = 0.1 and Δ = 0.05, despite χ being initially smaller
compared with larger Δ, the total dissipation continues to contribute to mixing for a
much longer time. Indeed, after the fingers reach the walls, the velocity reduces partially,
but not suddenly. This provides a significant advantage compared with the cases without
dispersion, especially when it comes to the cumulative amount of solute mixed, quantified
by M .

The degree of mixing M , reported in figure 11(a), confirms the previous observations.
Initially all simulations considered follow the initial diffusive solution (4.3). Later, mixing
in non-dispersive systems is more efficient than in cases without dispersion: the smaller the
value of Δ, the sooner M will differ from the analytical diffusive case (inset of figure 11a).
The behaviour of M observed for Δ� 1 is nearly independent of Δ for long times (t � 1 ×
105; main panel of figure 11a), attaining M ≈ 0.85. When Δ is further diminished, namely
Δ� 0.1, the evolution is impacted dramatically and the degree of mixing achieves values
of 0.91 and 0.94 for Δ = 0.05 and Δ = 0.01, respectively. This non-monotonic behaviour
suggests that a non-trivial interplay of flow evolution and onset time controls the combined
dynamics of molecular and dissipative mixing. On the one hand, the fraction of mixing
due to molecular dissipation, Mm/M (figure 11b), increases with Δ. This is expected, since
the effect of reducing Δ is to increase the importance of dispersion. On the other hand,
the flow configuration is such that the dispersive dissipation, produced by the interplay of
velocity and concentration fields, is considerably larger for Δ = 0.1 than for Δ = 0.05 (see
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Figure 11. Evolution of the degree of mixing (M) for different Δ and Ra = 104 (r = 10; see table 1 for further
details). (a) Results are shown in terms of total mixing M , where a close-up view of the early phase is also
reported in the inset. Here, the circle symbol marks the first instant considered in the simulations. The initial
diffusive solution (4.3) (dotted line) is also indicated. The case without dispersion (Δ → ∞, red line) is shown
as a reference. (b) The relative importance of molecular mixing to total mixing, Mm/M , evaluated at each
instant. Unsurprisingly, molecular mixing becomes progressively less important as Δ increases.

figure 10b). This complex combination of different processes determines the evolution of
the degree of mixing. Ultimately, all cases will achieve the well-mixed condition (M = 1).

In conclusion, the presented results suggest that in this configuration (r = 10, Ra =
104), within the range of Δ and times explored, Δ = 0.1 provides the most favourable
mixing conditions and M achieves the largest values. The observation that there is an
optimum value of Δ that maximises the mixing is opposite to previous findings in
Rayleigh–Bénard configuration (Wen et al. 2018), where the flux was observed to be
minimum for Δ = 0.05. This is not surprising, given the very different nature (transient
versus steady state, no external driving versus constant external driving) of the two systems
considered.

6. Flow evolution with dispersion: influence of r

We analyse here the effect of the anisotropy ratio r , defined in (2.13), on the flow evolution
and mixing dynamics. We fix Δ = 0.1, corresponding to a strongly dispersive case studied
in § 5, and we vary r in the interval 1 � r � 20. As previously mentioned, r varies with the
flow parameters, and the most common practice to consider r ≈ 10 may not be motivated,
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Figure 12. Concentration fields at t = 2 × 104 for (a–f ) different values of the dispersion parameter r . The
field (a) corresponds to the case without dispersion (Δ → ∞). See supplementary movies S2 and S3 for the
time-dependent evolution of the simulations with r = 10 (e) and r = 1 (b).

unless the problem considered is solute transport in the advection-dominated regime
(Bijeljic & Blunt 2007).

6.1. Flow dynamics
The flow evolution follows the same regimes discussed in § 4 with some differences
that are discussed in the following (see supplementary movies S2 and S3 for the time-
dependent evolution of the simulations with r = 10 and r = 1 reported in figures 7(e)
and 7(b), respectively). The concentration fields taken at time t = 2 × 104 are reported in
figure 12(b–f ) for Δ = 0.1 and 1 � r � 20, and compared with the case without dispersion
(figure 12a). We observe that, at this value of Δ, the anisotropy ratio r does have a role
in shaping the finger pattern: the morphology of the flow changes dramatically when r is
increased, corresponding to a coarsening of the fingers that become also more intricate
near the centreline as r rises, in agreement with previous observations by Ghesmat &
Azaiez (2008).

At early times (t � 1400), the flow dynamics is unaffected by dispersion since in this
phase u ≈ 0. Therefore, the concentration field evolves according to the diffusive self-
similar solution (4.1). This is confirmed by the horizontally averaged concentration profiles
relative to the simulation with r = 1 and shown in figure 13(b). At later times, the fingers
form and interact. The concentration fields in figure 12 suggest that the concentration
gradients become weaker as r is increased.
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Figure 13. Evolution of the horizontally averaged concentration profiles, C , relative to simulation Ra = 104,
Δ = 0.1 and r = 1. Profiles reported correspond to instants taken preceding the finger impact on the walls.
Specifically, they are in the range 400 � t � 16000 (a), in the initial diffusive regime (t � 1.4 × 103) (b) and
in the finger merging and growth regime (t � 7 × 103) (c). In (b), the dashed line indicates the initial diffusive
solution (4.1). In (c), the wall-normal coordinate is rescaled with t − t0, where t0 = 4 × 103. The dashed line
represents (4.4).

