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Abstract

Given F-rings Nx and N2 , a construction similar to the Everett sum of rings to find all possible
extensions of Nx by iV2 is given. Unlike the case of rings, it is not possible to find for any
F-ring M an ideal extension that has a unity. Furthermore, contrary to the ring case, a F-ring
with unity can not be characterized as a F-ring which is a direct summand in every extension
thereof.

1991 Mathematics subject classification (Amer. Math. Soc.): 16 Y 99.

1. Introduction

The extension problem is a central one in the study of a specific algebraic
structure. It is our purpose here to give a solution to this problem for F-rings.
F-rings were introduced by Nobusawa [5] to provide an algebraic home for the
groups Horn (A, B) and Horn (B, A) (where A and B are abelian groups)
and the relationship between them. Since its inception, F-rings have received
much attention, see our references and their references, (for example, Booth
and Groenewald [2] and Kyuno [4]).

An extension E of a F-ring M by a F-ring N is a F-ring E satisfying
the following conditions: (i) M is isomorphic to an ideal I of E and (ii)
E/I is isomorphic to N. An extension E of M by N will be denoted by
a triple (f,E,g) where / is the F-ring isomorphism mapping M onto
the ideal I of E and g is the F-ring homomorphism from E onto N
with M (or its isomorphic image / in E) as its kernel. The functions /

© 1993 Australian Mathematical Society 0263-6115/93 $A2.00 + 0.00

368

https://doi.org/10.1017/S1446788700031840 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700031840


[2] Ideal extensions of T-rings 369

and g will be referred to as the functions associated with the extension. In
most cases we identify M with / and N with E/I. The solutions for the
corresponding problem for groups and rings were given by Schreir [8] and
Everett [3] respectively (but see also Redei [7] for an account of both).

As a generalization of rings, it can be expected that the solution of the
extension problem for F-rings should be along the lines of the ring case.
Using the ideas of Petrich [6], who reformulated the ring extension theorem
in terms of what he calls the translational hull of a ring this is to an extent
the case. But there are some striking differences as well. In Section 2, the
translational hull of a F-ring is described. This is then used in Section 3 to
construct extensions of F-rings. The solution to the extension problem for
F-rings as well as criteria for the equivalence of extensions are given. Using
the concepts of double homothetisms and holomorphs developed in Sections
4 and 5, a discussion on extensions of F-rings to F-rings with unity is given
in Section 6. The main result here is that, unlike the case for rings, it is not
possible to embed any F-ring as an ideal in a F-ring with unity. Furthermore,
contrary to the ring case, where a ring with an identity can be characterized
as a ring which is a direct summand in every extension thereof, an example
is given to show that this is not the case for F-rings.

2. Translational hull of a F-ring

F-rings as a generalization of rings were first denned by Nobusawa [3].
The definition that we will use is the somewhat weaker one due to Barnes
[1]. In the sequel M denotes a F-ring. We now introduce the translational
hull of M along the lines of the ring case (cf. Petrich [6]).

DEFINITION 2.1. Let i?(M) = {p: F —> End(M+)\p is a group homomor-
phism}.

(1) If r e %{M) then r is a left translation of M (in which case the
argument is written on the right and r{y) is denoted by ry) if

ry(mlfim2) = {ry{mx))nm2 for all ml, m2 e M, y, ft € F .

(2) If q e i'(M) then q is a right translation of M, (in which case the
argument is written on the left and (y)q is denoted by q) if

{mxnm2)yq = m^Hm^q) for all m,, m2 e M, y, fi € F.
(3) A pair p = (r, q) e i'(M) x %(M) is called a bitranslation ofM if r

is a left translation, q is a right translation and for any ml, m2e M, y, n e
F mly(r)i(m2)) = ((m1)yq)ium2 , in which case (r, q) is said to be linked.

A bitranslation p will be considered as a double operator with p(y) =
py = ry and {y)p = yp = yq.
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THEOREM 2.2. Let M be a T-ring. Both the sets %,{M) and %r{M) of
all the left and right translations of M respectively are T-rings.

