
JFP 13 (6): 961–1004, November 2003. c© 2003 Cambridge University Press

DOI: 10.1017/S0956796802004410 Printed in the United Kingdom

961

Regular expression pattern matching for XML

HARUO HOSOYA

Research Institute for Mathematical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan

(e-mail: hahosoya@kurims.kyoto-u.ac.jp)

BENJAMIN C. PIERCE

Department of Computer and Information Science, University of Pennsylvania, 200 S. 33rd Street,

Philadelphia, PA 19104-6389, USA

(e-mail: bcpierce@cis.upenn.edu)

Abstract

We propose regular expression pattern matching as a core feature of programming languages

for manipulating XML. We extend conventional pattern-matching facilities (as in ML) with

regular expression operators such as repetition (*), alternation (|), etc., that can match

arbitrarily long sequences of subtrees, allowing a compact pattern to extract data from the

middle of a complex sequence. We then show how to check standard notions of exhaustiveness

and redundancy for these patterns. Regular expression patterns are intended to be used in

languages with type systems based on regular expression types. To avoid excessive type

annotations, we develop a type inference scheme that propagates type constraints to pattern

variables from the type of input values. The type inference algorithm translates types and

patterns into regular tree automata, and then works in terms of standard closure operations

(union, intersection, and difference) on tree automata. The main technical challenge is dealing

with the interaction of repetition and alternation patterns with the first-match policy, which

gives rise to subtleties concerning both the termination and precision of the analysis. We

address these issues by introducing a data structure representing these closure operations

lazily.

Capsule Review

The world has finally standardized on a representation for first-order datatypes. Alas, instead

of choosing the sum-of-products representation familiar to every functional programmer,

they’ve adopted a somewhat baroque form of regular trees called XML. This paper shows

how to adopt pattern matching to this new setting. The authors present a first/longest

pattern matching semantics, and show how to infer (in most cases) the precise type for pattern

variables. The latter involves the calculation of intersection and difference of recursive regular

expression types, and the authors take considerable care to formulate algorithms for these

operations which are guaranteed to terminate.

1 Introduction

XML (Bray et al., 2000) is a simple format for tree-structured data. As its popularity

increases, a need is emerging for better programming language support for XML

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

962 H. Hosoya and B. C. Pierce

processing – in particular, for (1) static analyses capable of guaranteeing that

generated trees conform to an appropriate Document Type Definition (DTD) (Bray

et al., 2000) or to a schema in a richer language such as XML-Schema (Fallside,

2001), DSD (Klarlund et al., 2000), or RELAX NG (Clark & Murata, 2001); and

(2) convenient programming constructs for tree manipulation.

In previous work (Hosoya et al., 2000), we proposed regular expression types as a

basis for static typechecking in a language for processing XML. Regular expression

types capture the regular expression notations commonly found in schema languages

for XML, and support a natural ‘semantic’ notion of subtyping. We argued that

this flexibility was necessary to support smooth evolution of XML-based systems,

and showed that subtype checking, though exponential in the worst case (it reduces

to checking language inclusion between tree automata), can be computed with

acceptable efficiency for a range of practical examples.

In the present paper, we pursue the second question – developing convenient

programming constructs for tree manipulation in a statically typed setting. We

propose regular expression pattern matching for this purpose. Regular expression

pattern matching is similar in spirit to the pattern matching facilities found in

languages of the ML family (Burstall et al., 1980; Milner et al., 1990; Leroy et al.,

1996). Its extra expressiveness comes from the use of regular expression types to

dynamically match values. We illustrate this by an example.

The following declarations introduce a collection of regular expression types

describing records in a simple address database.

type Person = person[Name,Email*,Tel?]

type Name = name[String]

type Email = email[String]

type Tel = tel[String]

Type constructors of the form label[...] classify tree nodes with the label label

(i.e. XML structures of the form <label>...</label>). Thus, the inhabitants of

the types Name, Email, and Tel are all strings with an appropriate identifying label.

Type constructors of the form T* denote a sequence of arbitrarily many Ts, while T?

denotes an optional T. Thus, the inhabitants of the type Person are nodes labeled

person whose content is a sequence consisting of a name, zero or more email

addresses, and an optional telephone number.

Using these types, we can write a regular expression pattern match that, given a

value p of type Person, checks whether p contains a tel field, and if so, extracts

the contents of name and tel.

match p with

person[name[n], Email*, tel[t]]

→ (* do some stuff involving n and t *)

| person[c]

→ (* do other stuff *)

The first case of the match expression matches a node labeled person whose content

is a sequence of a name, zero or more emails, and a tel. In this case, we bind the

variable n to the name’s content and t to the tel’s content. The second case matches

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

Regular expression pattern matching for XML 963

a label person with any content and binds c to the content. The second case

is invoked only when the first case fails, i.e. when there is no Tel component.

Note how the first pattern uses the regular expression type Email* to ‘jump over’

an arbitrary-length sequence and extract the tel node following it. This style of

matching (which goes beyond ML’s capabilities) is often useful in XML processing,

since XML data structures often contain sequences where repetitive, optional, and

fixed parts are mixed together; regular expression pattern matching allows direct

access to the parts of such sequences.

We concentrate in this paper on pattern matching with a ‘single-match’ semantics,

which yields just one binding for a given pattern match. We also follow ML in

adopting a ‘first-match’ policy, which allows ambiguous patterns and gives higher

priority to patterns appearing earlier. A different alternative that is arguably more

natural in the setting of query languages and document processing languages

(Deutsch et al., 1998; Abiteboul et al., 1997; Cluet & Siméon, 1998; Cardelli &

Ghelli, 2000; Neven & Schwentick, 2000; Neumann & Seidl, 1998; Murata, 1997) is

an ‘all-matches’ style, where each pattern match yields a set of bindings. We compare

the two styles at several points in what follows.

Regular expression pattern matching by itself is not new. As we will see, the

essence of this mechanism is ML pattern matching extended with recursion – an

idea that has been proposed in the past (Fähndrich & Boyland, 1997; Queinnec,

1990). The main novelty of our work is the type inference techniques outlined below.

To support regular expression pattern matching in a statically typed programming

language, it is important that the compiler be able to infer the types of most variable

bindings in patterns (otherwise, the type annotations tend to become quite heavy).

We propose a type inference scheme that automatically computes types for pattern

variables. The type inference scheme is ‘local’ in the sense that it focuses only on

pattern matches; it takes a pattern match and a type for the values being matched

against, and propagates the type constraints through the patterns to the pattern

variables. For example, in the pattern match above, given the input type Person,

type inference computes the type String for the variables n and t and the type

(Name,Email*) for the variable c. The intuition behind the type for c is that, since

all persons with tel are captured by the first pattern, only persons with no tel

can be matched by the second pattern.

Our type inference algorithm represents both types and patterns in the form of

regular tree automata and propagates type information through patterns in a top-

down manner (i.e. it starts with a given type and pattern, calculates types for the

immediate substructures of the pattern, and repeats this recursively). The technical

difficulties in the development of the algorithm arise from the interaction between

the first-match policy and the repetition operator. The first-match policy implies

that, in order to maintain the precision of our analysis, we need to be able to

reason about the types of values that did not match preceding patterns. To this

end, we exploit the closure properties of tree automata – in particular, their closure

under (language-)difference. However, since repetition patterns are translated to

tree automata whose state transition functions contain loops, it is not so easy

to ensure the algorithm to terminate. As we will argue in section 4.2, a naively

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

964 H. Hosoya and B. C. Pierce

constructed algorithm might use the closure operations each time it encounters the

same state and, since the state can loop to itself, an unbounded number of types

can be propagated to the same state. We address this problem by introducing a data

structure representing closure operations lazily. As a result, we achieve exact type

inference: it predicts a value for a bound variable if and only if the variable can

actually be bound to this value as a result of a successful match of a value from the

input type. Previous papers on type inference for pattern matching have considered

either recursion (Milo & Suciu, 1999; Papakonstantinou & Vianu, 2000; Murata,

1997) or the first-matching policy (Wright & Cartwright, 1994; Puel & Suárez, 1990),

but as far as we know, no papers have treated both.

The rest of the paper is organized as follows. In the following section, we

illustrate regular expression pattern matching by several examples. Section 3 gives

basic definitions of types and patterns and sketches the translation from the user-

level external syntax to the tree-automata-based internal representation. Section 4

develops the type inference algorithm and proves its correctness. Section 5 discusses

the relationship of our work with other work. Section 6 concludes and suggests some

possible directions for future research. Appendices A, B and C give some technical

details omitted from the earlier discussion.

We have used regular expression pattern matching (and regular expression

types) in the design of a statically typed XML processing language called XDuce

(‘transduce’) (Hosoya & Pierce, 2000). Interested readers are invited to visit the

XDuce home page

http://xduce.sourceforge.net

for more information on the language as a whole.

2 Examples

We give a series of examples motivating our design of pattern matching and

illustrating the associated algorithmic problems.

2.1 Regular expression types

Values in our type system are sequences of labeled values (or base values) and thus

representing fragments of XML structures. An example of values is

name["Hosoya"],email["hahosoya"],tel["123-456"].

Note that a single label containing some other sequence such as

person[name["Pierce"],email["bcpierce"]]

is also a value.

Each type denotes a set of sequences. Types like String and tel[String]

denote singleton sequences; the type Tel* denotes sequences formed by repeating

the singleton sequence Tel any finite number of times. So each element of the

type person[Tel*] is a singleton sequence labeled with person, containing an

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

Regular expression pattern matching for XML 965

arbitrary-length sequence of Tels. If S and T are types, then the type S,T denotes

all the sequences formed by concatenating a sequence from S and a sequence

from T. The comma operator is associative: the types (Name,Tel*),Addr and

Name,(Tel*,Addr) have exactly the same set of elements. (Comma is not commu-

tative, however: we consider only ordered sequences.1) As the unit element for the

comma operator, we have the empty sequence type, written (). Thus, Name,() and

(),Name are equivalent to Name. A union type S|T denotes the union of the values

denoted by S and those denoted by T.

The subtype relation between two types is simply inclusion between the sets

of sequences that they denote. (See section 3.3 for a formal presentation of this

definition.) For example, (Name*,Tel*) is a subtype of (Name|Tel)* since the first

one is more restrictive than the second. That is, Names must appear before any Tel

in the first type, while Names and Tels can appear in any order in the second type.

2.2 Regular expression pattern matching

As in ML, a regular expression pattern match consists of one or more clauses,

each of which is a pair of a pattern and a body. The pattern describes the shape

of input values that we want to identify, and may contain bound variables for

extracting subcomponents of the input value. The body is an expression in some

term language (for the purposes of this paper, we do not need to be precise about

the term language) that is executed when a match against the pattern succeeds.

To introduce the notation, consider the following simple pattern match expression,

which analyzes a value of type Person.

match p with

person[name[n], tel[t]]

→ ...

| person[name[n], rest]

→ ...

The first case matches a label person whose content is a sequence of a name node

and a tel node. It binds the variable n to the name’s content and t to the tel’s

content and evaluates the body. The second case is similar except that it binds the

variable rest to the (possibly empty) sequence following the name node.

Patterns can contain regular expression types. For example, the following pattern

match contains the type Email*.

match p with

person[name[n], e as Email*, tel[t]]

→ ...

| person[name[n], e as Email*]

→ ...

1 Several existing schema languages allow commutative operators to describe unordered sequences, e.g.
‘&’-operator in SGML DTD (Sperberg-McQueen & Burnard, n.d.), ‘all’-operator in XML Schema
(Fallside, 2001), and ‘interleave’-operator in RELAX NG (Clark & Murata, 2001).

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

966 H. Hosoya and B. C. Pierce

This example is similar to the previous one except that the variable e is bound to the

intermediate sequence of zero or more emails between name and tel. (In general,

an ‘as’ pattern ‘x as P’ performs matching with P as well as binding x to the whole

sequence that matches P. Notice also that we treat types in the same category as

patterns, that is, types can appear anywhere patterns can appear. Though, patterns

like name[n]* are not allowed since we also have a usual ‘linearity’ requirement to

ensure patterns to yield exactly one binding for each variable. We will discuss the

linearity requirement in details in section 3.1.) The use of the repetition operator

* yields an iterative behavior during pattern matching. That is, when the pattern

matcher looks at the pattern (e as Email*), no hint is available about how many

emails there are. Therefore the matcher must walk through the input value until it

finds the end of the chain of emails. This iterative behavior enables matching of

arbitrary length sequences, which is beyond ML pattern matching and often quite

useful in programming with XML.

The usefulness of matching against regular expression types is more evident in the

following complex pattern, which extracts the subcomponents of an HTML table.

match t with

table[cap as Caption?,

col as (Col*|Colgroup*),

hd as Thead,

ft as Tfoot?,

bd as (Tbody+|Tr+)]

→ ...

An HTML table consists of several optional fields (Caption? and Tfoot?) and

repetitive fields (Col*, Colgroup*, Tbody+, and Tr+). (We assume the types Caption,

Col, etc., to be defined elsewhere.) Again, by matching against regular expression

types, we can directly pick out each subcomponent, whose position in the input

sequence is statically unknown.