We observe that, similarly to the case r = 10 (figure 8c), the mixing layer grows
approximately linearly. Indeed, for t � 7 × 103, the horizontally averaged concentration
profiles of figure 13(c) are well fitted by the linear function (4.4) with t = 4 × 103 and γ =
0.46, where the growth rate of the mixing region, γ , matches the value obtained for r = 10
(discussed in § 5.1). This observation suggests that it will take a longer time for the fingers
to reach the walls (corresponding to the instant at which the maximum of dissipation
is achieved) compared with the case with Δ → ∞. Following the finger’s impact on
the horizontal boundaries, the flow evolves towards a progressive homogenisation of the
concentration distribution.

6.2. Mixing
At early times, the components of the scalar dissipation reported in figure 14 follow the
purely diffusive solutions (4.3). We observe that the smaller the value of r , the sooner the
onset of these instabilities occurs, making the dispersive curves in figure 14(b,c) deviate
from the diffusive solutions. The onset is clearly driven by the dispersive component of the
dispersion tensor: the molecular dissipation (figure 14a) follows the diffusive solution for
very long times, while the dispersive dissipation (figure 14b) is now positive, with smaller
values of r leading to an earlier growth compared with larger values of r , in agreement with
previous findings (Dhar et al. 2022). After formation, fingers grow vertically eventually
interacting with neighbouring flow structures. The concentration gradients across the
finger interface reduce as r is increased (figure 12), and so does the molecular component
of the dissipation, χm , as appears from figure 14(a).

As discussed in § 6.1, the fingers grow at an approximately constant rate (γ = 0.46) that
is lower compared with the case without dispersion (γ = 0.59). We can infer this also
from the dissipation curves in figure 14: the maximum of each curve is achieved at nearly
the same time (t ≈ 3 × 104). However, the maximum value of dispersive dissipation χd is
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Figure 14. Evolution of the mean scalar dissipation for different values of r . The red line refers to the case in
the absence of dispersion. The (a) molecular (χm ), (b) dispersive (χd ) and (c) total (χ = χm + χd ) dissipation.
The initial diffusive solution (4.3) (dotted line) is also indicated.

remarkably affected by r , as one would expect looking at the form of the dispersion tensor
(2.12). For Δ = 0.1 considered here, when t � 4 × 103 the dispersive component of the
mean scalar dissipation is always dominant compared with the molecular counterpart. As
a result of the interplay between molecular and dispersive dissipation, the behaviour of
the total dissipation χ , reported in figure 14(c), suggests that initially the mixing process
is less efficient compared with the case without dispersion (Δ → ∞, red line). In turn, for
long times and after the fingers have reached the walls, χ remains higher in the cases with
dispersion, with important consequences on the degree of mixing.

The evolution of the degree of mixing (M) for different values of r is shown in figure 15.
At very early times (t � 1500) (see the inset of figure 15a), the degree of mixing is
larger in the simulations with dispersion, due to the earlier onset of convection previously
described. The fingers develop slower and within wider spaces compared with the case
without dispersion: the gradients of concentration across the finger interface are smaller,
corresponding to values of χm that decrease with r . Later, the dispersive mixing increases
in time and also with r . As a result of the interplay of these processes, the following
dynamics appears: (i) the total degree of mixing is initially large for cases with dispersion
(finite Δ) and low r ; (ii) shortly after the fingers have formed, M becomes dominated by
molecular diffusion and it is larger in the absence of dispersion (figure 15a, main panel;
2 × 103 � t � 4.5 × 104); and (iii) after the fingers have reached the walls, χd decreases
at a lower rate compared with χm , and M is controlled by the dispersive mixing. The
relative importance of molecular mixing to total mixing, Mm/M , evaluated at each instant,
is shown in figure 15(b). As expected, in the long term the molecular mixing becomes
progressively less important as r is increased, namely from 46 % to 17 % for r = 1 and
r = 20, respectively.
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Figure 15. Evolution of the degree of mixing (M) for different r and Ra = 104 (Δ = 0.1; see table 1 for further
details). (a) Results are shown in terms of total mixing M , where a close-up view of the early phase is also
reported in the inset. Here, the circle symbol marks the first instant considered in the simulations. The initial
diffusive solution (4.3) (dotted line) is also indicated. The case without dispersion (Δ → ∞, red line) is shown
as a reference. (b) The relative importance of molecular mixing to total mixing, Mm/M , evaluated at each
instant. Also in this case, molecular mixing becomes progressively less important as r increases.

7. Conclusions and outlook

7.1. Summary and conclusions
We analysed the process of convective mixing in the presence of dispersion in two-
dimensional, homogeneous and isotropic porous media. We considered a Rayleigh–Taylor
instability in which the presence of a solute produces density differences that drive the
flow. The domain consists of two fluid layers, initially divided by a flat interface, which will
mix driven by buoyancy forces and eventually reach a uniform solute distribution. Solute
is redistributed by advection and dispersion. The effect of dispersion is modelled using
the anisotropic Fickian dispersion tensor formulation (2.12) proposed by Bear (1961). In
this model, in addition to molecular diffusion D∗

m , the solute is also redistributed by the
spreading produced by the flow due to the complex pathways followed by the fluid parcels
within the pore spaces (mechanical dispersion). This additional solute redistribution is
quantified by the longitudinal (D∗

l , in the direction of the flow) and the transverse (D∗
t ,

perpendicular to the direction of the flow) dispersion coefficients. The flow is controlled
by three dimensionless parameters: the Rayleigh–Darcy number Ra (defining the relative
strength of convection and diffusion) and the dispersion parameters r = D∗

l /D∗
t and
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Figure 16. Influence of the dispersion parameters on the degree of mixing M : Δ (a) and r (b). Results are
reported in terms of time degree of mixing M relative to the case without dispersion, M(Δ → ∞). The first
instant considered in the simulations (circle) is also indicated.