PROOF. Let £>(Af) = {p e %{M)\p is a left translation} . The set ^
is not empty, cf. Example 2.5. Define addition on £y(M) by (p1 + p2)y =

p) +p] for all pl,p2 e Wf{M) and any y e F . Then #>(M) is an
abelian group with zero element 0 defined by 0?{m) = 0 and the addi-
tive inverse —p of p e £?/(M), defined by {-p)y{m) — -py{m). Define the
map (-, - , - ) : ^(M)xYx^(M) -> W,{M) by (plyp\ = p)*p\ for all

pl, p2 € £y(M) , y, ft eY, where o is the usual composition of functions.
This mapping is well defined and straightforward calculations will confirm
that i?/(M) is a F-ring with respect to the operations defined above. By
defining, for any ql, q2 e %>T{M) and y GY, qlyq2 to be the right transla-
tion given by x(q

lXq2) = kq
l o q2 for all X e F , we can show similarly that

l?r(A/) is a F-ring.

DEFINITION 2.3. The set &2{M) of all bitranslations of M is called the
translational hull of M.

THEOREM 2.4. The translational hull %2(M) of a Y-ring M is a Y-ring
with respect to the operations defined by {p + q)y = py + qy,y{p + q) —
P+yCI, (pyq)x = Py°Qx and A 0 w ) = j^o^ for all y,y

YP+yC

PROOF. The set &2{M) is not empty (cf. Example 2.5) and <§̂ (M) is an
abelian group: We only show §^(Af) is closed under addition: Let p, q e
g2{M). If p = (r1, s1) and q = (r2, s2), then p + q = (r1 + r2, sl + s2).
Theorem 2.2 yields that r1 + r2 and si + s2 are left and right translations
respectively. To see that p + q e £?2(M), let /n,, m2 e M and y, ft e F .
Then

q)y(m2)) = mxii{py{m2)) + mlfi(qy(m2))

+ ({ml)ftq)ym2

Thus p + q is linked and so p + q € 2

Define the map ( - , - , - ) : &2{M) x F x g^Af) - V2(M) by (pyq)x =
py o qx a n d x(pyq) = xp o y q . L e t p , q e %2{M). If p = (rl, s*) a n d
q = (r2, 52), then py^ = (r'y' '2, s1ys2) where r1)''"2 and i1)'*2 are defined
by ( rV 2 ) A = 4j or2 and x(s

lys2) = xs
l ° ys

2. Then rlyr2 e ^(Af) and
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s*ys2 € %r{M) (from Theorem 2.2). For any m, , m2e M, X, n € F ,

and
((^i)A(P^))3"«2 = {{{mx)llp)yq)Xm1 = ((m,

Hence pyq is linked so that pyq e I^,(M). The rest of the proof that
§2(Af) is a T-ring follows directly from the proofs that ^(M) and %r{M)
are F-rings.

The F-ring £?2(M) will be used in Section 3 to construct extensions of
F-rings, while £y(M) and ^r(M) are of good use when considering F-ring
extensions with unity (cf. Section 6). The next example shows that %?2{M)
(and also £y(M) and %>r{M)) is not empty for any F-ring M.

EXAMPLE 2.5. Any m e M determines a bitranslation of M as follows:
Define pm: F -> End(A/+) and qm: F -» End(A/+) by pm(y) = py

m and
(y)qm — yq

m where p™{n) = myn and (n)yq
m = nym for all m, n e M

and y e F . It is clear that pm is a left translation and qm is a right transla-
tion of M. The pair (pm, qm) is linked; hence (pm, qm) is a bitranslation
of M which we will denote by [m] — (pm, qm).

DEFINITION 2.6. The bitranslation [m] constructed in Example 2.5 is
called the inner bitranslation of M induced by m. The set of all inner bi-
translations of M will be denoted by ^(M).

The inner bitranslations play an important role in the theory of F-rings
with unities (cf. Sections 4 and 6).

DEFINITION 2.7. (i) Two bitranslations p and q of M are amicable if
for any y, ft e F and m e M

Pjifjn)^q) = [py{m))^q and qftm)^) = {q^m))^.

(ii) An amicable set of bitranslations of M is a set of bitranslations of M
for which all the elements are pairwise amicable.

THEOREM 2.8. ^(M) is a set of amicable bitranslations of M and
is an ideal of the T-ring ^(M) of bitranslations of M.