2.3 Ambiguous patterns

Although regular expression pattern matching yields just a single binding, we allow

ambiguous patterns, which may yield multiple possible bindings. We choose one of

those bindings by a priority rule called ‘first-match’ policy. The reason we take this

semantics rather than requiring unambiguity is that patterns become more concise,

as we will see below.

Regular expression pattern matches can have two kinds of ambiguity.

The first kind of ambiguity occurs when multiple patterns can match the same

input value. For example, the patterns in the first example in section 2.2 are

ambiguous, since any value that matches the first pattern also matches the second

pattern. In such a case, we simply take the first matching pattern (‘first-match

policy’). We take this policy rather than simply disallowing ambiguity for the same

reason as in ML: this makes it easy to write a ‘default case’ at the end of a pattern

match, whereas restricting to non-ambiguous sets of patterns would force us to write

a cumbersome final pattern explicitly matching the ‘complement’ of the other cases.

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

Regular expression pattern matching for XML 967

The second form of ambiguity occurs when a single pattern can match a given

value in different ways, giving rise to different bindings for the pattern variables.

This possibility is intrinsic to regular expression pattern matching. For example, in

the pattern

match e with

e1 as Email*, e2 as Email*

→ ...

which splits a sequence of emails into two, it is ambiguous how many emails the

variable e1 should take. We resolve this ambiguity by adopting a ‘longest match’

policy where patterns appearing earlier have higher priority. In the example, e1 is

bound to the whole input sequence, e2 to the empty sequence.

Again, an alternative design choice would be to disallow such ambiguity. However,

the longest-match policy can make patterns more concise. Consider the contents of

an HTML dl (description list), which is a sequence of type (Dt|Dd)*, where Dt

(term) and Dd (description) are defined as dt[...] and dd[...], respectively (the

content types ‘...’ are not important here). Suppose we want to format this se-

quence in such a way that each term is associated with all the following descriptions

before the next term (if any). We may write an iteration for scanning the sequence

where, at each step, the following pattern match analyzes cases on the current

sequence.

match l with

dt[t], d as Dd*, rest

→ (* display term t with d, and do rest *)

| ()

→ (* finish *)

Here, the first case matches a sequence beginning with dt, where we extract the

content of the dt and take as many as possible of the following dds, using the longest

match. Note that, without the longest match, it is ambiguous how many dds are

taken by each of the consecutive patterns (d as Dd*) and rest. If we rewrite this

pattern to an unambiguous one, the variable rest must be restricted not to match

a sequence that begins with dd, resulting in a somewhat more cumbersome pattern:

dt[t], d as Dd*, rest as ((Dt,(Dd|Dt)*) | ())

Although the longest-match and first-match policies might look quite different at

first glance, they turn out to fit cleanly together in the same framework, as we shall

see in section 3.1. (Specifically, the longest match policy can be derived from the

first match policy.)

2.4 Exhaustiveness and redundancy checks

We support the usual checks for exhaustiveness and redundancy of pattern matches.

For these checks, we assume that a type for input values to the given pattern match

is known from the context. A pattern match is then exhaustive if and only if every

value from the input type can be matched by at least one of the patterns. Likewise,

a clause in a pattern match is redundant iff all the input values that can be matched

by the pattern are covered by the preceding patterns.

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

968 H. Hosoya and B. C. Pierce

Although these definitions themselves are the same as usual (cf. for example,

Milner et al. (1990, p. 30)), checking them is somewhat more demanding. Consider

the following pattern match, which, given a sequence of persons, finds the first

person node with a tel field and extracts the name and tel fields from this person.

match p with

person[Name, Email*]*, person[name[n], Email*, tel[t]], rest

→ ...

| person[Name, Email*]*

→ ...

This pattern match is ‘obviously’ exhaustive – the first clause captures the sequences

containing at least one person with tel and the second captures the sequences con-

taining no such person. But how can this be automated? Section 3.3 describes our

approach, which is based on language inclusion between regular tree automata.

2.5 Type inference

Since we intend regular expression pattern matching to be used in a typed language,

we need a mechanism for inferring types for variables in patterns in order to avoid

excessive type annotations.

The type inference algorithm is local: it assumes that a type T for input values to the

pattern match is given by the context, and determines types for the pattern variables

only from the type T and the pattern match itself. The type inference algorithm

infers a locally precise type U for each pattern variable x. That is, assuming that all

values from T may be matched against the pattern match, the type U contains all

and only the values that x may be bound to.

Since the semantics of pattern matching uses a first-match policy, obtaining

this degree of precision requires some care. For example, consider the following

pattern match, where the input type is Person (which is defined to be person[Name,

Email*,Tel?]).

match p with

person[name[n], tel[t]]

→ ...

| person[name[n], rest]

→ ...

We can easily see that n and t should be given type String. But what type

should be given to the variable rest? At first glance, the answer may appear to

be (Email*,Tel?), because the content type of person is (Name,Email*,Tel?),

according to the definition of the type Person. But, in fact, the precise type for rest is

(Email+,Tel?) | ().

To see why, recall that the second case matches values that are not matched by the

first case. This means that, if a value fails in the first case, the name in the value is

not immediately followed by a tel. Therefore what follows after the name should

be either one or more emails or nothing at all.

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

Regular expression pattern matching for XML 969

How do we calculate this type? The trick is to calculate a set-difference between

types. In the above example, the type of the values that are not matched by the

first case is computed by the difference between person[Name,Email*,Tel?] and

person[Name,Tel], which is person[Name,((Email+,Tel?)|())]. The compu-

tation of difference is feasible because types are equivalent to tree automata and tree

automata are closed under difference (section 3.4). The result type (Email+,Tel?)|()

is obtained by matching the labels person and name in the type person[Name,

((Email+,Tel?)|())] and the pattern person[name[n],rest]. In this particular

example, not much difficulty arises. However, in general, we have to propagate

types carefully through repetition patterns (*) so that the algorithm terminates.

Furthermore, the combination of repetition patterns and choice patterns with the

first-match policy requires a delicate construction of the inference algorithm. We

will explain these issues in detail in section 4.2.

So far, we have seen inference for ‘bare’ variable patterns (which match any

values). Type inference can also compute a type for a variable x in a pattern of the

form (x as P). The inferred type can be more refined than the type that can be

formed from the associated pattern P. For example, consider the following pattern

match (where the input type is Person):

match p with

person[Name, x as (Email|Tel)+]

→ ...

| ...

Here, the pattern (Email|Tel)+ imposes the restriction that x can be bound to

sequences of length one or more. However, we know from the input type that at

most one tel may follow emails. Thus, an exact type for the variable x (which type

inference computes) is smaller:

(Email+,Tel?) | Tel

This refinement can be useful in alleviating the burden on the user. That is, the body

of the pattern match may actually depend on the fact that there is at most one tel

and, in order to typecheck such a body, the variable x must be given the above exact

type. Without type inference capable of such refinement, the user would have to

explicitly write the above type in the pattern, which would be quite tedious.

Our type inference method works only for variables that appear in the tail position

in a sequence, for a technical reason explained in section 3.2. We require each pattern

variable in a non-tail position to be supplied with an as pattern, so that we can

construct a type for the variable from the supplied pattern in a straightforward way.

For example, in the pattern

(x as a[y as b[]]), ...

we can construct the type a[b[]] for the variable x from the pattern a[y as b[]].

Fortunately, this limitation turns out not to be too annoying in practice: in our

experience (of programming in XDuce), the most common uses of pattern variables

are (1) binding the whole contents of a label (as in the examples in section 2.2), and

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

970 H. Hosoya and B. C. Pierce

(2) binding the ‘rest’ of a sequence during iteration over a repetitive sequence (as in

the example in section 2.4). Both of these uses occur in tail positions.

3 Syntax and semantics

For the purposes of formalization (and implementation), it is useful to distinguish

two forms of types – external and internal – and two corresponding forms of patterns.

The external form is the one that the user actually reads and writes; all the examples

in the previous sections are in this form. Internally, however, the type inference

algorithm uses a simpler representation to streamline both the implementation and

its accompanying correctness proofs.

In this section, we first give the syntax of each form and the semantics of the

internal form, and sketch the translation from the external form to the internal

form. (Supplementary definitions for the external form are given in Appendix A

and a formalization of the translation is in Appendix B.) Then we define inclusion

relations and closure operations and give simple methods to check exhaustiveness

and redundancy of patterns by using these relations and operations.

3.1 External form

For brevity, we omit base values (like strings) and the corresponding types and

patterns from our formalization.

We assume a countably infinite set of labels, ranged over by l. Values are defined

as follows.

v ::= l1[v],..,ln[v] sequence (n � 0)

We write () for the empty sequence and write v,w for the concatenation of sequences

v and w.

We assume a countably infinite set of type names, ranged over by X. Type

expressions are then defined as follows.

T ::= () empty sequence

X type name

l[T] label

T,T concatenation

T|T union

The bindings of type names are given by a single, global, finite set E of type

definitions of the following form.

type X = T

The body of each definition may mention any of the defined type names (in

particular, definitions may be recursive). We regard E as a mapping from type

names to their bodies.

We represent the Kleene closure T* of a type T by a type X that is recursively

defined as follows.

type X = T,X | ()

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

Regular expression pattern matching for XML 971

The other regular expression constructors are defined as follows.

T+ ≡ T , T*

T? ≡ T | ()

As we have defined them so far, types correspond to arbitrary context-free

grammars. Since we instead want types to correspond to regular tree languages, we

impose a syntactic restriction, called well-formedness, on types. (The reason why we

want to restrict attention to regular tree languages is that the inclusion problem

for context-free grammars is undecidable (Hopcroft & Ullman, 1979).) Intuitively,

well-formedness requires unguarded (i.e. not enclosed by a label) recursive uses of

type names to occur only in tail positions. For example, the following is prohibited:

type X = a[],X,b[] | ()

The formal definition is given in Appendix A.1.

We assume a countably infinite set of pattern names, ranged over by Y, and a

countably infinite set of variables, ranged over by x. Pattern expressions are then

defined as follows.

P ::= x bare variable

x as P as pattern

() empty sequence

Y pattern name

l[P] label

P,P concatenation

P|P choice

(Notice that the syntax of pattern expressions differs from that of type expressions

only in variable- and as-patterns. Notice also that the P in (x as P) can have

other as-patterns, though the previous examples did not use it.) The bindings of

pattern names are given by a single, global, finite, mutually recursive set F of pattern

definitions of the following form.

pat Y = P

For convenience, we assume that F includes all the type definitions in E where the

type expressions appearing in E are considered as pattern expressions in the obvious

way. Pattern definitions must obey the same well-formedness restriction as type

definitions. In writing pattern expressions, we use the same abbreviations for regular

expression operators (*, +, and ?). We write BV(P) for the variables appearing in P

and FN(P) for the pattern names appearing P.

The longest-match policy mentioned in section 2.3 actually arises from these

abbreviations and the first-match policy. For example, Email* is defined as a

pattern name Y that is recursively defined as

pat Y = Email,Y | ()

and, with the first-match policy, the first branch (Email,Y) is taken as often as

possible, which accounts for the longest-match policy. The same argument is applied

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

972 H. Hosoya and B. C. Pierce

to the other operators + and ?. Notice that the order of union clauses in the

definitions of the abbreviations matters for the semantics of pattern matching.

Only with the definition of patterns given so far, the first match may not be

definable for some patterns. For example, suppose that we want to match the value

a[] against the pattern Y where:

pat Y = Y | a[]

Clearly, the second clause a[] will match the value. But since the first clause Y has

higher priority, we should examine this first. Unfolding this pattern name, we see the

pattern (Y|a[]) again and therefore the same argument can be repeated. Thus, for

any match of the value against this pattern, we can find another match with higher

priority; therefore there is no first match. Notice that this anomaly arises because

the unguarded recursive use of Y has no pattern in front of it and therefore it recurs

without decreasing the size of the input value. To ensure that each pattern has the

first match for all input values, we impose a syntactic restriction of no head-recursion,

where any unguarded recursive use of pattern names must be preceded by a pattern

that does not match the empty sequence.

Furthermore, we impose an additional syntactic restriction called ‘linearity’ on

patterns in order to make sure that pattern matching always yields environments

with no missing bindings and no multiple bindings for the same variable. For simple

ML-style patterns, linearity is just a check that each variable appears in a pattern

only once. In the present setting, we need to extend this notion to patterns with

choices, as-patterns, and recursion. Informally, our linearity requires that (1) the

branches of a concatenation pattern must contain disjoint sets of variables, (2) each

branch of a choice pattern must contain exactly the same set of variables, and (3)

the inner pattern of an as-pattern must not contain the same variable. For example,

the following patterns are illegal.

name[x]|email[y] (x as name[x]) name[x]*

(For the last one, it expands to a variable X that is defined as name[x],X|(), where

the pattern name[x] is concatenated with X whose definition contains x again.) The

formal definition is given in Appendix A.3.

From now on, we assume that the set F of pattern definitions that we talk about is

always well-formed, and contains no head recursion, and is linear in each reachable

variable.

Notice that, in the above definition of patterns, nothing prevents us from writing

a single pattern that traverses a tree to an arbitrary depth. For example, consider

the following recursively defined type for binary trees, with two forms of leaves, b[]

and c[], and internal nodes labeled a,

type T = a[T],T | b[] | c[]

and the match expression

match t with

P → ...