Δ = D∗
m/D∗

t . With the aid of numerical Darcy simulations, we investigated the mixing
dynamics without and with dispersion.

We found that in the absence of dispersion (Δ → ∞) the system’s dynamics is
self-similar and independent of Ra until the fingers approach the domain’s horizontal
boundaries, and the flow evolution follows several regimes, which we describe. Then
we analysed the effect of dispersion in time (t) for a fixed value of Rayleigh
number (Ra = 104). We quantify the mixing state of the system using the degree
of mixing M (Jha et al. 2011), which varies between M(t = 0) = 0 (segregated
layers) and M(t → ∞) = 1 (uniform solute concentration field). A detailed analysis
of the scalar dissipation reveals a complex interplay between flow structures and
mixing due to the dispersive and molecular contributions. Both r and Δ affect the
finger formation and development: in particular, the lower the value of Δ (or the
larger the value of r ), the wider, the more convoluted and diffused the fingers (see
figures 7 and 12). For an anisotropic dispersion tensor with r = 10 (representative
of solute transport in the advection-dominated regime; Bijeljic & Blunt 2007), the
role played by the relative importance of molecular and transverse dispersion, Δ,
is crucial. This is presented in figure 16(a) in terms of degree of mixing, M(Δ),
normalised by the case without dispersion M(Δ → ∞). Three main phases appear: (i)
initially (t � 2 × 103) the mixing is more efficient in cases with dispersion; (ii) after the
fingers have grown sufficiently and merged, the mixing performance in the dispersive
cases is lower than in the absence of dispersion; and (iii) for longer times, in contrast,
high-dispersion flows (Δ� 0.1) show higher degree of mixing compared with systems
without dispersion. Ultimately, all cases will lead to the same uniform configuration
(M = 1). Remarkably, we found that within the time frame considered, there is an optimum
value Δ = 0.1 that maximises the mixing. We finally looked at the impact of r on the mix-
ing when Δ = 0.1 (figure 16b). We found that, for such value of Δ, the anisotropy ratio r
produces only second-order effects, with some noticeable changes only in the intermediate
phase, where it appears that the mixing is more efficient for small values of anisotropy.

7.2. Implications for geophysical flows: saline seepage in groundwater systems
The theoretical framework proposed allowed us to analyse numerical Darcy simulations
with dispersion by splitting the mean scalar dissipation into molecular and dispersive
components. In combination with pore-scale simulations and bead packs experiments, this
approach can be used to validate and improve current dispersion models to obtain more

1020 A24-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
68

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10684


Journal of Fluid Mechanics
E

le
v
at

io
n
 (

m
)

−30

−10

−20

0

(a) (b)

South

Windblown
surface soil

Blanchetown and
Upper Parilla clays Upper Parilla clays

Upper Parilla clays

(low permeability)

L z∗  =
 4

 m

Clay (low permeability)

Parilla sands aquifer

Channel sands aquifer

Channel sands
aquifer (high
permeability)

Alluvial clays

River
Murray

x∗
C∗ = C∗

min

C∗ = C∗
max

C∗ = C∗
max

z∗

Lake Ranfurly West Lake Ranfurly West

Base of the aquifer NOT TO SCALE

0 0.5 1.0 km

Clay

North (b-i) Simplif ied strata
composition

(b-ii) Concentration
distribution

Figure 17. (a) Conceptualised hydrogeology of the River Murray basin area, adapted from Narayan &
Armstrong (1995). (b) Modelling of the saline seepage through the bottom of Lake Ranfurly West. (i) The
high-permeability sands aquifer is confined by two low-permeability layers. (ii) Lake Ranfurly West supplies
high-salt-concentration water (C∗ = C∗

max) from the top, while low-salinity (C∗ = C∗
min) groundwater is present

in the aquifer.

reliable estimates of solute transport and spreading in the subsurface. As an example of
a possible application, we discuss here the case of saline seepage from salt water basins
presented by Narayan & Armstrong (1995), and summarised in the following.

One of the most important drainage systems in Australia is represented by the Murray-
Darling river, a key source of water in the region. Near-surface groundwater in this basin is
characterised by high salinity. Agricultural activities have led to a rising of the water tables,
with the consequence of an increased discharge of high-salt-concentration groundwater
into the river basin. This process may eventually increase the river’s water salinity to
unacceptable levels in periods of low flow rate in the river. To prevent this issue, high-
salinity groundwater is intercepted and stored in basins at the surface level, where it may
evaporate, further increasing the salt concentration. In some cases, these surface basins
are designed to allow a slow and controlled leak to the underlying Murray River aquifer.
This is the case for Lake Ranfurly West (Ghassemi, Thomas & Jakeman 1988), which
releases high-salinity water through the Channel sands aquifer into the River Murray. The
hydrogeology of the system is sketched in figure 17(a). Designing and controlling such
basins are key to manage the water resources efficiently and to keep the salinity of the
rivers at an acceptable level. Here we apply our findings to determine the role of dispersion
in the salt spreading process from Lake Ranfurly West and the River Murray basin.