PROOF. It is straightforward to verify that ^{M) is an ideal of
Any two elements of S(M) are amicable: Let [«,], [n2] e ^(M). Then
for any m e M, y, fi e F :

= nxy(m/in2) = {nxym)nn2 = ([n,]r(w))^[n2] a n d

x) = {n2ym)/inl = ([#i2
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3. Extensions of F-rings

A F-ring can be considered as an Q-group. As such we immediately have
at our disposal the concepts homomorphism, isomorphism, kernel and the
isomorphism theorems. The following construction will show, given F-rings
M and N, how an extension of M by N can be constructed. Recall, for
m € M, [m] is the inner bitranslation of M induced by m.

CONSTRUCTION 3.1. Let M and N be two F-rings. Let (p, F, G) be a
triple of functions with p: N -* %2{M) denoting p{n) by pn e %2{M) ,F:N
x N —* M and g:NxFxN—*M satisfying the following conditions for
all n,n{, n2, n3eN and y, fi e F :

(El) F(n,0) = F(0,n) = G{0,y,n) = G{n,y,0) = 0; p° = [0];
(E2) pn> is amicable with p"2;
( E 3 ) p " " n + n

(E4) p l 2

(E5) F(nl,n2) = F{n2,nl);
(E6) F(nl, n2) + F{nl + n2, n3) = F(nl, n2 + «3) + F(n2, n 3 ) ;

(E7) G(nxyn2,n,nj- G(nl ,y,n2, /in3) = p"l(G(n2, fi, «3))

-((?(»,, y, « 2 ) ) y -
(E8) <?(», ,y,n3) + G(n2, y, n3)- G(n{ + n2, y, n3) = ( F ( « , , n2))yp

n> -
Fin^n^, n2yn3);

(E9) G{nx ,y,n2) + G{nx ,y,n3)- G{nx, y, n2 + n3) = p"1 (F(n2, n3)) -
F(n1yn2,nlyn3);

(E10) G{n1,y + n,n2) = G(nl, y, n2) + G{nl, n, n2) + F(n{yn2, / i , / /«2) .

Let E = N x M with addition denned on E by

( « , , m , ) + (n2, m2) = (nl + n2, F(ni, n2) + ml+ m2)

and a mapping (—,-,-): E x T x E —> E denned by

( n 1 , mx)y{n2, m2) = {nxyn2, G ( n , ,y,n2) +p"'(m2) + ( w , ) , , / 2 + mlym2).

Define the functions:

f-.M^E by/(m) = (0,m) for all m e M and
g : E —> N by g(n, m) = n for all (n, m) € E.

DEFINITION 3.2. The triple (f,E,g) of Construction 3.1 is denoted by
E(p, F, G) and is called an E-sum of the F-rings Af and M.

THEOREM 3.3. The E-sum E(p, F, G) of the F-rings N and M is an
extension of M by N.
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PROOF. Using conditions (El), (E5) and (E6), it can be verified that E is
an abelian group with zero element (0, 0) and - ( n , m) = ( - « , -F(n, -n)
-m). E is a F-ring: Let (nl,mx), (n2, m2), (n3, m3) e E, y, ji e F .
Then

(i) ((/I,, m,) + (n2, m2))y(n3, m3)

= ((n, + n2)yn3, G(nl +n2,y,n3) +pn'+"2{m3)

+ (F(nl, n2) + m , + m2)Yp"3 + (F(nl, n2) + m, + m2)ym3)

= (nxyn3 + n2yn3, G(nl + n2, y, n3) +p"'{m3) +p"1(m3)

- [F(nl, n2)]y{m3)

+ {F{n,, n2))yp
n> + (m,)^"3 + ( m 2 ) / 3 + F(nx, n2)ym3

+ mlym3 + m2ym3) (Condition (E3))

n2yn3, F{nxyn3, n2yn3) + G(ni, y, n3)

+ G(n2, y,n3)+p"'(m3)+p"2(m3) + (m

+ mlym3 + m2ym3) (Condition (E8))

= (n,, mx)y{n3, m3) + {n2, m2)y(n3, m3).