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

Regular expression pattern matching for XML 973

where P is recursively defined as follows:

pat P = a[P],T | a[T],P | x as b[]

The pattern P matches a tree that has at least one b[], and yields exactly one binding

of the variable x to one of the b[]s. Since P has the choice of patterns a[P],T and

a[T],P in this order, the first-match policy ensures that the variable x is bound

to the first b[] in depth-first order. Although this ‘deep’ matching is somewhat

attractive, we are not sure about its usefulness, because, after obtaining the first b[]

as above, it is not clear what to do to get the next one, or more generally to iterate

through all the b[]s in the input tree. (By contrast, this sort of deep matching would

be more clearly useful if we had chosen the ‘all-matches’ semantics instead.)

3.2 Internal form

In the external form, values are arbitrary-arity trees (i.e. any node can have an

arbitrary number of children), whereas, in the internal form, we consider only

binary trees.

The labels l in the internal form are the same as labels in the external form.

Internal (binary) tree values are defined by the following syntax.

t ::= ε leaf

l(t, t) label

There is an isomorphism between binary trees and sequences of arbitrary-arity trees.

That is, ε corresponds to the empty sequence, while l(t, t′) corresponds to a sequence

whose head is a label l where t corresponds to the content of l and t′ corresponds

to the remainder of the sequence. For example, from the arbitrary-arity tree

person[name[], email[]]

we can read off the binary tree

person(name(ε, email(ε, ε)), ε),

and vice versa. The height h of a tree t is defined as follows.

h(ε) = 1

h(l(t1, t2)) = max(h(t1), h(t2)) + 1

For types, we begin as before by assuming a countably infinite set of (internal)

type states, ranged over by X. A (binary) tree automaton M is a finite mapping from

type states to (internal) type expressions, where type expressions T are defined as

follows:

T ::= ∅ empty set

ε leaf

T | T union

l(X,X) label

Note that this syntax ensures that type names can be used only through labels

and labels cannot be nested (as opposed to the external form that allows arbitrary

nesting). This restriction is convenient in simplifying the formalization below by

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

974 H. Hosoya and B. C. Pierce

obviating cases where both type states and type expressions appear (i.e. comparing

a type state and a type expression).

There is a one-to-one correspondence between external and internal types, follow-

ing the same intuition as for values. For example, the external type person[name[],

email[]*] corresponds to the internal type person(X1, X0) where the states X1 and

X0 are defined by the automaton M as follows.

M(X0) = ε

M(X1) = name(X0, X2)

M(X2) = email(X0, X2) | ε

The formalization of the translation from external types to internal types can be

found in (Hosoya et al., 2000). (Or see Appendix B for the translation of patterns,

which is very similar to the translation of types.)

We use the metavariable A to range over both type states and type expressions –

jointly called types – since it is often convenient to treat them uniformly. We write

|i=1,...,nTi for T1 | . . . | Tn. We write FS(T) for the set of states appearing in T . This

is extended to the states appearing in an automaton M by FS(M) =
⋃

{FS(M(X)) |
X ∈ dom(M)}. We assume that every automaton M satisfies FS(M) ⊆ dom(M).

The semantics of types is given by the acceptance relation t ∈ A (relative to some

tree automaton M), which is read ‘tree t has type A’ or ‘t is accepted by A’. (We

usually elide M, to lighten the notation.) The rules for the acceptance relation are

as follows:

t ∈ M(X)

t ∈ X
(Acc-St)

ε ∈ ε (Acc-Eps)

t ∈ T1

t ∈ T1 | T2

(Acc-Or1)

t ∈ T2

t ∈ T1 | T2

(Acc-Or2)

t1 ∈ X1 t2 ∈ X2

l(t1, t2) ∈ l(X1, X2)
(Acc-Lab)

The definition of patterns is similar to that of types. We assume a countably

infinite set of pattern states, ranged over by Y , Z , and W . Pattern variables x are the

same as in the external form. A pattern automaton is a finite mapping from states to

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

Regular expression pattern matching for XML 975

(internal) pattern expressions, which are defined as follows:

P ::= x : P variable

∅ failure

T wild-card

ε leaf

P | P choice

l(Y , Y) label

Note that, in the internal form, we drop bare variable patterns, but introduce the

wild-card pattern T. A bare external variable pattern x is encoded as an internal

pattern x : T. We use the metavariable D to range over both pattern states

and pattern expressions, jointly called patterns. We write BV(P) for the variables

occurring in P .

The semantics of patterns is given by the (three-place) matching relation t ∈ D ⇒ V

(relative to a pattern automaton N, which we normally elide), where an environment

V is a finite mapping from variables to trees. This relation is read ‘tree t is matched

by pattern D, yielding environment V ’. The rules for the matching relation are as

follows:

t ∈ N(Y) ⇒ V

t ∈ Y ⇒ V
(Mat-St)

t ∈ P ⇒ V x 	∈ dom(V)

t ∈ x : P ⇒ V ∪ {(x �→ t)}
(Mat-Bind)

t ∈ T ⇒ ∅ (Mat-Any)

ε ∈ ε ⇒ ∅ (Mat-Eps)

t ∈ P1 ⇒ V

t ∈ P1 | P2 ⇒ V
(Mat-Or1)

t 	∈ P1 t ∈ P2 ⇒ V

t ∈ P1 | P2 ⇒ V
(Mat-Or2)

t1 ∈ Y1 ⇒ V1 t2 ∈ Y2 ⇒ V2

dom(V1) ∩ dom(V2) = ∅
l(t1, t2) ∈ l(Y1, Y2) ⇒ V1 ∪ V2

(Mat-Lab)

We write t ∈ D to mean t ∈ D ⇒ V for some V .

Note that the matching relation is based on a ‘first-match’ policy, as in ML:

when a tree matches both branches of a choice pattern, we take the first one. This

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

976 H. Hosoya and B. C. Pierce

follows from the fact that the rule Mat-Or2 is applicable only when Mat-Or1 is

not.2

The correspondence between external patterns and internal patterns is similar to

what we have seen for types, except for the treatment of variable patterns. External

patterns can contain variable patterns that are not in tail positions. For example, in

the following

(x as (name[],email[])),tel[]

the pattern (x as ...) is not in a tail position. Such a non-tail variable pattern

can be bound to a sub-sequence of the input sequence from some point to another

point that is not necessarily the tail, whereas a variable pattern in the internal form

can only be bound to a whole subtree, which, in the external form, corresponds to

a sub-sequence from some point to the tail. Therefore a non-tail variable pattern

cannot be directly translated to an internal pattern. To deal with this discrepancy,

we transform each non-tail variable pattern that binds a variable x to a pair of tail

variable patterns that bind new variables xb and xe. The scope of the variable xb
opens at the same position as the original x pattern opens, and closes at the tail;

the scope of the variable xe opens at right after the original x pattern opens, and

closes at the tail. Thus, we transform the above pattern to

(xb as (name[],email[],(xe as tel[]))).

Now, since the newly introduced variable patterns both extend all the way to the

end of the sequence, we can translate the whole pattern to the internal pattern

xb : name(X0, X1)

where X0 and X1 are defined by the automaton N as follows:

N(X0) = ε

N(X1) = email(X0, X2)

N(X2) = xe : tel(X0, X0)

Finally, since the body of the pattern match actually wants to use the original

variable x instead of the new variables xb and xe, we insert a bit of extra code,

at the beginning of the body, that recovers the original behavior. This extra code

‘trims off’ the sequence assigned to xe from the sequence assigned to xb (note that

the former is a suffix of the latter), and binds the original variable x to the result.

The formalization of the translation of patterns is given in Appendix B.

As we mentioned in section 2.5, our type inference method cannot compute exact

types for non-tail variables. To see why, consider the following pattern with the

2 Efficient evaluation for pattern matching is a big issue by itself and should be discussed separately
from this paper. Though, one may easily image the most naive ‘backtracking’ algorithm (which is
actually used in the current XDuce implementation). That is, starting with a given tree and a given
pattern, we traverse these two in a top-down way, applying the matching rules from the conclusion
to the premises. Note that the rules are deterministic except for a choice pattern (Mat-Or1 and
Mat-Or2). We keep encountered choice points in the stack. When we reach the point where no rule
can be applied, we backtrack to the previous choice point and try the remaining choices.

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

Regular expression pattern matching for XML 977

input type (T,T?).

(x as T), T?

This pattern is encoded as

xb as (T, (xe as T?))

by the translation described above. From the type inference algorithm described

later (in section 4), we will obtain the type (T,T?) for xb and T? for xe. But it is not

immediately clear how to obtain the desired type T for x from these two. Naively, it

seems we want to compute a type in which each inhabitant t is obtained by taking

some tree tb from (T,T?) and some tree te from T? and then cutting off the suffix

te from tb. But the type we get by this calculation is

(T,T | T | ()),

which is bigger than we want. How to infer exact types for non-tail variables is left

for future work.

In what follows, all the definitions are implicitly parameterized on the tree

automaton and the pattern automaton that define the types and patterns appearing

in the definitions. In places where we are talking about only a single tree automaton

and a single pattern automaton, we simply assume a ‘global’ tree automaton M and

a global pattern automaton N. In a few cases, where we are dealing with operations

that create new types, we will need to talk explicitly about the tree automaton before

the creation and the one after.

Finally, whenever we talk about a type A and a pattern D at the same time, we

assume either that they are both states or that they are a type expression and a

pattern expression.

3.3 Inclusion

We define subtyping as inclusion between the sets of trees in the two given types.

Since types are represented as tree automata, subtyping can be decided by an

algorithm for checking inclusion of regular tree languages (Seidl, 1990). (The

complexity of this decision problem is exponential in the worse case, but algorithms

are known that appear to behave well on practical examples (Hosoya et al., 2000).)

For what follows, we must also define an inclusion relation between types and

patterns.

Definition 1 [Subtyping and Inclusion]

A type A is a subtype of a type B, written A <: B, if t ∈ A implies t ∈ B for all t. A

type A is included in a pattern D, written A <: D, if t ∈ A implies t ∈ D for all t.

Using the inclusion relation between types and patterns, exhaustiveness of pattern

matches can be defined as follows:

Definition 2 [Exhaustiveness]

A pattern match P1 → e1 | . . . | Pn → en is exhaustive with respect to a type T if

T <: P1 | . . . | Pn.

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

978 H. Hosoya and B. C. Pierce

3.4 Closure operations

The check for redundancy of pattern matches uses an intersection operation that

takes a type and a pattern as inputs and returns a type representing their intersection:

Definition 3 [Intersection]

A type B is an intersection of a type A and a pattern D, written by the (three-place)

relation A ∩ D ⇒ B, if t ∈ B iff t ∈ A and t ∈ D.

That is, an intersection of A and D represents the set of trees that are in the type

A and also match the pattern D. The redundancy condition can now be expressed

as follows:

Definition 4 [Redundancy]

In a pattern match P1 → e1 | . . . | Pn → en, a pattern Pi is redundant with respect to

a type T if, for some U,

T ∩ Pi ⇒ U ∧ U <: P1 | . . . | Pi−1.

That is, a pattern is redundant if it can match only trees already matched by the

preceding patterns.

Proposition 1

For any type A defined w.r.t. a tree automaton M and pattern D defined w.r.t. a

pattern automaton N, we can effectively calculate a type B defined w.r.t. a tree

automaton M ′ ⊇ M such that A ∩ D ⇒ B.

The actual algorithm for the intersection operation can be found in Appendix C.

Our type inference algorithm needs to calculate not only intersections of types

and patterns, but also differences between types and patterns, that is, a type that

denotes the set of trees of a given type A that are not matched by a pattern D. We do

not define here a difference operation just as we did for the intersection operation.

Instead, we will introduce a more complex treatment for these operations (‘lazy

representation’ of closure operations), which is needed to guarantee termination of

the type inference algorithm.

4 Type inference for pattern matching

We now consider the problem of inferring types for the variables bound by a pattern,

given a type for input values.

4.1 Specification

Suppose that a pattern match

match v with P1→e1 | . . . | Pn→en

and a type for the input v are given. (In this section, we consistently use the internal

form of types and patterns.) Let us compose the ‘target pattern’ P = P1 | . . . | Pn

from the given pattern match.3 Our interest is then to obtain, from the input type

3 Here, each of P1, . . . , Pn is linear as specified in the previous section. However, we do not assume the
composed pattern P1 | . . . | Pn to be linear – the inference algorithm does not require linearity.

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

Regular expression pattern matching for XML 979

T , the ‘range’ of the pattern P at each variable x (reachable from P) – that is,

assuming that all trees from T may be matched against P , the range of x is the set

of all and only the trees that x may be bound to. The job of type inference is to

obtain a type that represents this range.

Definition [Range]

The range of P with respect to T , written ρT,P , is the function mapping each variable

x (that is reachable from P) to the set

{u | there is t, V such that t ∈ T and t ∈ P ⇒ V with V (x) = u}.

A type environment Γ (mapping variables to types) represents ρT,P if u ∈ Γ(x)

implies u ∈ ρT,P (x), and vice versa, for all x.