The flow can be modelled as a high-permeability region (Channel sands aquifer)
confined by two low-permeability clay layers (see figure 17b-i): the clay layer at the bottom
of the lake confines the system from above, and the Upper Parilla clays confine the system
from below (Narayan & Armstrong 1995). The fluid saturating the high-permeability
region can be modelled as a heavy and high-salt-concentration fluid (C∗ = C∗

max =
0.120 kg kg−1, seeping from Lake Ranfurly West) sitting on top of a lighter, low-salinity
fluid (C∗ = C∗

min = 0.045 kg kg−1, groundwater present in the Channel sands aquifer).
A simplified flow configuration associated with this system is illustrated is
figure 17(b). We neglect here any flow circulations induced by pumping, and
we assume that the flow is only driven by density differences. We take the
system parameters from Narayan & Armstrong (1995) and determine the relevant
dimensionless flow quantities as follows. The depth of the porous layer is L∗

z =
4 m, with porosity φ = 0.3 and permeability k = 2.95 × 10−11 m2 (we consider
the medium isotropic). The salt concentration difference C∗

max − C∗
min produces a

maximum density difference �ρ∗ = 52.5 kg m−3. Considering a dynamic viscosity

1020 A24-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
68

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10684


M. De Paoli, G.S. Yerragolam, R. Verzicco and D. Lohse

μ = 10−3 Pa s, the characteristic velocity is U∗ = 1.52 × 10−5 m s–1 = 1.31 m d–1,
and we obtain a Rayleigh number Ra = 1.35 × 105. The longitudinal dispersivity is
α∗

l = 80 m and the anisotropy ratio r = 10. With this set of parameters, we have
Δ = r Dm/(U∗α∗

l ) ≈ 10−5. From the results presented in figure 16(a) we conclude that
dispersion is the dominant mixing mechanism, and has to be accounted for in the design
and simulation of these flows. We also remark that, despite the high uncertainty on α∗

l ,
also much smaller values would lead to the same conclusion, e.g. for α∗

l = 0.8 m we
have that Δ ≈ 10−3, still in the range of parameters in which dispersion represents the
dominant mixing mechanism. This would change only if substantially lower values of Ra
are considered.

7.3. Limitations and future developments
A possible limitation of the present work consists of the model adopted. Despite being
widely employed (De Paoli 2023), the dispersion model considered is derived for idealised
advective flows, i.e. where the source of driving is a pressure gradient that generates a
constant and uniform velocity field. However, the configuration studied here is transient,
and therefore the flow velocity scales also evolve across the different regimes experienced
by the flow. An interesting possible development consists of taking the variation of the
velocity scales into account in the dispersion model, to better describe the dispersion
coefficients D∗

l and D∗
t (Koch & Brady 1985; Delgado 2007). In addition, recently a theory

that quantifies the interplay between intrapore and interpore flow variabilities and their
impact on hydrodynamic dispersion has been proposed (Liu et al. 2024). Extending the
model of Liu et al. (2024) to explore buoyancy-driven mixing would improve the reliability
of the results obtained via numerical simulations in the present context (Woods 2025).

The dimensionality of the system will likely have an effect on the mixing process, as
previously observed by Boffetta et al. (2020) and Boffetta & Musacchio (2022), who
studied the present flow configuration without dispersion. In particular, they have shown
that the growth of the mixing layer is strongly affected by the dimensionality of the
domain, with the fingers being more coherent in two than in three dimensions. This leads
to a faster growth of the mixing region and to a larger variance of the concentration
distribution in the two-dimensional case. The effects of dimensionality have been recently
explored in the one-sided configuration (De Paoli et al. 2025b), and the same flow
dynamics has been observed in two and in three dimensions, with a larger finger size and a
lower mixing rate in two dimensions. In contrast, still in the one-sided configuration but in
the presence of dispersion, Dhar et al. (2022) observed that the finger size is independent
of the dimensionality at Ra = 103, while it is larger in three than in two dimensions at
Ra = 3 × 103, and in all cases the fingers grow at the same rate. They also observed that
the effect of dispersion on the onset time and on the mixing are similar in two and in three
dimensions. Considering these findings, we expect that in a three-dimensional, porous and
dispersive Rayleigh–Taylor flow, the mixing dynamics will exhibit: (i) a slower growth rate
of the mixing region, (ii) wider fingers and (iii) similar effects of dispersion on the mixing
dynamics, compared with the two-dimensional case presented here. To confirm these
assumptions, a full campaign of three-dimensional numerical simulations is required.

In this work, we considered fully miscible fluids. In geological processes, however, the
presence of partially miscible fluids (e.g. CO2 and brine) may significantly affect the flow
dynamics and solute mixing processes. With the aid of a phase-field method (Darcy–
Cahn–Hilliard), Li et al. (2022, 2023) have recently shown that, in semi-infinite domains,
partial miscibility of the fluids leads to larger dissolution fluxes compared with the case
of fully miscible fluids, corresponding to a more efficient mixing process. We believe that
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in the present configuration the same effect could possibly occur at early times, when the
driving, provided by the volume of fresh fluid available outside the mixing region, is nearly
constant.

