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Consider the functional equation
(1) f(x+h,y) + f(x-h,y) - {(x,y+h) - f(x,y-h) =0

assumed valid for all real x, y and h. Notice that (1) can be
written

(2) Ao f-aA" f=0,

a difference analogue of the wave equation, if we interpret

Axf(x,y) = f(x + g,y) - f(x - -]%,y), etc., (i.e. symmetric
differences), and that (1) has an interesting geometric interpretation.
The continuous solutions of (1) were found by Sakovie [5]). In this

paper the result of Sakovi® is obtained using a method related to the
distributional methods employed in [1] and [6]. This method is then
used in dealing with related equations such as those considered in

[1] and [6].

Throughout this paper R denotes the set of all real numbers and
¢ is a real valued function of two real variables satisfying the
n

following conditions for each n=1, 2, 3, ...

(i) ¢>n(x, y) > 0 for all real x,y and ¢ (x,y) depends only
- n

on x* + yZ and is thus symmetric in both variables.

00
(ii) ¢n e C (RZ) i.e. ¢n has continuous partial

derivatives of every order.
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(i) suppo = {0ey) o (y) 7 0) © {bey): o +y' < ).
(v) [f 6 (x,y)dx dy = 1.

RZ

A sequence {6 } with these properties can be constructed
n

as follows. Let

0 [t] > 1

) [t] < 1
and define

d>n(x,y) =c T(nzxz + nlyz)

Properties (i), (iii) and (iv) are obvious and (ii)

0
follows from the fact that 7 € C (R). (See [7, page 3].)

b .
Notice that if f: R? -— R is continuous, then { f*¢ }n , s
n =
00
a sequence of C (R?) functions which converges to f almost
uniformly (uniformly on compact subsets of R?). Here f>."»¢n

denotes the convolution of f and ¢ , i.e.
n

£50_(x,y) = fzf f(s,t)¢_(x-s, y-t)ds dt.
R

1. We now give a proof of the result of Sakovid.
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THEOREM 1. A continuous function f: R -~ R satisfies (1)
for all x, y, h € R if and only if there exist continuous functions
@, f: R =R such that for all x, y € R,

(3) f(x,y) = a(xty) + p(x~y).

Proof. Suppose f is a continuous solution of (1). For each
n=1,2,3,..., let f =1f*%$ . Multiply both sides of (1) by
n n

¢ (s-x, t-y) and integrate with respect to x and y over R% to
n

show that each f 1is also a solution of (1). That is,
n
(4) f (s+h, t)+ f (s-h, t) - f (s, t+h) - f (s, t-h) =0
n n n n

for all real s, t, and h. But f has continuous partial derivatives
n

of every order. Differentiate (4) twice with respect to h and then
put h = 0 to obtain

Thus f (x,y) = a (x+y) + ﬁn(x—y) for all x, vy € R where
n n

)
a,p €C (R) for n =1,2, 3, ...
n "'n

ut+v  u-v utv  u-v
Let g(u,v) = f(T, 2—) and gn(u,V) = fn( 2’ 2 ) = Qn(u) + ﬁn(v)
for all u, veR and n =1, 2, 3, ... . Since fn - { almost uniformly,

g — g almost uniformly. Thus
n
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g(u,v) - g(u, 0) - g(0,v) + g(0,0)

=lim(a () +B_(v) - @ (1) = p_(0) = @ (0) - B_(v) + a (0) + B_(0))

n—>o00 n

=0 for all u, v € R.

Let a(u) = g(u,0) - %g(O, 0) and p(v) = g(0,v) - %g(0,0) for u, v € R.
Since g 1is continuous so are « and B. Moreover f(x,y) = g(xt+y, x-y)
= a(xty) + B(x-y) for all x, y € R.

Since the converse is trivial, this completes the proof.

Remark. Notice that any f of the form (3), with arbitrary «
and B, is a solution of (1). It is thus easy to find solutions of (1)
which are nonmeasurable, measurable solutions which are nowhere

r r+1
continuous and solutions of class C  which are not of class C
for each r =0, 1, 2, ... . This is in marked contrast to the
equation

f(x+t, y+t) + f(x+t, y-t) + f(x-t, y+t) + f(x-t, y-t) = 4f(x,vy)

whose only measurable solutions are harmonic polynomials of
degree < 4. See [1, Theorem 3].