(ii) (nl,ml)(y + /i)(n2,m2)

= {nlyn2 + nxiin2, F(nxyn2, nxnn2) + G{nx, y, n2)

+ G{nl>fi,n2)+p"'(m2)

+ p"/(m2) + (mx)yp
ni + (m,)^" 2 + mxym2 + mx/im2)

(Condition (E10))

= («i. mx)y(n2, m2) + (nx, mx)n{n2, m2).

(iii) (nx,mx)y((n2,rn2) + (n3,m3))

= («, , mx)y{n2, m2) + (nx, mx)y(n3, m3)

is similar to (i) using conditions (E3) and (E9).

(iv) ( « , , mx)y{{n2, m2)ji{n3, m3))

= (nxy{n2nn3), G(nx, y, n2nn3) + p"'(G(n2,/J.,n3)+ pnj(m3)

(mx)yp"2fin3 + mly(G(n2 ,n,n3)+
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, G(nl, y, n2fin3) + />"'(G(n2, fi, n3)) + p"l(p"M
2(m3))

x)/') +pn
y
1(m2nm3) + ( m , ) ^ " ^ / ' )

G(n2,fi, n3)] + mlyG{n2,fi, n3) + mxyp"ll
1(m3)

^"3) + mly(m2nm3)) (Condition (E4))

= ((nlyn2)/in3, G(nx, y, n2fin3) + p"'(G(n2, fi, n3))

+ (imi)yPl2 -nP"1 ~ mlyG(n2, n, n3)

+ mxyG{n2 ,n,n3) + / n , ^ 2 ( w 3 ) + m

+ mly(m2nm3))

{{nxyn2)nn3, G{nxyn2,n, nJ

+ [Gin,, y, «2)ym3) + ^"'(m

(Conditions (E7), (E4) and (E2))

({nxyn2)nn3, G{nxyn2,n, n3) +p";yn2(m3) + (G(«,, y,

+ iPy'irn,))^ + ( ( m , ) ; " ' ) / + (mxym2)/>

+ G(nx, y,n2)nm3

+ {p"i{m2))ixm3 + (ml)Yp"2fim3 + (mlym2)fim3

((«i > mx)y{n2, m2))/x(n3, m3).

Let / = {(0, m)\m € M}. Then I <M and the function f:M->E
denned by f(m) = (0, m) for all m e M is a F-ring isomorphism from M
onto the ideal / of E. Furthermore, g: E —• N denned by g(n, m) — n
for all (n, m) e E is a surjective F-ring homomorphism with ker (g) — I.
Thus E/M s N and E(p, F, G) is an extension of M by N.

DEFINITION 3.4. Two extensions (/', E, g) and (/, E', g) of a F-ring
M by a F-ring Â  are equivalent if there exists a F-ring isomorphism h: E -*
E' such that the following diagram commutes:

The next construction shows how an is-sum equivalent to a given extension
of M by iV can be found.
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CONSTRUCTION 3.5. Let A be an extension of a F-ring M by a F-ring
N, with M < A and AIM = N. The elements of N will be regarded as
cosets determined by M in A. Let k: N -> A be a function on JV with
k(n) € « such that g o k is the identity function on N where g is the
natural homomorphism of A onto N = A/M, subject to k(0) = 0 . Define
the following functions:

(i) p: N -> £^(M), we write « i-> pn , by p"(m) = k(n)ym and (m)yp
n =

myk(n) for any m e M and y s F . In a sense /?" can be regarded as the
restriction of [k{n)] to M; hence we sometimes write />" = [k(n)]\M.

(ii) F : NxN ^ M by F (n , , w2) = A:(n,)+A:(«2)-fc(«1+n2) for all n , ,
« 2 € i V .

(iii) G: NxVxN -• Af by G(«!, y, «2) = k(nx)yk{n2)-k{nxyn2) for all
n , , « 2 € JV, y e T .

THEOREM 3.6. The functions p, F and G of Construction 3.5 satisfy the
conditions of Construction 3.1 to fee a/i E-sum E = E(p, F, G) of N and
M. Furthermore, the extension A is equivalent to the E -sum by the equiva-
lence isomorphism 1: A -> E defined by

l(a) = (g(a),a-k(g(a))) for all a e A.