Finally, our findings have been obtained in idealised conditions, since we considered
homogeneous and isotropic porous domains. However, geological formations are
heterogeneous at multiple scales, requiring Darcy simulations to include non-uniformities
in the permeability and porosity fields (Woods 2015). An interaction between the scales of
the heterogeneity and of the instability that controls the flow evolution has been observed
(Benhammadi, Meunier & Hidalgo 2025). Heterogeneities can also influence the form of
the dispersion tensor, and possibly lead to non-Fickian effects (Cala & Greenkorn 1986).
A systematic study of Rayleigh–Taylor flows in heterogeneous porous domains at the
Darcy scale, combined with pore-scale simulations and experiments, is advisable to shed
new light on the role of heterogeneities, and eventually to improve and validate existing
dispersion models.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10684.
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Appendix A. Additional details of the dispersion tensor
In a three-dimensional reference frame, the dispersion tensor (2.12) with all the terms
written explicitly reads (Zheng, Wang & 1999)

D =

⎡
⎢⎢⎢⎣

1 + 1
Δ

[
|u| + (r − 1) u2

|u|
]

(r − 1) uv
Δ|u| (r − 1) uw

Δ|u|
(r − 1) uv

Δ|u| 1 + 1
Δ

[
|u| + (r − 1) v2

|u|
]

(r − 1) vw
Δ|u|

(r − 1) uw
Δ|u| (r − 1) vw

Δ|u| 1 + 1
Δ

[
|u| + (r − 1)w2

|u|
]
⎤
⎥⎥⎥⎦.

(A1)
Note that on expanding the divergence term of the right-hand side of (2.8) we obtain

∇ · (D∇C) = ∂

∂xi

(
Di j

∂C

∂x j

)
= ∂ Di j

∂xi

∂C

∂x j
+ Di j

∂

∂xi

(
∂C

∂x j

)
(A2)

= Dxx
∂2C

∂x2 + Dyy
∂2C

∂y2 + Dzz
∂2C

∂z2 + ∂C

∂x

(
∂ Dxx

∂x
+ ∂ Dxy

∂y
+ ∂ Dxz

∂z

)

+ ∂C

∂y

(
∂ Dxy

∂x
+ ∂ Dyy

∂y
+ ∂ Dyz

∂z

)
+ ∂C

∂z

(
∂ Dxz

∂x
+ ∂ Dyz

∂y
+ ∂ Dzz

∂z

)

+ 2
(

Dxy
∂2C

∂x∂y
+ Dyz

∂2C

∂y∂z
+ Dxz

∂2C

∂x∂z

)
.

(A3)
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The right-hand side of (A3) reduces to the Laplacian form D∗
m∇2C when Dii = D∗

m (with
D∗

m uniform in space) and Di j,i 
= j = 0. If the dispersion tensor (2.12) is isotropic (r = 1;
see § 6), then (A3) takes the form

∇ · (D∇C) = ∂

∂xi

(
Dii

∂C

∂xi

)

= ∂C

∂x

∂ Dxx

∂x
+ ∂C

∂y

∂ Dyy

∂y
+ ∂C

∂z

∂ Dzz

∂z
+ Dxx

∂2C

∂x2 + Dyy
∂2C

∂y2 + Dzz
∂2C

∂z2 ,

(A4)

where the convention for summation with respect to repeated indices is used. In the case
where the coefficients Dii are constant, the Laplacian form is again recovered.

Appendix B. Numerical details

B.1. Numerical treatment of the dispersive term
A possible discretisation of (2.8) consists of splitting the terms as follows:(

∂

∂t
− ∇2

)
C︸ ︷︷ ︸

Implicit terms

= ∇ · [(D − I ) ∇C
]− u · ∇C︸ ︷︷ ︸

Explicit terms

. (B1)

In this method, the term on the left-hand side of the equation is treated implicitly and the
term on the right-hand side is treated explicitly (the explicit treatment of the dispersive
term was also employed by Wen et al. (2018)). However, this approach is very restrictive
on the size of the time step. To ensure numerical stability, the time step must scale with the
square of the minimum grid spacing. For finely resolved boundary layers, this makes the
computation unrealistically expensive. In order to remedy this issue, the following strategy
is employed: (i) first, a predictor–corrector type of approach is used with (B1) serving as
the predictor step, in order to obtain the intermediate solution for the concentration field
Cn+1/2, with the superscripts n indicating current time step; (ii) then (2.9) and (2.10) are
solved to obtain an intermediate solution for the velocity field un+1/2; (iii) the dispersion
coefficients for D n+1/2 − I are computed using the intermediate velocity field; and (iv) the
corrector step is performed by treating only the advective terms un · ∇Cn explicitly, while
the rest of the terms can be treated implicitly as[

∂

∂t
− ∇ · (D∇)

]
C︸ ︷︷ ︸

Implicit terms

= −u · ∇C︸ ︷︷ ︸
Explicit terms

. (B2)

Traditionally, the discretised form of (B1) could be solved in AFiD (De Paoli et al.
2025a) by factorising the implicit terms effectively splitting the corresponding discrete
operator into three discrete linear operators along each of the Cartesian dimensions. Such
an algorithm cannot be used to solve the discretised form of (B2), and therefore we use
iterative methods. Since it is difficult to realise highly scalable parallel implementations of
methods with fast convergence (e.g. Gauss–Seidel), the Jacobi iteration method (Ferziger,
Perić & Street 2019) is used. For sufficiently large Ra, the discretised operator matrix
resulting from the implicit terms is strictly diagonally dominant, thereby guaranteeing
convergence. Implicitly treating the dispersion terms in this way ensures the numerical
stability of the solution for larger time steps. In this case, the size of the time step is only
restricted by the Courant–Friedrichs–Lewy number determined by the advective terms.
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Figure 18. Grid layout for demonstrating the computation of dispersion terms in two dimensions. Grid points
containing information of variable C are indicated in blue, Dxx in green, Dyy in red and Dxy in yellow. Note
that the subscripts i, j here no longer refer to the indices of the general dispersion tensor D, instead indicating
the grid coordinates along x and y axes, respectively. Additional details of the variable arrangement on the grid
are provided by De Paoli et al. (2025a).