4.2 Highlights of the algorithm

The core part of our type inference algorithm is to compute a type T ′ that represents

the ‘domain’ of P ′ for each subpattern P ′ (reachable from P) – that is, assuming that

all trees from the input type T may be matched against the target pattern P , the

domain of P ′ is the set of all and only the trees that are matched by P ′. The al-

gorithm proceeds by a top-down traversal of the target pattern, during which we

propagate the type information from the input type and compute a domain type for

each subpattern.

As an example, let us consider the following. The input type T is a labeled type

l(X1, X2) where the global tree automaton M defines

M(X1) = ε | l(X2, X2)

M(X2) = ε

and the target pattern P is a labeled pattern l(Y1, Y2) where the pattern automaton

N defines

N(Y1) = y1 : T
N(Y2) = y2 : T.

In the beginning, we take the given input type T as a domain type for the target

pattern P , since exhaustiveness ensures that all trees from T can be matched by

P . Then we compute a domain type for each component of P by taking the

corresponding component of T . For the first component Y1 of P (which expands

to y1 : T), we obtain the domain type ε | l(X2, X2) from the first component of T ;

similarly, for the second component Y1 of P (which expands to y2 : T), we obtain

the domain type ε from the second component of T . From these domain types,

we obtain the type environment for the result of the type inference: {y1 : (ε |
l(X2, X2)), y2 : ε}. (In general, there may be multiple patterns binding the same

variable, e.g. ((x : ε) | (x : l(Y , Y))), in which case we take the union of the domain

types for all the patterns binding the variable.)

Choice patterns need careful treatment because their first-match policy gives

rise to complex control flow. Suppose T is a domain type for the choice pattern

P1 | P2. We want to obtain domain types T1 and T2 for the subpatterns P1 and P2,

respectively. Since the type T1 for P1 should denote the set of trees from T that are

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

980 H. Hosoya and B. C. Pierce

matched by P1, the type T1 can be characterized by the intersection of T and P1.

On the other hand, since the type T2 for P2 should denote the set of trees from T

that are not matched by the first pattern, the type T2 can be characterized by the

difference between T and P1. (Note here that since all trees from T can be matched

by P1 | P2, those trees not matched by P1 can be matched by P2.)

Since patterns can be recursive, we need to do some extra work to make sure

that the propagation described above will always terminate. We apply a standard

technique used in many type-related analyses, which keeps track of all the inputs

to recursive calls to the algorithm and immediately returns when the same input

appears for the second time (where the intuition is that processing the same input

again will not change the final result). The termination of the algorithm then follows

from the finiteness of the set of possible inputs. Typical uses of this technique can

be found in recursive subtyping algorithms (Gapeyev et al., 2000; Hosoya et al.,

2000). In the present setting, since each input to the algorithm is a pair of a type

and a pattern, we keep track of such pairs. (It is not sufficient to keep to track

of only the patterns we have already seen. Suppose that we have already seen a

pattern P with a domain type T , but encounter the same pattern P with a different

domain type T ′, in particular, larger than T . Since the pattern P may match more

trees than those from T , we need to go through P again with the new domain

type T ′.)

We need one additional trick, however, to ensure termination. In the propagation

of types for choice patterns, if we simply compute the intersection of T and P1 and

the difference between T and P1, we may create ‘new’ states in the resulting types (cf.

Proposition 1). This means that we cannot guarantee that there are only finitely many

types encountered by the algorithm, which makes it difficult to ensure termination.

Instead, our algorithm delays actually calculating intersections and differences by

explicitly manipulating expressions containing what we call ‘compound states’, which

are a form composed of intersections of and differences among the states appearing

in the original input type and target pattern. Because there are only a finite number

of such states, only finitely many compound states can be generated, ensuring

termination.

4.3 Preliminaries

A compound state X is a triple of the form X ∩ {Y1 . . . Ym}\{Z1 . . . Zn}, where X is

a type state and all the Y s and Zs are pattern states. Intuitively, X denotes the set

of trees that are in the type state X and also in each pattern state Yi, but not in

any pattern state Zj . We write X ∩W for the compound state X ∩ {Y1 . . . Ym,W }\
{Z1 . . . Zn} and X\W for X ∩ {Y1 . . . Ym}\{Z1 . . . Zn,W }.4

Further, we adapt several definitions on types given in section 3.2 to handle

compound states. Compound type expressions T are just like type expressions except

4 Readers familiar with automata theory might find compound states similar to alternating tree
automata (Slutzki, 1985).

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

Regular expression pattern matching for XML 981

that they contain compound states instead of type states:

T ::= ∅
ε

T | T
l(X,X)

We use the metavariable A to range over both compound states and compound

type expressions, jointly known as compound types. We write FS(T) for the set of

compound states appearing in T . The acceptance relation t ∈ A is defined for

compound types just as it is for types (except that the name of each rule begins with

CAcc), plus the following cases:

t ∈ X t ∈ Y

t ∈ X∩Y
(CAcc-Isect)

t ∈ X t 	∈ Y

t ∈ X\Y
(CAcc-Diff)

Inclusion A <: D means that t ∈ A implies t ∈ D for all t.

Using compound types, we can now define intersection and difference operations

that do not introduce new states (unlike the intersection operation defined in

section 3.4). These operations take a compound type expression and a pattern

expression and returns a compound type expression that represents their intersection

or difference. The ‘compound’ intersection operation isect is defined as follows:

T isect ∅ = ∅
∅ isect P = ∅
T isect x : P = T isect P

T isect T = T

ε isect ε = ε

ε isect l(Y1, Y2) = ∅
(T 1 | T 2) isect P = (T 1 isect P) | (T 2 isect P)

T isect (P1 | P2) = (T isect P1) | (T isect P2)

l(X1, X2) isect ε = ∅
l(X1, X2) isect l′(Y1, Y2) = ∅ l 	= l′

l(X1, X2) isect l(Y1, Y2) = l(X1∩Y1, X2∩Y2)

Similarly, the following defines the ‘compound’ difference operation diff:

T diff ∅ = T

T diff x : P = T diff P

∅ diff P = ∅
T diff T = ∅
ε diff ε = ∅
ε diff l(Y1, Y2) = ε

(T 1 | T 2) diff P = (T 1 diff P) | (T 2 diff P)

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

982 H. Hosoya and B. C. Pierce

T diff (P1 | P2) = (T diff P1) diff P2

l(X1, X2) diff ε = l(X1, X2)

l(X1, X2) diff l′(Y1, Y2) = l(X1, X2) l 	= l′

l(X1, X2) diff l(Y1, Y2) = l(X1\Y1, X2) | l(X1, X2\Y2)

The last case means that if a tree l(t1, t2) is in l(X1, X2) but not in l(Y1, Y2), then

either t1 is not in Y1 or t2 is not in Y2. Note that the above operations never unfold

a state. When the type inference algorithm needs to proceed to the ‘unfolding’ of a

compound state, we use the following unf function:

unf (X) = M(X)

unf (X∩Y) = unf (X) isect N(Y)

unf (X\Y) = unf (X) diff N(Y)

The following desirable properties for the isect, the diff , and the unf operations

can be proved by straightforward induction.

Lemma 1

For all trees t,

1. t ∈ (T isect P) iff t ∈ T and t ∈ P ;

2. t ∈ (T diff P) iff t ∈ T and t 	∈ P ;

3. t ∈ unf (X) iff t ∈ X.

Finally, we need several definitions on type environments. We write {x : T } for the

type environment that maps x to T and any other variables to the empty-set type ∅;

the empty environment ∅ maps all variables to the empty set type ∅. We define Γ <: Γ′

as Γ(x) <: Γ′(x) for all variables x, and define Γ | Γ′ as (Γ | Γ′)(x) = Γ(x) | Γ′(x). We

can easily see that u ∈ (Γ1 | Γ2)(x) iff u ∈ Γ1(x) or u ∈ Γ2(x).

4.4 Inference algorithm

The type inference algorithm is presented as a set of syntax-directed rules defining

a relation of the form Π � A � D ⇒ Π′; Γ. The algorithm computes, from a pattern

D and a compound type A (which represents the domain of D), a type environment

Γ that represents the range of D with respect to A. Here, Π ranges over sets of

pairs of a compound state and a pattern state, written in the form (X�Y). To detect

termination, the algorithm takes as input the set Π of already-encountered pairs of

compound states and pattern states, and returns as output a set Π′ containing all the

pairs in the input set Π plus the additional pairs encountered during the processing

of A and D. This output set becomes the input to the next step in the algorithm.

The whole type inference procedure takes as inputs a domain type T and a target

pattern P where T is included in P , and starts the main type inference algorithm by

calling the general inference relation Π � T � P ⇒ Π′; Γ with Π = ∅. The output Γ

is the final result of type inference. (The other output Π′ is thrown away.)

We now give the rules for the type inference relation Π � A � D ⇒ Π′; Γ. We first

show the cases where A and D are a compound type expression T and a pattern

expression P . If the target pattern is a variable pattern x : P , we add the domain of

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

Regular expression pattern matching for XML 983

the pattern P , which is represented by the type T , to the range of the target pattern

at x.

Π � T � P ⇒ Π′; Γ T ⇒ T

Π � T � x : P ⇒ Π′; (Γ | {x : T })
(InfA-Bind)

The relation T ⇒ T (defined in Appendix C) converts a compound type T to an

equivalent non-compound type T . The second premise above uses this relation in

order to put the calculated compound type T to the output type environment (which

maps variables to non-compound types).

If the type T is less than the empty set type (and therefore contains no trees), we

return the empty type environment since no successful matches are possible. Also,

if the pattern is either a leaf or a wild-card, we return the empty type environment

since matching against the pattern will yield no bindings.

T <: ∅
Π � T � P ⇒ Π; ∅

(InfA-Emp)

Π � ε � ε ⇒ Π; ∅ (InfA-Eps)

Π � T � T ⇒ Π; ∅ (InfA-Any)

For a choice pattern, we compute a domain type for each branch by the compound

intersection operation isect and the compound difference operation diff .

Π � (T isect P1) � P1 ⇒ Π1; Γ1 Π1 � (T diff P1) � P2 ⇒ Π2; Γ2

Π � T � P1 | P2 ⇒ Π2; (Γ1 | Γ2)
(InfA-Or1)

If the type is a union, we simply generate a subgoal for each component.

Π � T 1 � P ⇒ Π1; Γ1 Π1 � T 2 � P ⇒ Π2; Γ2

Π � T 1 | T 2 � P ⇒ Π2; (Γ1 | Γ2)
(InfA-Or2)

If the type and the pattern are both labels, we propagate each component of the

type to the corresponding component of the pattern.

l(X,X
′
) 	<: ∅

Π � X � Y ⇒ Π1; Γ1 Π1 � X
′
� Y ′ ⇒ Π2; Γ2

Π � l(X,X
′
) � l(Y , Y ′) ⇒ Π2; (Γ1 | Γ2)

(InfA-Lab)

The side-condition l(X,X
′
) 	<: ∅ is necessary for the precision of the type inference.

Suppose that l(X,X
′
) <: ∅. Then this means that one of X and X

′
is empty, but

the other may not necessarily be empty. If such a non-empty type is propagated to

the corresponding component of the pattern l(Y , Y ′), this may augment the range

of the pattern. However, this augmentation is unnecessary because the type l(X,X
′
)

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

984 H. Hosoya and B. C. Pierce

contains no trees and there can therefore be no successful matches against the

pattern.

Finally, we have two rules for type states and pattern states.

(X�Y) ∈ Π

Π � X � Y ⇒ Π; ∅
(InfA-St)

(X�Y) 	∈ Π Π ∪ {(X�Y)} � unf (X) � N(Y) ⇒ Π′; Γ

Π � X � Y ⇒ Π′; Γ
(InfA-Unf)

That is, if we have already seen the pair (X�Y), we simply return the empty type

environment since proceeding to the unfoldings of X and Y again will not add

anything to the final type environment. If we have not seen the pair, we add it to

Π (so that we will be able to tell if we encounter it again) and proceed with the

unfoldings.

The worst-case complexity of this algorithm is double-exponential. The rule InfA-

Unf may be applied at most as many times as the number of possibilities for the form

(X�Y), which is exponential in the size of the input types and patterns. In addition,

each time the rule is applied, we may convert compound types to non-compound

types the same number of times as variable patterns appear, which is linear. The

conversion takes exponential time in the worst case (cf. Appendix C). However,

despite these frightening possibilities, in our experience using type inference with

several small applications in XDuce, the performance of the algorithm is quite

acceptable. The reason is that the patterns used in these applications are ‘almost’

non-recursive (in the case of completely non-recursive patterns, the rule InfA-Unf

is applied only a linear number of times in the size of the pattern), and that the

optimization techniques used in our implementation (cf. Appendix C) make the

conversion operation quick for these examples.

4.5 Correctness of the algorithm

We now prove the soundness, completeness, and termination properties of our type

inference algorithm.

The algorithm is sound, that is, all trees in the predicted range of x are also in

the actual range of x. (The definition of ‘range’ is given in section 4.1.)

Theorem [Soundness]

Suppose ∅ � A � D ⇒ Π; Γ and A <: D. Then, u ∈ Γ(y) implies u ∈ ρA,D(y).

Proof

We prove the following stronger statement:

Suppose Π � A � D ⇒ Π′; Γ and A <: D. Then, if u ∈ Γ(y), then t ∈ A and t ∈ D ⇒ V

with V (y) = u for some V , t.