We remark that not every solution of (1) is of the form (3).
In fact it is easily verified that any biadditive antisymmetric function

f satisfies (1). (An example of a non-trivial function of this type is
supplied by

f(x,y) = xa(y) - ya(x)

where a is additive and discontinuous.) However if f is biadditive
and antisymmetric then f cannot be of the form (3) unless f =0.
To see this, suppose, on the contrary, that

f(x,y) = a(xty) + B(x-y).
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Since f is antisymmetric and additive in each variable
f(x,x) = -f(x,x) = f(x, -x) for all x € R. Thus

o
|

= f(x,x) = o(2x) + B(0)

and 0 = f(x, -x) = a(0) + p(2x)

which implies that @ and B are constant which in term implies that
f is constant and finally, f = 0.

If we interpret A f(x,y) = f(x+h,y) - f(x,y), etc., then
hX
(2) becomes

(5)  f(x+2h,y) - 2f(x+h,y) - f(x,y+2h) + 2£(x, y+h) = 0.

2
THEOREM 2. A continuous function f: R — R satisfies (5)

f_o_r all x, y, h € R if and only if there exists a continuous a: R - R
and real constants a, b and c¢ such that for all x, y € R,

(6) f(x,y) = a(xt+y) + a(x-y)2 + b(x-y) + c.

Proof. Suppose f is continuous and satisfies (5). As in the
proof of Theorem 1 we find that f(x,y) = a(x+y) + B(x-y) for all
%X, vy € R where a and P are continuous. Then from (5) we obtain
B(x+2h-y) = 2p(x+h-y) - B(x~y-2h) + 2p(x~y-h) = 0 for all x, y, h € R.
With y = 0 this becomes

(7) B(x+2h) - 2p(x+h) - B(x-2h) + 2p(x-h) = 0

for all x, h € R. According to [2, Theorem 6.1], since p is
continuous, B must be a polynomial. Differentiating (7) three times
with respect to h and setting h = 0 we find that p'''(x) = 0 for all
x € R and thus conclude that (6) holds.

It is easy to show that if f is of the form (6), then f
satisfies (5). This completes the proof.

2. The method employed above may be used to solve or to
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obtain qualitative information concerning functional equations of the
form

m
(8) flx,y) = = vy, f(x + Dih, y + o h)
i i
i=1

where 0.5
i

(8) twice with respect to h one obtains, upon setting h = 0,

0. and vy, are real constants. Formally differentiating
i i j

(9) Ad%f 2BO % f co’f
+ + =0
9 x* dxdy 9 y*
m 2 m m
where A= = Y.p,, B= = yopo, and C= = Yo
. 11 i 11 1 . 11
i=1 i=1 i=1

THEOREM 3. Suppose { is a continuous solution of (8) and
at least one of A, B or C is non zero.

(i) If (9) is hyperbolic (AC - B> < 0) then
f(x,y) = a(ax + by) + p(cx + dy) where o,p: R >R are
continuous and a, b, c a_nq d are real constants with
a 5| 4 0.
c d

(ii)  If (9) is parabolic (AC - B® = 0) then
f(x,y) = (ax + by)a(cx + dy) + p(cx + dy) where «,p: R - R

are continuous and a, b, ¢ and d are real constants with

,
0.
C d

(iii) If (9) is elliptic (AC - B® > 0) then f(x,y) = g(ax + by, cx + dy)
where g is harmonic and a, b, ¢ and d are real constants

b
with [i d} # 0. Thus feCY(R?) if (9)is elliptic.

Proof. As above we let fn = f*¢ and find that f also
I n n

0
satisfies (8) and f ¢ C (R*). Thus f 1is a solution of (9).
n
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0 .
(1) If (9) is hyperbolic then, since f € C (Rz), a suitable
n

change of variable gives rise to the wave equation. Thus there are
continuous functions « , § : R >R and real constants a, b, ¢ and

ab
d wi -
with ‘c a l # 0 such that fn(x,y) an(ax + by) + ﬁn(cx + dy)

for all real Le a'b')-"ab>-1 d
or all real x, y. t (C' aqr = (Cd an
g(u,v) = f(a'u+b'v, c'u+d'v) and
g (u,v) =f (a'u+b'v, c'u+d'v) = a (u) + g (v) for all real u and
n n n n
v. Since fn - f almost uniformly, g, "~ 8 almost uniformly.
h - ,0) = Ii , - , 0
Thus g(u,v) - g(u,0) = lim (g (u,v) - g (u,0))
= Iim (@ (u) + B (v) =« (u) - g (0)) = Iim (B _(v) - B _(0)).
n n n n—o n n

n—00 n
We can thus write

g(u,v) = a(u) + g(v)

where a(u) = g(u,0) and pB(v) = lirromo(ﬁn(v) - 5n(0)). Since g is
n—)

continuous, so are « and f and
f(x,y) = glax + by, cx + dy) = a(ax + by) + B(cx + dy) for all x, y € R.