In the following, the discretisation of the dispersive terms is explained by using a two-
dimensional example in x, y space, but it can easily be extended to three dimensions.
Consider a staggered grid as shown in figure 18 with grid points containing the information
of the concentration field C at the cell centres. We use linear interpolations of the velocity
components to compute Dxx at face centres where u is stored, Dxy at cell vertices and
Dyy at face centres where v is stored (additional details of the variable arrangement on
the grid are provided by De Paoli et al. (2025a)). For the predictor step, Dxx − 1 is used
instead of Dxx , Dyy − 1 is used instead of Dyy and Dzz − 1 is used instead of Dzz . For the
corrector step, we compute and store the coefficients of the 26 neighbouring concentration
grid points in a stencil that spans three grid cells along each dimension. These coefficients
are used as matrix elements in the Jacobi iteration method.

B.2. Initial condition and grid resolution
The initial condition is determined from the analytical solution (4.1) of the advection–
dispersion equation (2.8), discussed in § 4. In correspondence of the time (t0) employed to
initialise the flow, the initial concentration distribution is

C(z, t = t0) = 1
2

[
1 + erf

(
z

2
√

t0

)]
. (B3)

The inverse function associating z̃ to a given value of concentration C̃ at time t0 is

z̃(C̃, t = t0) = 2
√

t0erf −1(2C̃ − 1) (B4)

and allows one to determine the minimum requirements in terms of combination of grid
resolution/initial time considered. Assuming we aim at solving from 1 % to 99 % of the
initial scalar difference with at least nz points and the grid used is uniform, using (B4) we
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have that the grid spacing in the wall-normal direction is

�z = Ra
Nz − 1

� z̃99 − z̃1

nz
= 2

√
t0

nz

[
erf −1(0.98) − erf −1(−0.98)

]
≈ 6.580

√
t0

nz
. (B5)

Therefore, to resolve the 1 % to 99 % scalar variation with at least nz grid points we need to
initialise the flow with t0 � 0.0231 × [nzRa/(Nz − 1)]2. Using Nz = 1024 and Ra = 104,
it gives t0 ≈ 20 (nz = 3) and t0 ≈ 80 (nz = 6). All simulations are initialised with the same
initial perturbation at t0 = 50. The simulations are initially run without dispersion up to
t = 200, and the dispersive terms are later activated. Note that t = 200 falls well within the
diffusive part of the simulations (see e.g. figure 10a), and therefore this formulation does
not affect the subsequent formation and development of the flow structures. In addition,
this strategy ensures that the same initial concentration and velocity fields are employed in
all the simulations, making the different behaviour observed for r and Δ independent of the
initial flow configuration, and also providing a smooth initial condition to the simulations
with dispersion. We remark that minor discrepancies in the diffusive regime compared
with the theoretical solution (see χd at early times and for high dispersion; figures 10b and
14b) are due to the resolution, and doubling the resolution would resolve this minor issue.

Appendix C. Analytical solution for diffusion in confined domains

C.1. Initial diffusion at low Rayleigh number
We derive here the analytical solution for the mean scalar dissipation assuming pure
diffusion in a confined domain with no-flux boundary conditions. We use (2.8), we assume
that the fluid is still (u = 0) and we consider the system uniform in the horizontal direction
(∂x C = 0). In addition, we assume that this regime starts at t = ti . Introducing the rescaled
dimensionless coordinate z̄ = z + Ra/2, the exact solution is (Strauss 2007)

C(z̄, t) =
∞∑

n=0

An exp
[
−
(nπ

Ra

)2
t

]
cos
(

nπ z̄

Ra

)
. (C1)

The coefficients of the cosine series (C1) are defined as

An =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
Ra

∫ Ra

0
C(z̄, ti ) dz̄, for n = 0,

2
Ra

∫ Ra

0
C(z̄, ti ) cos (nπ z̄) dz̄, for n � 1,

(C2)

with C(z̄, ti ) defined as the initial condition (B3), which in terms of z̄ reads

C(z̄, ti ) = 1
2

[
1 + erf

(
z̄ − Ra/2

2
√

ti

)]
. (C3)

Using the definition of molecular mean scalar dissipation (3.10) and the analytical
diffusive solution (C1), the mean scalar dissipation is

χm(t + ti ) =
∫ Ra

0

(
∂C

∂ z̄

)2

dz̄ (C4)

=
∫ Ra

0

( ∞∑
n=0

nπ

Ra
An exp

[
−
(nπ

Ra

)2
t

]
sin
(

nπ z̄

Ra

))2

dz̄. (C5)
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The solution (C5) for Ra = 102 is shown in figure 2. It has been computed using n = 100,
with a spatial discretisation of 128 points for z̄ and ti = 50, i.e. the same grid size and
initial time used in the corresponding simulation. Note the time shift ti in the solution (C5),
due to the fact that (C1) is computed assuming t = ti as the initial time. The accuracy of
the analytical solution in predicting the decay of dissipation obtained in the simulation is
excellent. In addition, we observe in (C5) that ∂C/∂ z̄ ∼ exp(−n2), indicating a fast decay
with n. We verified that n = 1 is sufficient to capture well the decay, and additional terms
improve the behaviour only for the very early times (t � 60).