The proof proceeds by induction on the derivation of Π � A � D ⇒ Π′; Γ.

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

Regular expression pattern matching for XML 985

Case InfA-St/InfA-Emp/InfA-Eps:

Trivial since Γ = ∅.

Case InfA-Unf:
(X�Y) 	∈ Π Π ∪ {(X�Y)} � unf (X) � N(Y) ⇒ Π′; Γ

Π � X � Y ⇒ Π′; Γ

The result follows from the induction hypothesis with Lemma 1 and Mat-St.

Case InfA-Bind:
Π � T � P ⇒ Π′; Γ T ⇒ T

Π � T � x : P ⇒ Π′; (Γ | {x : T })
From u ∈ ({x : T } | Γ)(y), either u ∈ Γ(y) or u ∈ {x : T }(y). In the first case, we

obtain u ∈ P by the induction hypothesis. The result follows from Mat-Bind. In

the second case, we have y = x and u ∈ T . From the definition of the conversion

relation, we obtain u ∈ T . From the assumption T <: (x : P), we have u ∈ x : P ⇒ V

and V (y) = u for some V , as desired.

Case InfA-Or1:
Π � (T isect P1) � P1 ⇒ Π1; Γ1 Π1 � (T diff P1) � P2 ⇒ Π2; Γ2

Π � T � P1 | P2 ⇒ Π2; (Γ1 | Γ2)

From u ∈ (Γ1 | Γ2)(y), we have two cases.

• u ∈ Γ1(y). Lemma 1 implies (T isect P1) <: P1, which allows us to use the

induction hypothesis; we obtain t∈ (T isect P1) and t∈P1 ⇒V with V (y) = u

for some V , t. The result follows from Lemma 1 and Mat-Or1.

• u ∈ Γ2(y). By Lemma 1, the assumption T <: P1 | P2 implies (T diff P1) <:

P2. By the induction hypothesis, we obtain t∈ (T diff P1) and t∈P2V with

V (y) = u for some V , t. From Lemma 1, we have t 	∈ P1. The result follows

from Mat-Or2.

Case InfA-Or2:
Π � T 1 � P ⇒ Π1; Γ1 Π1 � T 2 � P ⇒ Π2; Γ2

Π � T 1 | T 2 � P ⇒ Π2; (Γ1 | Γ2)

Similar to the above cases.

Case InfA-Lab:
l(X,X

′
) 	<: ∅ Π � X � Y ⇒ Π1; Γ1 Π1 � X

′
� Y ′ ⇒ Π2; Γ2

Π � l(X,X
′
) � l(Y , Y ′) ⇒ Π2; (Γ1 | Γ2)

From the side condition l(X,X
′
) 	<: ∅, we have X 	<: ∅ and X

′ 	<: ∅. To enable the use

of the induction hypothesis below, we show that the assumption l(X,X
′
) <: l(Y , Y ′)

implies X <: Y and X
′
<: Y ′. Take any v ∈ X. Since X

′ 	<: ∅, we can find some

v′ ∈ X
′
. The assumption implies l(v, v′) ∈ l(Y , Y ′), and therefore v ∈ Y . We can show

X
′
<: Y ′ similarly.

From u ∈ (Γ1 | Γ2)(y), either u ∈ Γ1(y) or u ∈ Γ2(y). In the first case, by the induc-

tion hypothesis, t ∈ X and t ∈ Y ⇒ V with V (y) = u for some V , t. Since X
′ 	<: ∅

and X
′
<: Y ′, there is t′ such that t′ ∈ X

′
and t′ ∈ Y ′ ⇒ W . The result follows from

CAcc-Lab and Mat-Lab. The second case is similar. �

Conversely, all trees in the actual range of x are also in the predicted range of x.

Theorem 3 [Completeness]

Suppose ∅ � A � D ⇒ Π; Γ. Then, u ∈ ρA,D(y) implies u ∈ Γ(y).

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

986 H. Hosoya and B. C. Pierce

The key to the proof of completeness lies in how to characterize an ‘intermediate

state’ expressed by the judgment Π � T � P ⇒ Π′; Γ. That is, what is the relationship

between the intermediate inputs Π, T , and P and results Π′ and Γ? To see the

intuition, first observe how the algorithm behaves after receiving the inputs Π, T ,

and P : (1) The algorithm first processes the pair of the compound type T and

pattern P ; (2) When the algorithm sees a pair of a compound state and a pattern

state that is not in Π, it processes their unfoldings and record the pair in Π′;

(3) When the algorithm sees a pair that is already in Π, then it skips the unfoldings

of this pair. Therefore, when the algorithm starts with Π, T , and P and returns with

Π′ and Γ, it indicates that the algorithm has already processed the pair of T and P

and the unfoldings of each pair that is in Π′ but not in Π, and has collected type

information obtained from them in Γ.

To capture the above intuition precisely, we introduce a partial validation relation.

Partial validation can be seen as a ‘checking’ version of the type inference algorithm.

That is, it performs type propagation similarly to the inference algorithm but, rather

than computing a type environment, it checks whether a given type environment is

big enough. We check ‘big enough’ (rather than ‘exact’) because our purpose here

is to show completeness (i.e. the predicted range Γ is at least as big as the actual

range). In addition, partial validation checks the type environment with types and

patterns only ‘shallowly’, without unfolding any definitions. This is because we want

to characterize each individual pair that the algorithm processed (and avoid wrongly

including the pairs that were skipped).

Formally, we first define the relation Π � A � D ⇒ Γ, which is read ‘the type

environment Γ is partially valid under Π w.r.t. A and D’. This relation is defined by

the following set of rules:

(X�Y) ∈ Π

Π � X � Y ⇒ Γ
(Inf-St)

Π � T � P ⇒ Γ T ⇒ T {x : T } <: Γ

Π � T � x : P ⇒ Γ
(Inf-Bind)

T <: ∅
Π � T � P ⇒ Γ

(Inf-Emp)

Π � ε � ε ⇒ Γ (Inf-Eps)

Π � T � T ⇒ Γ (Inf-Any)

Π � (T isect P1) � P1 ⇒ Γ Π � (T diff P1) � P2 ⇒ Γ

Π � T � P1 | P2 ⇒ Γ
(Inf-Or1)

Π � T 1 � P ⇒ Γ Π � T 2 � P ⇒ Γ

Π � T 1 | T 2 � P ⇒ Γ
(Inf-Or2)

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

Regular expression pattern matching for XML 987

l(X,X
′
) 	<: ∅

Π � X � Y ⇒ Γ Π � X
′
� Y ′ ⇒ Γ

Π � l(X,X
′
) � l(Y , Y ′) ⇒ Γ

(Inf-Lab)

Each rule is similar to one of the algorithmic rules, with the following differences.

First, the validation rules do not return an output Π′. Second, the input Π from

the conclusion is directly passed to each premise. Third, the type environment Γ is

passed through all of the rules, and, each time we reach a variable pattern, we check

that the passed type environment contains sufficient type information for the range

at the variable. And fourth, the validation relation has no rule corresponding to

InfA-Unf: validation stops at states. We additionally define the relation Π � Π′ ⇒ Γ

(which is read ‘Γ is partially valid under Π w.r.t. Π′’) as follows:

∀(X�Y) ∈ Π′. Π � unf (X) � N(Y) ⇒ Γ

Π � Π′ ⇒ Γ
(Inf-Cons)

That is, it checks if, for each (X�Y) in Π′, the type environment Γ is partially valid

under Π w.r.t. the unfoldings of X and Y . Finally, Γ is fully valid w.r.t. A and D,

written A � D ⇒ Γ, iff both Π � A � D ⇒ Γ and Π � Π ⇒ Γ hold for some Π.

The completeness of type inference is now proved in two steps. First, we show

that the final result Γ of the algorithm is fully valid w.r.t. A and D (Lemma 1). Then

we show that a type environment Γ that is fully valid w.r.t. A and D is big enough

for the actual range of D w.r.t. A (Lemma 3).

Lemma 2

If ∅ � A � D ⇒ Π; Γ, then A � D ⇒ Γ.

Proof

Based on the above intuition of partial validation to characterize partial results, we

prove the result by showing the following stronger statement:

If Π � A � D ⇒ Π′; Γ, then Π′ � Π′ \ Π ⇒ Γ and Π′ � A � D ⇒ Γ.

The proof follows by straightforward induction on the derivation of Π � A � D ⇒
Π′; Γ with the following weakening property: if Π � A � D ⇒ Γ where Π ⊆ Π′ and

Γ <: Γ′, then Π′ � A � D ⇒ Γ′. �

Lemma 3

Suppose A � D ⇒ Γ. Then, t ∈ ρA,D(y) implies u ∈ Γ(y).

Proof

We prove the following stronger statement:

Suppose Π � A � D ⇒ Γ and Π � Π ⇒ Γ. Then, t ∈ A and t ∈ D ⇒ V with V (y) = u

imply u ∈ Γ(y).

The proof proceeds by induction on the lexicographic order on the pair of h(t) +

isst(D) (where isst(T) = 0 and isst(X) = 1) and the derivation of Π � A � D, with

the case analysis on the last rule applied to derive Π � A � D ⇒ Γ.

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

988 H. Hosoya and B. C. Pierce

Case Inf-St:
(X�Y) ∈ Π

Π � X � Y ⇒ Γ

We have, by assumption, Π � Π ⇒ Γ and (X�Y) ∈ Π. So Π � unf (X) � N(Y) ⇒ Γ.

Furthermore, from Lemma 1 and Mat-St, we have t ∈ unf (X) and t ∈ N(Y) ⇒ V .

Note that h(t) + isst(X) > h(t) + isst(unf (X)). This allows us to use the induction

hypothesis, from which the result follows.

Case Inf-Bind:
Π � T � P ⇒ Γ T ⇒ T {x : T } <: Γ

Π � T � x : P ⇒ Γ

We have two cases on y and u.

• When x = y, we have u = t from Mat-Bind. Thus, by assumption, we have

u ∈ T . From the definition of the conversion relation, u ∈ T . The result follows

from the side condition {x : T } <: Γ.

• Otherwise, we have t ∈ P ⇒ V ′ with V = V ′ ∪ {x : t} from Mat-Bind. The

result follows from the induction hypothesis.

Case Inf-Emp:
T <: ∅

Π � T � P ⇒ Γ

The result immediately follows since there is no t ∈ T .

Case Inf-Eps: Π � ε � ε ⇒ Γ

The result immediately follows since V = ∅ by Mat-Eps.

Case Inf-Or1:
Π � (T isect P1) � P1 ⇒ Γ Π � (T diff P1) � P2 ⇒ Γ

Π � T � P1 | P2 ⇒ Γ

We have two cases on t ∈ P1 | P2 ⇒ V .

• t ∈ P1 ⇒ V by Mat-Or1. By using Lemma 1 with t ∈ T , we have t ∈ (T isect

P1). The result follows from the induction hypothesis.

• t 	∈ P1 and t ∈ P2 ⇒ V by Mat-Or2. By using Lemma 1 with t ∈ T , we have

t ∈ (T diff P1). The result follows from the induction hypothesis.

Case Inf-Or2:
Π � T 1 � P ⇒ Γ Π � T 2 � P ⇒ Γ

Π � T 1 | T 2 � P ⇒ Γ

From t∈T 1 | T 2, either t ∈ T 1 by CAcc-Or1 or t ∈ T 2 by CAcc-Or2. In either

case, the result follows from the induction hypothesis.

Case Inf-Lab:
l(X,X

′
) 	<: ∅ Π � X � Y ⇒ Γ Π � X

′
� Y ′ ⇒ Γ

Π � l(X,X
′
) � l(Y , Y ′) ⇒ Γ

From t ∈ l(X,X
′
) and from CAcc-Lab, we have t = l(v, v′) where v ∈ X and v′ ∈ X

′
.

From t ∈ l(Y , Y ′) ⇒ (y �→ u), we have either v ∈ Y ⇒ (y �→ u) or v′ ∈ Y ′ ⇒ (y �→ u)

by Mat-Lab. In either case, the result follows from the induction hypothesis. �

Finally, the type inference algorithm constructed as above is guaranteed to ter-

minate.

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

Regular expression pattern matching for XML 989

Theorem 4 [Termination]

For all types A defined under a tree automaton M and patterns D defined under

a pattern automaton N, the type inference algorithm either fails or effectively

calculates a type environment Γ defined under a tree automaton M ′ ⊇ M such that

∅ � A � D ⇒ Π; Γ for some Π.

Proof

Let X be dom(M) × P(dom(N)) × P(dom(N)) (where P(S) is the powerset of S). We

prove a stronger statement:

Suppose Π ⊆ X×dom(N) with FS(A) ⊆ X and FS(D) ⊆ dom(N). Then the algorithm either

fails or effectively calculates a type environment Γ defined under a tree automaton M ′ ⊇ M

such that Π � A � D ⇒ Π′; Γ for some Π′.

The proof proceeds by induction on the lexicographic order on (|(X × dom(N)) \
Π|, size(D), size(A)), with the case analysis on the applicable rule (if not applicable,

then the result immediately follows).

Case InfA-Emp/InfA-Eps/InfA-Any/InfA-St:

The result immediately follows.