(ii) If (9) is parabolic we similarly find that
fn(x,y) = (ax + by)an(cx + dy) + Bn(cx + dy). Let

a' b! ) _(a b -1 , . , ,
«C, ar “(c d) and fn(a u+tb'v, c u+dv)-uan(v)+5n(v)
and f(atu+ b'v, c'u+d'v) = g(u,v) for all real u and v.
Then since f —-f, g - g and
n n

g(u,v) - g(0,v) = Ilim (uozn(v) + Bn(v) - [Sn(v)) =u Illir_xgooozn(v).

1

n--oo

If we let a(v) = Ilim an(v) and B(v) = g(0,v) then

g(u,v) = ua(v) + B(v) for all real u and v. Hence

f(x,y) = glax + by, cx + dy) = (ax + by)a(cx + dy) + p(cx + dy)
for all real x and vy.

Part (iii) follows in a similar manner from the well-known
theorem of Harnack which asserts that the almost uniform Iimit of
harmonic functions is harmonic. (See, for example, [4]).
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COROLLARY. If Y > 0 for i=1,2,..., m and the

i . . .
p.'s and o 's are not proportional then every continuous solution
1 1

© 2
of (8) belongsto C (R").

Proof. By the Schwarz inequality

m m m
2 — 2 — 2 — o 12
B" = ( 12;1("/‘\{_1 Di)(JYiU'i)) < 12:1(/\/101) N 12;1(/Yi°'i) ) = AC

and the result follows from (iii) of Theorem 3.

3. As a further example let us show that the present method
can be used to solve some equations of the type considered in [6].
The following equation was solved in [6],

2 2 3 2
(10)  f(x + h,y) + h f(x,y+h) - (h" +1)f(x,y) = h(2x+h + h~ + 2yh").

Let us show that f is continuous and satisfies (10) if and only if

2 2
f(x,y)=x +y + C where C is a real constant.

Suppose f is a continuous solution of (10). Multiply both sides
of (10) by ¢ (u-x, v-y) and integrate with respectto x and y over
n

RZ. By (i), ¢n(s,t) is an even function of s for each fixed t.
0

Thus f s¢n(s,t)ds = 0 for every t so that

-0

0
f{x¢n(u-x, v-y)dx dy = féf(u-s)d;n(s,t)ds dt = u - f( f s¢n(s,t)ds)dt =u.
R R =0 =0

Similarly ff yé (u-x, v-y) dxdy =v and so
n
2
R

2 2
(11) £ (ath, v) + hzfn(u, v+h) = (K" +1)f_(u,v) = h(2a+h+ > 4 2vh’)

00
for all real u, v and h. Now fn € C (RZ). Differentiating (11) once
9f
B
2 00 9 x
f (u,v) =u +b (v) where b € C (R). Since f - f we find, as
n n n n

before, that f(u,v) = u? o+ b(v) for all real u and v where

with respect to h and setting h = 0 we find (u,v) = 2u. Thus

b: R = R 1is continuous. This, together with (10), implies that
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2 4 3
h [b(y+h) - b(y)] =h +2yh™ for all real y and h. Thus

b(y+h) - b(y)

=h+2
h ey

for all y € R and all real h # 0. Thus b'(y) =2y so that

b(y) = yz + C where C is constant. We thus have f(x,y) = x2+y2+C
and every function of this form is readily shown to satisfy (10).

In [1] and [6] continuous solutions of functional equations of a
type similar to those considered here were found using results
concerning the regularity of distributional solutions to certain elliptic
and hypoelliptic partial differential equations. Such methods clearly
cannot be applied to equations like (1) which do not give rise to
elliptic or hypoelliptic partial differential equations.

M. A. McKiernan [3] has found the general solution of (8) (and

. . . n .
its natural generalization to R ) under the assumption that

=Y, # 0 whenever § # J< {1, 2, ..., m}. Thus our Corollary
ieJ 1!

is a particular case of McKiernan's result. Again (1) and (5) are not
of this type.
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