C.2. Final diffusion at high Rayleigh numbers
As discussed in § 4, the evolution during the final diffusive regime starts at time t f with a
linear concentration profile:

C(z̄, t f ) = 1
2

+ β

(
1
2

− z̄

Ra

)
. (C6)

The initial condition is set with β = 0.25 and t f = 2.5 × 104 for Ra = 103 and β = 0.70
and t f = 105 for Ra = 104, and it is used to determine the cosine series coefficients as in
(C2). Finally, the evolution of the mean scalar dissipation is determined using (C5) as

χm(t + t f ) =
∫ Ra

0

( ∞∑
n=0

nπ

Ra
An exp

[
−
(nπ

Ra

)2
t

]
sin
(

nπ z̄

Ra

))2

dz̄, (C7)

and the results are reported in figure 6, where a spatial discretisation of 512 points for z̄ is
used.
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FERZIGER, J.H., PERIĆ, M. & STREET, R.L. 2019 Computational Methods for Fluid Dynamics. Springer.
FU, X., CUETO-FELGUEROSO, L. & JUANES, R. 2013 Pattern formation and coarsening dynamics in three-

dimensional convective mixing in porous media. Phil. Trans. R. Soc. Lond. A 371 (2004), 20120355.
GASOW, S., KUZNETSOV, A.V., AVILA, M. & JIN, Y. 2021 A macroscopic two-length-scale model for natural

convection in porous media driven by a species-concentration gradient. J. Fluid Mech. 926, A8.
GHASSEMI, F., THOMAS, G.A. & JAKEMAN, A.J. 1988 Effect of groundwater interception and irrigation on

salinity and piezometric levels of an aquifer. Hydrol. Process. 2 (4), 369–382.
GHESMAT, K. & AZAIEZ, J. 2008 Viscous fingering instability in porous media: effect of anisotropic velocity-

dependent dispersion tensor. Transp. Porous Med. 73, 297–318.
GOPALAKRISHNAN, S.S., KNAEPEN, B. & DE WIT, A. 2021 Scalings of the mixing velocity for buoyancy-

driven instabilities in porous media. J. Fluid Mech. 914, A27.
GROSSMANN, S. & LOHSE, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech.

407, 27–56.
GROSSMANN, S. & LOHSE, D. 2001 Thermal convection for large Prandtl numbers. Phys. Rev. Lett. 86 (15),

3316.
HASSANZADEH, P., CHINI, G.P. & DOERING, C.R. 2014 Wall to wall optimal transport. J. Fluid Mech.

751, 627–662.
HESSE, M.A. & WOODS, A.W. 2010 Buoyant dispersal of CO2 during geological storage. Geophys. Res. Lett.

37 (1), L01403.
HEWITT, D.R. 2020 Vigorous convection in porous media. Proc. Math. Phys. Engng Sci. 476 (2239),

20200111.
HIDALGO, J.J., FE, J., CUETO-FELGUEROSO, L. & JUANES, R. 2012 Scaling of convective mixing in porous

media. Phys. Rev. Lett. 109 (26), 264503.
HU, C. & YANG, Y. 2024 Double-diffusive convection with gravitationally unstable temperature and

concentration gradients in homogeneous and heterogeneous porous media. J. Fluid Mech. 999, A62.
JHA, B., CUETO-FELGUEROSO, L. & JUANES, R. 2011 Quantifying mixing in viscously unstable porous

media flows. Phys. Rev. E 84 (6), 066312.
KOCH, D.L. & BRADY, J.F. 1985 Dispersion in fixed beds. J. Fluid Mech. 154, 399–427.
Krevor, S., De Coninck, H., Gasda, S.E., Ghaleigh, N.S., de Gooyert, V., Hajibeygi, H., Juanes, R., Neufeld,

J., Roberts, J.J. & Swennenhuis, F. 2023 Subsurface carbon dioxide and hydrogen storage for a sustainable
energy future. Nat. Rev. Earth Environ. 4 (2), 102–118.

LANDMAN, A.J. & SCHOTTING, R.J. 2007 Heat and brine transport in porous media: the Oberbeck-
Boussinesq approximation revisited. Transp. Porous Med. 70 (3), 355–373.

LEBLANC, D.R. 1984 Sewage plume in a sand and gravel aquifer, Cape Cod, Massachusetts, vol. 2218. US
Geological Survey.

1020 A24-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
68

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10684


Journal of Fluid Mechanics

LETELIER, J.A., MUJICA, N. & ORTEGA, J.H. 2019 Perturbative corrections for the scaling of heat transport
in a Hele-Shaw geometry and its application to geological vertical fractures. J. Fluid Mech. 864, 746–767.

LI, Q., CAI, Q.HUA, CHEN, C.Y. & MEIBURG, E. 2022 A diffuse interface model for low solubility binary
flows in porous media. J. Comput. Phys. 470, 111582.

LI, Q., LIN, Z., CAI, W.HUA, CHEN, C.Y. & MEIBURG, E. 2023 Dissolution-driven convection of low
solubility fluids in porous media. Intl J. Heat Mass Transfer 217, 124624.