Case InfA-Bind:

The rule decreases size(D). The result follows from the induction hypothesis and

Lemma C.2.

Case InfA-Or1:

By inspecting the definition of isect and diff , we can see that FS(T isect P1) ⊆ X
and FS(T diff P1) ⊆ X. Also, the rule decreases size(D). The result follows from the

induction hypothesis.

Case InfA-Or2/InfA-Lab:

The rules decrease size(D) or else size(A). The result follows from the induction

hypothesis.

Case InfA-Unf:

We have, by the assumption, X ∈ X and Y ∈ dom(N). Therefore the rule decreases

|(X × dom(N)) \ Π|. The result follows by the induction hypothesis. �

5 Related work

Pattern matching is found in a wide variety of languages, and in a variety of styles.

One axis for categorization that we have discussed already is how many bindings a

pattern match yields. In all-matches style, a pattern match yields a set of bindings

corresponding to all possible matches. This style is often used in query languages

(Deutsch et al., 1998; Abiteboul et al., 1997; Cluet & Siméon, 1998; Cardelli & Ghelli,

2000; Neven & Schwentick, 2000) and document processing languages (Neumann

& Seidl, 1998; Murata, 1997). In the single-match style, a successful match yields just

one binding. This style is usually taken in programming languages (Milner et al.,

1990; Leroy et al., 1996; Peyton Jones et al., 1993). In particular, most functional

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

990 H. Hosoya and B. C. Pierce

programming languages allow ambiguous patterns with a first-match policy. Our

design follows this tradition.

Another axis is the expressiveness of the underlying ‘logic’. Several papers have

proposed extensions of ML-like pattern matching with recursion (Fähndrich &

Boyland, 1997; Queinnec, 1990), which have essentially the same expressiveness

as ours. Some query languages and document processing languages use pattern

matching mechanisms based on tree automata (Neumann & Seidl, 1998; Murata,

1997) or monadic second-order logic (which is equivalent to tree automata) (Neven

& Schwentick, 2000), and therefore they have a similar expressiveness to our pattern

matching. TQL (Cardelli & Ghelli, 2000) is based on ambient logic (Cardelli &

Gordon, 2000), which appears to be at least as expressive as tree automata. On the

other hand, pattern matching based on regular path expressions, popular in query

languages for semistructured data (Deutsch et al., 1998; Abiteboul et al., 1997; Cluet

& Siméon, 1998), is less expressive than tree automata. In particular, these patterns

usually cannot express patterns like ‘subtrees that contain exactly these labels’. Both

tree automata and regular path expressions can express extraction of data from an

arbitrarily nested tree structure (although, with the single-match style, the usefulness

of such deep matching is questionable, as we discussed in section 3.1).

Type inference with tree-automata-based types has been studied both in query

languages for semistructured data (Milo & Suciu, 1999; Papakonstantinou &

Vianu, 2000) and in the setting of a document transformation framework (Murata,

1997). The target languages in these studies have both matching of inputs and

reconstruction of outputs (while we consider only matching here). Their pattern

matches choose the all-matches style – in particular, an input tree is matched

symmetrically against all the patterns in a choice pattern. Consequently, these

inference algorithms do not involve a difference operation.

Milo, Suciu and Vianu have studied a typechecking problem for the general

framework of k-pebble tree transducers, which can capture a wide range of query

languages for XML (Milo et al., 2000). They use types based on tree automata and

build an inverse type inference to compute the type for inputs from a given type for

outputs (which is the opposite direction to ours).

Connections of our work to various standards for XML may be worth discussing.

The schema languages DTD (Bray et al., 2000), DSD (Klarlund et al., 2000) and

RELAX NG (Clark & Murata, 2001) are based on formal language theory and have

strong similarities to our regular expression types. In particular, the core part of

RELAX NG is based on tree automata and has essentially the same expressiveness.

Another schema language XML-Schema (Fallside, 2001) is based on a mixture of

formal languages and object-orientation. A further discussion of these can be found

in Hosoya et al. (1990). The type system of XQuery (Fankhauser et al., 2001) is

based on tree automata, and hence is very similar to our type system (in fact, their

type system was originally inspired by ours). XQuery also uses case expressions that

are similar to but weaker than our pattern matching (variables can appear only at

the top level). XSLT (Clark, 1999) has a pattern matching construct XPath (Clark &

DeRose, 1999). XPath is quite similar to regular path expressions mentioned above

(therefore it has a similar weakness mentioned there) but has an ability to traverse

ancestor nodes, which we do not provide.

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

Regular expression pattern matching for XML 991

Another area related to our type inference method is set-constraint solving (Aiken

& Wimmers, 1992) (also known as tree set automata (Gilleron et al., 1999)). This

framework takes a system of inclusion constraints among types with free variables

and checks the satisfiability of the constraints (Aiken & Wimmers, 1992) or finds

a least solution if it exists (Gilleron et al., 1999). Since they allow intersection and

difference operations on types, it seems possible to encode our problem into their

framework and obtain the solutions by their algorithm. If we used this encoding,

we would need to do some work (similar to what we have done here) to prove

the existence of least solutions for the sets of constraints we generate, because least

solutions do not exist in general in their setting.

Wright and Cartwright incorporate in their soft type system a type inference

technique for pattern matching (Wright & Cartwright, 1994). Their type system uses

a restricted form of union types and their patterns do not involve recursion. (A more

precise comparison with our scheme is difficult, since the details of their handling

of pattern matching are not presented in their paper.)

Puel & Suárez (1990) develop a technique for pattern match compilation using

what they call term decomposition. Although their goal is different from ours, the

technique itself resembles our type propagation scheme. Their term decomposition

calculates a precise representation of the set of input values that match each pattern,

and their calculation of the ‘values not covered by the preceding patterns’ is similar

to our use of difference operations. They do not treat recursive patterns.

6 Future work

Some important extensions are left as future work. The most important is that

we would like to support an Any type, denoting all sequences of trees, as well as

patterns including the Any type. Any is useful for encoding object-style ‘extension

subtyping’ (Hosoya et al., 2000) and is also quite handy in writing patterns with

‘don’t care’ parts. We have not included Any in the present treatment, because adding

it in a naive way destroys the property of closure under difference (see Appendix C

for a related discussion), which makes exact type inference impossible. Another

extension is the inference of types for pattern variables in non-tail positions. We

have some preliminary ideas for addressing these issues.

Acknowledgements

Our main collaborator in the XDuce project, Jérôme Vouillon, contributed a number

of ideas, both in the techniques presented here and in their implementation. We are

also grateful to the other XDuce team members (Peter Buneman and Phil Wadler)

and to Sanjeev Khanna for productive discussions, to Xavier Leroy and David

MacQueen for help with references to related work, to the anonymous POPL’01 and

JFP referees for comments and suggestions that substantially improved the paper,

and to the database group and the programming language club at Penn and the

members of Prof. Yonezawa’s group at Tokyo for a great working environment.

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

992 H. Hosoya and B. C. Pierce

This work was supported by the Japan Society for the Promotion of Science

and the National Science Foundation under NSF Career grant CCR-9701826 and

IIS-9977408.

A Supplementary definitions

A.1 Well-formedness of types

We define well-formedness of types in terms of a set of ‘non-tail variables’ and an

auxiliary set of ‘top-level variables’. The set toplevel (T) of top-level variables of a

type T is the smallest set satisfying the following equations:

toplevel (X) = {X} ∪ toplevel (E(X))

toplevel (T) = ∅ if T = ∅, (), or l[T′]

toplevel (T|U) = toplevel (T) ∪ toplevel (U)

toplevel (T,U) = toplevel (T) ∪ toplevel (U)

Likewise, the set nontail (T) of non-tail variables of a type T is the smallest set

satisfying the following equations:

nontail (X) = nontail (E(X))

nontail (T) = ∅ if T = ∅, (), or l[T′]

nontail (T|U) = nontail (T) ∪ nontail (U)

nontail (T,U) = toplevel (T) ∪ nontail (U)

Now, the set E of type definitions is said to be well-formed if

X 	∈ nontail (E(X)) for all X ∈ dom(E).

A.2 Semantics of types

The semantics of types is presented by the relation v ∈ T, read ‘v has type T’, which

is defined by the following set of rules.

() ∈ () (ET-Emp)

type X=T ∈ E

v ∈ T

v ∈ X
(ET-Var)

v ∈ T

l[v] ∈ l[T]
(ET-Lab)

v ∈ T w ∈ U

v,w ∈ T,U
(ET-Cat)

v ∈ T1

v ∈ T1|T2

(ET-Or1)

v ∈ T2

v ∈ T1|T2

(ET-Or2)

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

Regular expression pattern matching for XML 993

A.3 Linearity of patterns

Given an external pattern P, let σ be the set of all pattern names reachable from P,

that is, the smallest set of pattern names that satisfies

σ = FN(P) ∪
⋃
Y∈σ

FN(F(Y)).

Then, a variable x is unreachable from P, written P ↓0
x when x 	∈ BV(P) ∪⋃

Y∈σ BV(F(Y)).

The linearity relation P ↓1
x, read ‘the pattern P is linear in the variable x’, is

co-inductively defined by the following rules.

P1 ↓0
x

x:P1 ↓1
x

P1 ↓1
x x 	= y

y:P1 ↓1
x

F(Y) ↓1
x

Y ↓1
x

P1 ↓1
x

l[P1] ↓1
x

P1 ↓1
x P2 ↓0

x

(P1,P2) ↓1
x

P2 ↓1
x P1 ↓0

x

(P1,P2) ↓1
x

P1 ↓1
x P2 ↓1

x

(P1|P2) ↓1
x

(We use here co-induction rather than induction since we need to treat recursion.

See Gapeyev et al. (2000) for a related discussion.)

A.4 Semantics of external patterns

We define the semantics of patterns in a similar way to types, except for the

treatment of the first-match policy. We use a notion of choice sequence. During

pattern matching, we remember the index of the branch we take at each choice

point. A choice sequence is a sequence of such indices, listed according to the order

of traversal – from left to right and from outer to inner. Finally, we take the smallest

choice sequence in the dictionary order.

Formally, we describe the semantics of patterns by first defining the relation

v ∈ P ⇒ V / α, read ‘v is matched by P, yielding V and α’, where a choice sequence

α is a sequence of elements from the ordered set ({1, 2},�) and an environment V is

a finite mapping from variables to values (written x1:v1,..,xn:vn). Then we define

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

994 H. Hosoya and B. C. Pierce

the relation v ∈ P ⇒ V that takes the smallest choice sequence w.r.t. the lexicographic

order � on choice sequences. The following set of rules defines both relations.

v ∈ x ⇒ x:v / · (EP-Bare)

v ∈ P ⇒ V / α x 	∈ dom(V)

v ∈ (x as P) ⇒ x:v,V / α
(EP-As)

() ∈ () ⇒ ∅ / · (EP-Emp)

pat Y=P ∈ F

v ∈ P ⇒ V / α

v ∈ Y ⇒ V / α
(EP-Var)

v ∈ P ⇒ V / α

l[v] ∈ l[P] ⇒ V / α
(EP-Lab)

v ∈ P ⇒ V / α w ∈ Q ⇒ W / β

dom(V) ∩ dom(W) = ∅
v,w ∈ P,Q ⇒ V,W / α, β

(EP-Cat)

v ∈ P ⇒ V / α

v ∈ P|Q ⇒ V / 1, α
(EP-Or1)

v ∈ Q ⇒ V / α

v ∈ P|Q ⇒ V / 2, α
(EP-Or2)

v ∈ P ⇒ V / α

∀β.(v ∈ P ⇒ U / β =⇒ α � β)

v ∈ P ⇒ V
(EP)

Notice that in EP-Cat we concatenate the choice sequences left to right, and that

in ET-Or1 and ET-Or2 we adjoin the present choice number to the front. These

reflect our policy that the priority of choice is from left to right and from outer to

inner.

We can prove that if a pattern is linear in a variable, then the variable appears in

the domain of the environment that is yielded by any match against the pattern.

Lemma A.1

If P ↓1
x and v ∈ P ⇒ V / α, then x ∈ dom(V).5

5 The converse does not hold. For the pattern (l[x],y)|(l[x],x), every match yields a sensible
environment. But this pattern is syntactically not linear.

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

Regular expression pattern matching for XML 995

Proof

First, we can easily prove that a variable unreachable from a pattern does not appear

in the domain of the environment yielded by any match against the pattern:

If P ↓0
x and v ∈ P ⇒ V / α, then x 	∈ dom(V).

Then, the result can be proved by a straightforward induction on the derivation of

v ∈ P ⇒ V / α. �

B Translation from external patterns to internal patterns

This section first shows the translation algorithm, then proves its soundness and

completeness. We concentrate on the translation of patterns since the translation of

types is exactly the same except that the treatment for pattern variables is dropped.

We have not proved the termination of the pattern translation. We believe that we

can adapt the proof technique used for the type translation in Hosaya et al. (2000).6

B.1 Algorithm

The translation of patterns consists of (1) the conversion of input values from the

external form to the internal form, (2) the translation of pattern expressions from the

external form to the internal form, and (3) the conversion of output environments

from the internal form back to the external form.