LIANG, Y., WEN, B., HESSE, M.A. & DICARLO, D. 2018 Effect of dispersion on solutal convection in porous
media. Geophys. Res. Lett. 45 (18), 9690–9698.

LIU, Y., XIAO, H., AQUINO, T., DENTZ, M. & WANG, M. 2024 Scaling laws and mechanisms of
hydrodynamic dispersion in porous media. J. Fluid Mech. 1001, R2.

LOHSE, D. & SHISHKINA, O. 2024 Ultimate Rayleigh-Bénard turbulence. Rev. Mod. Phys. 96 (3), 035001.
MENAND, T. & WOODS, A.W. 2005 Dispersion, scale, and time dependence of mixing zones under

gravitationally stable and unstable displacements in porous media. Water Resourc. Res. 41 (5),
W05014.

MICHEL-MEYER, I., SHAVIT, U., TSINOBER, A. & ROSENZWEIG, R. 2020 The role of water flow and
dispersive fluxes in the dissolution of CO2 in deep saline aquifers. Water Resour. Res. 56 (11), 1–17.

NARAYAN, K.A. & ARMSTRONG, D. 1995 Simulation of groundwater interception at Lake Ranfurly, Victoria,
incorporating variable density flow and solute transport. J. Hydrol. 165 (1–4), 161–184.

NIELD, D. & BEJAN, A. 2006 Convection in Porous Media, vol. 3. Springer.
OTERO, J., DONTCHEVA, L.A., JOHNSTON, H., WORTHING, R.A., KURGANOV, A., PETROVA, G.

& DOERING, C.R. 2004 High-Rayleigh number convection in a fluid-saturated porous layer. J. Fluid Mech.
500, 263–281.

PUYGUIRAUD, A., GOUZE, P. & DENTZ, M. 2021 Pore-scale mixing and the evolution of hydrodynamic
dispersion in porous media. Phys. Rev. Lett. 126 (16), 164501.

SAFFMAN, P.G. 1959 A theory of dispersion in a porous medium. J. Fluid Mech. 6 (3), 321–349.
SIMMONS, C.T., FENSTEMAKER, T.R. & SHARP, JR., J.M. 2001 Variable-density groundwater flow and

solute transport in heterogeneous porous media: approaches, resolutions and future challenges. J. Contam.
Hydrol. 52 (1-4), 245–275.

SLIM, A.C. 2014 Solutal-convection regimes in a two-dimensional porous medium. J. Fluid Mech.
741, 461–491.

STRAUSS, W.A. 2007 Partial Differential Equations: An Introduction. John Wiley & Sons.
TAYLOR, G.I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond.

A 219,1137, 186–203.
ULLOA, H.N. & LETELIER, J.A. 2022 Energetics and mixing of thermally driven flows in Hele-Shaw cells.

J. Fluid Mech. 930, A16.
ULLOA, H.N., NOTO, D. & LETELIER, J.A. 2025 Convection, but how fast does fluid mix in hydrothermal

systems? Geophys. Res. Lett. 52 (5), e2024GL112097.
VAN DER MOLEN, W.H. & VAN OMMEN, H.C. 1988 Transport of solutes in soils and aquifers. J. Hydrol.

100 (1), 433–451.
VAN DER POEL, E.P., OSTILLA-MÓNICO, R., DONNERS, J. & VERZICCO, R. 2015 A pencil distributed

finite difference code for strongly turbulent wall-bounded flows. Comput. Fluids 116, 10–16.
WEN, B., CHANG, K.WON & HESSE, M.A. 2018 Rayleigh-Darcy convection with hydrodynamic dispersion.

Phys. Rev. Fluids 3 (12), 123801.
WHITAKER, S. 1998 The Method of Volume Averaging, vol. 13. Springer Science & Business Media.
WOODS, A.W. 2015 Flow in Porous Rocks. Cambridge University Press.
WOODS, A.W. 2025 Dispersive mixing: within or between pores? J. Fluid Mech. 1006, F1.
ZHENG, C., WANG, P.P. & et al.et al. 1999 MT3DMS: a modular three-dimensional multispecies transport

model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater
systems; documentation and user’s guide. Contract Report SERDP-99-1. US Army Corps of Engineers,
Engineer Research and Development Center.

ZHU, X., FU, Y. & DE PAOLI, M. 2024 Transport scaling in porous media convection. J. Fluid Mech.
991, A4.

1020 A24-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
68

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10684

	1. Introduction
	2. Methodology
	2.1. Dimensionless equations
	2.2. Numerical solution of the equations

	3. Global budgets and mixing indicators
	3.1. First-order global budget
	3.2. Second-order global budget
	3.3. Quantification of mixing

	4. Flow evolution without dispersion
	5. Flow evolution with dispersion: influence of
	5.1. Flow dynamics
	5.2. Mixing

	6. Flow evolution with dispersion: influence of
	6.1. Flow dynamics
	6.2. Mixing

	7. Conclusions and outlook
	7.1. Summary and conclusions
	7.2. Implications for geophysical flows: saline seepage in groundwater systems
	7.3. Limitations and future developments

	Appendix A. Additional details of the dispersion tensor
	Appendix B. Numerical details
	B.1. Numerical treatment of the dispersive term
	B.2. Initial condition and grid resolution

	Appendix C. Analytical solution for diffusion in confined domains
	C.1. Initial diffusion at low Rayleigh number
	C.2. Final diffusion at high Rayleigh numbers

	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages true
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