The translation of values is straightforward:

ts(()) = ε

ts(l[v1],v2) = l(ts(v1), ts(v2))

We now consider our algorithm for the translation of patterns. Let us first illustrate

it by an example. Consider the following external pattern:

(x as a[]*), d[]

By expanding the abbreviation a[]*, this pattern is equivalent to ((x as Y), d[])

where:

pat Y = (a[], Y) | ()

Now, we want to compute the internal pattern corresponding to ((x as Y), d[]).

For this, we transform the above pattern in such a way that all head labels are

revealed. We first introduce two new variables to handle the variable pattern

(x as Y) as explained previously:

xb as (Y, (xe as d[]))

6 In section 3.1, we (informally) mention the restriction ‘no head-recursion’, which requires any
unguarded recursive use of pattern names to be preceded by a pattern that does not match the
empty sequence. Although we do not make use of this restriction in the formal treatments in this
paper, it could be used in the proof of termination of the pattern translation algorithm in the same
way as the proof of the type translation presented in Hosaya et al. (2000).

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

996 H. Hosoya and B. C. Pierce

Then we expand Y to its definition and use distributivity of the union operator,

associativity of the concatenation operator, and neutrality of the empty sequence:

=⇒ xb as (((a[], Y) | ()), (xe as d[]))

=⇒ xb as (((a[], Y), (xe as d[])) | ((), (xe as d[])))

=⇒ xb as ((a[], (Y, (xe as d[]))) | (xe as d[]))

Since the head labels a and d are revealed now, this pattern can be translated to the

internal pattern:

xb : (a(Y0, Y1) | xe : d(Y0, Y0))

Since the content of a and both the content and the remainder of d are all the

empty sequence, we can share the internal patterns corresponding to these by the

single state Y0, which is associated with ε:

N(Y0) = ε

The remainder of a, i.e. the pattern (Y, (xe as d[])) is translated in a similar

way to the above translation of xb as (Y, (xe as d[])), and the resulting internal

pattern is associated with Y1. (The translation again encounters the same pattern

(Y, (xe as d[])), with which we associate the same state Y1.)

N(Y1) = a(Y0, Y1) | xe : d(Y0, Y0)

We now formalize the translation procedure illustrated above. The translation

takes an external pattern P0 and a set F of pattern definitions, and computes an

internal pattern P0 and a pattern automaton N. The procedure works by double

loops where the outer loop constructs the automaton, and the inner loop computes

an internal pattern expression, which will be associated with a state in the automaton.

Each state corresponds to an external pattern expression from which the internal

pattern associated with the state is computed; we therefore index states by external

patterns P, written YP.

The translation function ts (‘the inner loop’) takes an external pattern and returns

an internal pattern. The rules below define the function ts .

ts(()) = ε

ts(l[P]) = l(YP, Y())

ts(x) = x : T
ts(x as P) = x : ts(P)

ts(P1|P2) = ts(P1) | ts(P2)

ts(Y) = ts(F(Y))

ts((),P) = ts(P)

ts(l[P1],P2) = l(YP1
, YP2

)

ts((x as P1),P2) = ts(xb as (P1,(xe as P2)))

ts((P1,P2),P3) = ts(P1,(P2,P3))

ts((P1|P2),P3) = ts(P1,P2) | ts(P1,P3)

ts(Y,P) = ts(F(Y),P)

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

Regular expression pattern matching for XML 997

These rules simply generalize the operations that we have seen in the example.

The rule for ((P1,P2),P3) uses associativity and that for ((P1|P2),P3) uses

distributivity. Also, the rules for l[P] and (),P use the neutrality of (). The rule

for x and (x as P) simply construct the corresponding variable patterns; the rule

for ((x as P1),P2) replaces the variable pattern binding x with two tail variable

patterns binding xb and xe. The rules for Y and (Y,P) unfold the pattern name Y

to their definitions. By using all these rules, the head of a sequence is eventually

revealed, and turned into an internal label pattern whose ‘car’ state corresponds to

the content pattern of the label and whose ‘cdr’ state corresponds to the remainder of

the sequence. For each state YP contained in the internal label pattern, the associated

external pattern P may be the target of the translation in the next step. The empty

sequence is turned into the leaf transition.

The outer loop proceeds as follows. The translation begins with setting N to the

empty automaton and computing P0 from P0 by using the above function ts . The

resulting internal pattern P0 may contain a state YP corresponding to a subphrase

P of P0. If the state is not yet in the domain of N, then we calculate P = ts(P) and

add the mapping YP �→ P to N. We repeat this process until the states appearing

in P0 and N are all in the domain of N. Thus, the result of the whole translation

satisfies the following.

P0 = ts(P0)

N(YP) = ts(P) ∀YP ∈ dom(N)

dom(N) ⊇ FS(P0) ∪ FS(N).

Finally, we define the conversion of environments from the internal form back to

the external form. We write ts−1 for the inverse of the translation function ts of values

(note that the value translation function is bijective); define ts−1(V)(x) = ts−1(V (x)).

Given an environment V in the external form, the following chop function trims off

xe from xb and assigns the result to the original variable x, for each pair of new

variables xb and xe in the domain of V.

chop(V)(x) =

{
V(x) x ∈ dom(V)

v xb, xe ∈ dom(V) ∧ V(xb) = (v,w) ∧ V(xe) = w

Then the back conversion of an internal environment V is defined by chop(ts−1(V)).

B.2 Soundness and completeness

The goal here is to show that matching of a value against an external pattern

behaves the same as matching the translated value against the translated internal

pattern and converting back the output environment. The semantics of external

patterns is described in terms of choice sequences (section 3.1), whereas that of

internal patterns is not. To bridge this gap, we first introduce a matching relation

for internal patterns with choice sequences. We then prove the desired property

in two steps: (1) matching against an internal pattern without choice sequences is

equivalent to matching against the same internal pattern that yields the smallest

choice sequence; (2) matching against an external pattern with a choice sequence is

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

998 H. Hosoya and B. C. Pierce

equivalent to matching against the translation of the external pattern with the same

choice sequence and converting back the output environment.

The (internal) matching relation with choice sequences is defined by the following

rules.

t ∈ N(Y) ⇒ V / α

t ∈ Y ⇒ V / α
(MatS-St)

t ∈ P ⇒ V / α x 	∈ dom(V)

t ∈ x : P ⇒ V ∪ {(x �→ t)} / α
(MatS-Bind)

t ∈ T ⇒ ∅ / · (MatS-Any)

ε ∈ ε ⇒ ∅ / · (MatS-Eps)

t ∈ P1 ⇒ V / α

t ∈ P1 | P2 ⇒ V / 1, α
(MatS-Or1)

t ∈ P2 ⇒ V / α

t ∈ P1 | P2 ⇒ V / 2, α
(MatS-Or2)

t1 ∈ Y1 ⇒ V1 / α1 t2 ∈ Y2 ⇒ V2 / α2

dom(V1) ∩ dom(V2) = ∅
l(t1, t2) ∈ l(Y1, Y2) ⇒ V1 ∪ V2 / α1, α2

(MatS-Lab)

Theorem B.1 [Soundness and Completeness]

Suppose that a given pattern automaton N satisfies N(YP) = ts(P) for all YP ∈
dom(N) and dom(N) ⊇ FS(N). Let ts(v) = t and ts(P) = P . Then, v ∈ P ⇒ V iff

t ∈ P ⇒ V with V = chop(ts−1(V)).

The theorem follows from the subsequent two lemmas, which correspond to the

two steps mentioned above.

Lemma B.2

t ∈ D ⇒ V iff there is α such that (1) t ∈ D ⇒ V / α and (2) t ∈ D ⇒ V ′ / β for

some V ′ and β implies α � β.

Proof

Below, we use the fact that, for any t, D, we have that t ∈ D ⇒ V for some V iff

t ∈ D ⇒ V ′ / γ for some V ′ and γ, which can easily be shown.

We first prove the ‘only if’ part of the lemma. The proof proceeds by induction

on the derivation of t ∈ D ⇒ V with the case analysis on the rule used in the last

derivation.

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

Regular expression pattern matching for XML 999

Case Mat-Or2: D = P1 | P2 t 	∈ P1 t ∈ P2 ⇒ V

By the induction hypothesis, t ∈ P2 ⇒ V / α′. Let α = 2, α′. The condition (1) holds

by MatS-Or2. We now show the condition (2). Suppose that t ∈ D ⇒ V ′ / β for

some V ′ and β. We have two cases: t ∈ P1 ⇒ V ′ / β′ with β = 1, β′ by MatS-Or1,

and t ∈ P2 ⇒ V / β′ with β = 2, β′ by MatS-Or2. However, from t 	∈ P1 and the

fact given in the beginning of the proof, the first case never arises. Therefore, by the

induction hypothesis, α′ � β′, hence α � β.

Case Mat-Lab: t = l(t1, t2) D = l(Y1, Y2) t1 ∈ Y1 ⇒ V1 t2 ∈ Y2 ⇒ V2

By the induction hypothesis, t1 ∈ Y1 ⇒ V1 / α1 and t2 ∈ Y2 ⇒ V2 / α2 for some

α1 and α2. Let α = α1, α2. The condition (1) follows by MatS-Lab. We now show

the condition (2). Suppose that t ∈ D ⇒ V ′ / β for some V ′ and β. By MatS-Lab,

t1 ∈ Y1 ⇒ V1 / β1 and t2 ∈ Y2 ⇒ V2 / β2 with V = V1 ∪ V2 and β = β1, β2. By the

induction hypothesis, α1 � β1 and α2 � β2, hence α � β.

Other cases:

The result immediately holds or can be shown by a straightforward use of the

induction hypothesis.

We next prove the ‘if ’ part of the lemma. Similarly to the above, the proof proceeds

by induction on the derivation of t ∈ D ⇒ V / α with the case analysis on the rule

used in the last derivation.

Case MatS-Or2: D = P1 | P2 t ∈ P2 ⇒ V / α′ α = 2, α′

Suppose that t ∈ P2 ⇒ V ′ / β′ for some V ′ and β′. Then, by MatS-Or2, t ∈
D ⇒ V ′ / 2, β′. By the condition (2), 2, α′ � 2, β′, hence α′ � β′. By the induction

hypothesis, t ∈ P2 ⇒ V . We have only to show t 	∈ P1, from which the result follows

with Mat-Or2. Suppose that t ∈ P1 ⇒ U for some U. Then, from the fact given in

the beginning of the proof, t ∈ P1 ⇒ U / γ for some γ. Therefore t ∈ D ⇒ U / 1, γ

by MatS-Or1. But we have α = 2, α′ 	� 1, γ, which contradicts the condition (2).

Case MatS-Lab: t = l(t1, t2) D = l(Y1, Y2)

t1 ∈ Y1 ⇒ V1 / α1 t2 ∈ Y2 ⇒ V2 / α2

V = V1 ∪ V2 α = α1, α2

We first establish (2) for the induction hypothesis. Suppose that t1 ∈ Y1 ⇒ V ′
1 / β1 for

some V ′
1 and β1. Then, by MatS-Lab, t ∈ D ⇒ V ′

1 ∪V2 / β1, α2. By the condition (2),

α1, α2 � β1, α2, hence α1 � β1. Similarly, t2 ∈ Y2 ⇒ V ′
2 / β2 implies α2 � β2 for any

β2. By the induction hypothesis, t1 ∈ Y1 ⇒ V1 and t2 ∈ Y2 ⇒ V2. The result follows

from by Mat-Lab.

Other cases:

The result immediately holds or can be shown by a straightforward use of the

induction hypothesis. �

Lemma B.3

Suppose that a given pattern automaton N satisfies N(YP) = ts(P) for all YP ∈
dom(N) and dom(N) ⊇ FS(N). Let ts(v) = t and ts(P) = P . Then v ∈ P ⇒ V / α iff

t ∈ P ⇒ V / α with V = chop(ts−1(V)).

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

1000 H. Hosoya and B. C. Pierce

Proof

The proof proceeds by induction on the lexicographic order on the pair of h(t)

and the derivation of ts(P) = P , with the case analysis on the rule used in the last

derivation.

Case: P = (x as P′) ts(P′) = P P = x : P ′

By EP-As, v ∈ P′ ⇒ V′ / α where V = V′ ∪ {x �→ v}. By the induction hypothesis,

t ∈ P ′ ⇒ V ′ / α with chop(ts−1(V ′)) = V′. The result follows by Mat-Bind.

Case: P = l[P1],P2 P = l(YP1
, YP2

)

By EP-Lab and EP-Cat, v1 ∈ P1 ⇒ V1 / α1 and v2 ∈ P2 ⇒ V2 / α2 where v =

l[v1],v2 and V = V1 ∪ V2 and α = α1, α2. The result follows by using the induction

hypothesis and then Mat-St and Mat-Lab.

Case: P = (P1,P2),P3 ts(P1,(P2,P3)) = P

The result follows from the fact that v ∈ ((P1,P2),P3) ⇒ V / α iff v ∈ (P1,(P2,P3))

⇒ V / α (which can easily be shown), and the induction hypothesis.

Case: P = (P1|P2),P3 ts(P1,P3) | ts(P2,P3) = P

We show the ‘only if’ part since the converse is similar. From EP-Cat, the matching

in the assumption implies v1 ∈ P1|P2 ⇒ V1 / α1 and v2 ∈ P3 ⇒ V2 / α2 where

v = v1,v2 and V = V1 ∪ V2 and α = α1, α2. Further, the matching against P1|P2 has

two cases: v1 ∈ P1 ⇒ V1 / α′
1 with α1 = 1, α′

1 using EP-Or1, and v1 ∈ P2 ⇒ V1 / α′
1

with α1 = 2, α′
1 using EP-Or2. In the first case, by EP-Cat, v ∈ P1,P3 ⇒ V / α′

1, α2.

By the induction hypothesis, t ∈ ts(P1,P3) ⇒ V / α′
1, α2. The result follows by

MatS-Or1. The second case is similar.

Case: P = (x as P1),P2 ts(xb as (P1, (xe as P2))) = P

We first show that v ∈ (x as P1),P2 ⇒ V / α iff v ∈ (xb as (P1, (xe as P2))) ⇒
V′ / α with chop(V) = chop(V′); thereby, the result follows from the induction

hypothesis. We show the ‘only if’ part since the converse is similar. From EP-As and

EP-Cat, the former matching implies v1 ∈ P1 ⇒ V1 / α1 and v2 ∈ P2 ⇒ V2 / α2 where

v = v1,v2 and V = {x �→ v1} ∪ V1 ∪ V2 and α = α1, α2. By using EP-As and EP-Cat,

we obtain v ∈ (xb as (P1, (xe as P2))) ⇒ V′ / α where V′ = {xb �→ v1, xe �→
(v1,v2)} ∪ V1 ∪ V2. From the definition of chop, we have chop(V) = chop(V′).

Other cases:

The result immediately holds or can be shown by a straightforward use of the

induction hypothesis. �

C Closure algorithms

The type inference algorithm mainly manipulates compound types, but, for calculat-

ing the final results, it uses a ‘conversion’ operation that turns compound types into

their equivalent non-compound types. Formally, a compound type A is convertible

to B, written A ⇒ B, if t ∈ A iff t ∈ B, for all t. This section defines an algorithm for

the conversion operation. From this, we can derive, as a special case, an algorithm

for the intersection operation introduced in section 3.4.

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

Regular expression pattern matching for XML 1001

We first give a characterization of the conversion operation A ⇒ B. We define

two relations Π � A ⇒ B and � Π, where Π maps compound states to type states,

and we claim that a compound type A is convertible to a type B iff both Π � A ⇒ B

and � Π hold, for some Π. Intuitively, Π � A ⇒ B means that A is ‘immediately’

(without unfolding) convertible to B, assuming that the X is convertible to W for

each X �→ W in Π. Similarly, � Π means that the assumptions in Π are consistent –

that is, that, for each X �→ W in Π, the unfolding of X is indeed convertible to the

unfolding of W . The following rules define these relations:

X �→ W ∈ Π

Π � X ⇒ W
(Conv-St)

Π � ∅ ⇒ ∅ (Conv-Emp)

Π � ε ⇒ ε (Conv-Eps)

Π � T 1 ⇒ U1 Π � T 2 ⇒ U2

Π � T 1 | T 2 ⇒ U1 | U2

(Conv-Or)

Π � X1 ⇒ W1 Π � X2 ⇒ W2

Π � l(X1, X2) ⇒ l(W1,W2)
(Conv-Lab)

∀X �→ W ∈ Π. Π � unf (X) ⇒ M(W)

� Π
(Conv-Cons)

The only essential work is done in the rule Conv-Cons, which computes the unfolding

of X (which involves consecutive applications of isect and diff operations), and

confirms that the result is convertible to the unfolding of W . The other rules simply

replace each compound state with the corresponding type state, accordingly to the

mapping Π.

Lemma C.1

A ⇒ B iff Π � A ⇒ B and � Π for some Π.

Proof

We first prove the ‘only if’ part. Let Π = {X �→ W | X ∈ dom(M) × P(N) × P(N) ∧
W ∈ dom(M) ∧ X ⇒ W }. The result follows by induction on the structure of B.

We then prove the ‘if ’ part by showing: for all t, if � Π and Π � A ⇒ B, then

t ∈ A iff t ∈ B. This follows by induction on the lexicographic order on the

pair of h(t) + isst(B) (where isst(T) = 0 and isst(X) = 1) and the derivation of

Π � A ⇒ B. �

From the above characterization, we can read off an actual algorithm for the con-

version as follows. We start by setting Π to the empty mapping and apply the rules

to the given type and pattern in a goal-directed manner. When we reach the rule

Conv-St, we may not find the compound state X in the domain of Π. In this

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

1002 H. Hosoya and B. C. Pierce

case, we generate a fresh state W and add a mapping X �→ W to Π. We then

proceed to convert the unfolding of the compound state X to a non-compound

type and ‘back-patch’ the result as the unfolding of W in the tree automaton. This

algorithm eventually terminates because only a finite number of compound states

can be constructed from the states in the given type and pattern. Also, notice that

newly created states appear only in the output type and never in the input type, so

there is no danger of trying to unfold one of them before it has been back-patched

with its definition. Thus, we obtain the following lemma.

Lemma C.2

For all compound types A defined with respect to a tree automaton M and pattern

automaton N, we can effectively calculate a type B defined under a tree automaton

M ′ ⊇ M such that A ⇒ B.

The algorithm for the conversion operation takes exponential time in the worst

case because an exponential number of compound states can be generated from

the states in the given type and pattern. However, the algorithm has several

opportunities for optimization. Suppose that a compound state has the form

X ∩ {Y1 . . . Ym}\{W1 . . .Wn}. We can remove Yi from the compound state if X <: Yi.

Likewise, when X <: Wi, we can replace the whole compound state by a state

associated with the empty set type ∅. Furthermore, when X and Wi denote disjoint

sets, we can remove Wi from the compound state. (The disjointness can be checked

by first calculating the intersection of X and Wi and then testing the emptiness

of the result. Note that if we simply use the conversion operation for calculating

the intersection, this introduces circularity. But we can avoid it by specializing

the conversion operation for intersection where no subtracting states appear in

compound states. See the next paragraph.) Although the inclusion tests in these

optimizations are themselves potentially expensive (exponential in the worst-case),

these checks appear usually to be relatively cheap, in our experience (Hosoya et al.,

2000).

The intersection of a (non-compound) type and a pattern is a special case of the

above operation. To compute an intersection of T and P , we can first calculate

(T isect P) and then convert the resulting compound type to a non-compound

type. Proposition 1 can be derived as a corollary of Lemma C.2. The worst-case

complexity of the intersection operation is quadratic. To see why, observe that, from

the definition of isect, the compound types obtained by (T isect P) contain only

compound states of the form X ∩ {Y }\{}. Moreover, the unfolding of the compound

state X ∩ {Y }\{} is also a compound type that contains only compound states of

this form. Since only a quadratic number of such compound states can be generated

from the states in the given type and pattern, the intersection operation completes

in quadratic time.

Although the operations we have defined are all we need in our framework, one

may wonder which others can be defined. Indeed, it is possible to compute an

intersection of two patterns (since types can be treated as a special case of patterns,

intersections on other combinations are also possible). On the other hand, we

cannot compute differences between patterns and patterns in general. For example,

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

Regular expression pattern matching for XML 1003

to compute the difference T \ l(X,X), we would need to enumerate all the labels

except l, an infinite set. For the same reason, neither types nor patterns are closed

under negation.

References

Abiteboul, S., Quass, D., McHugh, J., Widom, J. and Wiener, J. L. (1997) The Lorel query

language for semistructured data. Int. J. Digital Libraries, 1(1), 68–88.

Aiken, A. and Wimmers, E. L. (1992) Solving systems of set constraints (extended abstract).

Proceedings 7th Ann. IEEE Symposium on Logic in Computer Science, pp. 329–340.

Bray, T., Paoli, J., Sperberg-McQueen, C. M. and Maler, E. (2000) Extensible markup language

(XMLTM). http://www.w3.org/XML/.

Burstall, R., MacQueen, D. and Sannella, D. (1980) HOPE: an experimental applicative

language. Proceedings 1980 LISP Conference, pp. 136–143. Stanford, CA.

Cardelli, L. and Ghelli, G. (2000) A query language for semistructured data based on the

Ambient Logic. Manuscript.

Cardelli, L. and Gordon, A. D. (2000) Anytime, anywhere. Modal logics for mobile ambients.

Proceedings 27th ACM Symposium on Principles of Programming Languages, pp. 365–377.

Clark, J. (1999) XSL Transformations (XSLT). http://www.w3.org/TR/xslt.

Clark, J. and DeRose, S. (1999) XML path language (XPath). http://www.w3.org/TR/

xpath.

Clark, J. and Murata, M. (2001) RELAX NG. http://www.relaxng.org.

Cluet, S. and Siméon, J. (1998) Using YAT to build a web server. Int. Workshop on the Web

and Databases (WebDB).

Deutsch, A., Fernandez, M., Florescu, D., Levy, A. and Suciu, D. (1998) XML-QL: A Query

Language for XML. http://www.w3.org/TR/NOTE-xml-ql.

Fähndrich, M. and Boyland, J. (1997) Statically checkable pattern abstractions. Proceedings

Int. Conference on Functional Programming (ICFP), pp. 75–84.

Fallside, D. C. (2001) XML Schema Part 0: Primer, W3C Recommendation. http://

www.w3.org/TR/xmlschema-0/.

Fankhauser, P., Fernández, M., Malhotra, A., Rys, M., Siméon, J. and Wadler, P. (2001)

XQuery 1.0 Formal Semantics. http://www.w3.org/TR/query-semantics/.

Gapeyev, V., Levin, M. and Pierce, B. (2000) Recursive subtyping revealed. Proceedings Int.

Conference on Functional Programming (ICFP), pp. 221–232.

Gilleron, R., Tison, S. and Tommasi, M. (1999) Set constraints and automata. Infor. &

Computation, 149(1), 1–41.

Hopcroft, J. E. and Ullman, J. D. (1979) Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley.

Hosoya, H. and Pierce, B. C. (2000) XDuce: A typed XML processing language. Proceedings

3rd Int. Workshop on the Web and Databases (WebDB2000): Lecture Notes in Computer

Science 1997, pp. 226–244.

Hosoya, H., Vouillon, J. and Pierce, B. C. (2000) Regular expression types for XML.

Proceedings Int. Conference on Functional Programming (ICFP), pp. 11–22.

Klarlund, N., Møller, A. and Schwartzbach, M. I. (2000) DSD: A schema language for XML.

http://www.brics.dk/DSD/.

Leroy, X., Vouillon, J., Doligez, D. et al. (1996) The Objective Caml system. Software and

documentation available from: http://pauillac.inria.fr/ocaml/.

Milner, R., Tofte, M. and Harper, R. (1990) The Definition of Standard ML. The MIT Press.

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

1004 H. Hosoya and B. C. Pierce

Milo, T. and Suciu, D. (1999) Type inference for queries on semistructured data. Proceedings

Symposium on Principles of Database Systems, pp. 215–226.

Milo, T., Suciu, D. and Vianu, V. (2000) Typechecking for XML transformers. Proceedings 19th

ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 11–22.

ACM.

Murata, M. (1997) Transformation of documents and schemas by patterns and contextual

conditions. Principles of Document Processing ’96: Lecture Notes in Computer Science 1293,

pp. 153–169. Springer-Verlag.

Neumann, A. and Seidl, H. (1998) Locating matches of tree patterns in forests. 18th FSTTCS:

Lecture Notes in Computer Science 1530, pp. 134–145.

Neven, F. and Schwentick, T. (2000) Expressive and efficient pattern languages for tree-

structured data. Proceedings 19th ACM SIGMOD-SIGACT-SIGART Symposium on Prin-

ciples of Database Systems, pp. 145–156. ACM.

Papakonstantinou, Y. and Vianu, V. (2000) DTD Inference for Views of XML Data.

Proceedings 19th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database

Systems, pp. 35–46.

Peyton Jones, S. L., Hall, C. V., Hammond, K., Partain, W. and Wadler, P. (1993) The Glasgow

Haskell compiler: a technical overview. Proceedings UK Joint Framework for Information

Technology (JFIT) Technical Conference.

Puel, L. and Suárez, A. (1990) Compiling pattern matching by term decomposition. 1990

ACM Conference on Lisp and Functional Programming, pp. 272–281.

Queinnec, C. (1990) Compilation of non-linear, second order patterns on s-expressions.

Programming Language Implementation and Logic Programming, 2nd International Workshop

(PLILP’90): Lecture Notes in Computer Science, pp. 340–357. Springer-Verlag.

Seidl, H. (1990) Deciding equivalence of finite tree automata. SIAM J. Computing, 19(3):

424–437.

Slutzki, Giora. (1985). Alternating tree automata. Theor. Comput. Sci., 41, 305–318.

Sperberg-McQueen, C. M. and Burnard, L. (n.d.) A gentle introduction to SGML. http://

www-tei.uic.edu/orgs/tei/sgml/teip3sg.

Wright, A. K. and Cartwright, R. (1994) A practical soft type system for scheme. Proceedings

ACM Conference on Lisp and Functional Programming, pp. 250–262.

https://doi.org/10.1017/S0956796802004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004410