PROOF. TO see that p, F and G are well defined we observe that:
(i) n e N =• k{n) e A =• [*:(«)] e ^ U ) and thus [)t(n)]|Af e %2{M),

since M < A.

(ii) £(£(«!) + k{n2) - k{nx + n2)) = g{k(n{)) + g{k(n2)) - g(k{nl + n2))

= nl + n2-(nl +n2) = 0,

that is, k(n{) + k{n2) - k(n{ + n2) e ker(^) = M for any w1, «2 € N.

(iii) g{k(nx)yk(n2) - k(nxyn2)) = g{k{nx))yg(k{n2)) - g(k{nxyn2))
= nlyn2-nlyn2 = 0,

that is, kin^ykin^ - k(nlyn2) e ker {g) = M for any n{, n2 € N, y € F.
For any n, nx, n2, n3 e N, y,/i£F, m € M, the conditions of Con-

struction 3.1 are satisfied (using the definitions of p, F and G in Construc-
tion 3.5):

(El) Follows directly from the definitions.

(E2) Py'dm)^) = k(ni)y(mfik(n2)) = {k{nx)ym)nk{n2)
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(E3) />"' +p"> -p">+"> = [*(/!,)] + [k(n2)] - [k(nx + «2)]

= [k(nx) + k(n2) - k{nl + n2)] = [F(nx, n2)];

(E4) pn>ypn* -p">yn> = [k(nx)]y[k(n2)] - [k(nxyn2)]

= [G{nx, y, n2)];

(E5) F(nl, n2) = k(nx) + k(n2) - k(n{ + n2)

= k(n2) + k{nt) - k{n2 + «,) = F{n2, « ,) ;

(E6)
^ ( n , , n 2 ) + / • (# ! ,+ / ! 2 , / i 3 )

= k(n{) + k(n2) - k(nl + n2) + k(nl + n2) + A;(«3) - k((nl + n2) + «3

= /:(«,) + k(n2 + n3) - k(nl + (n2 + «3)) + k{n2) + fc(n3) - k(n2 + n2)

= F(nl, nx +n3) + F(n2, n3);

(E7)
G{nxyn2,n,n3)- G(nl, y,

= k(nlyn2)fik(n3) - *(n1

- (k(n{)yk(n2) - k{nxyn2))nk{n3)

(H2, (i, n3)) - (G(n,, y, n2))^[fc(/i3)]

(G(»2, n, «3)) ((?(«,, y, n 2 ) ) ^ " 3 ;

(E8) G(nl ,y,n3) + G(n2, y , n3) - G(n, + « 2 , y , n3)

k(n2yn3)

= (F(nx, n2))y[k(n3)] - F{nxyn3, n2yn3)

= (F(n{, n2))yp"3 - F(nxyn3, n2yn3);

(E9) G(nx ,y,n2) + G{nx, y , n3) - G(nx ,y,n2 + n3)

= /7"'(.F(rt2, n3))-F{nxyn2, nxyn3).

As in (E8),

(E10) (G(nx ,y + fi,n2)- G(nx, y, n2) - G(nx, n, n2)

= k(nx)yk{n2) + k(nx)/ik(n2) - k(nxyn2 + nxfin2) - k(nx)yk(n2)

+ k{nxyn2) - k(nx)fik{n2) + k{nxnn2)

= k{nxyn2) + k(nxfin2) - k{nxyn2 + nxnn2) = F(nxyn2, nxfin2).
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Thus E = E(p, F, G) is an is-sum of N and M with associated func-
tions / : M -> N x M and g : N x M -> N with f{m) = (0, m) for
all m e M and g'{n, m) = n for all («, m) e N x M. From Theorem
3.3, E{p, F, G) is an extension of M by iV. The mapping / is a F-ring
isomorphism: / is well denned since a e A =$> g(a) € iV => k(g(a)) e 4̂ and
g(a-k(g(a)) = g(a)-g(k(g(a))) = g(a)-g(a) = 0. Thus a-k(g(a+M)) e
ker(#) = M for any a e ^ . Let a{, a2e E, y € F , then

= (g(a,) + g(a2), F{g{ax), g(a2)) + a, -

= {g{ax + a2), k(g(ai)) + k{g(a2)) - k{g{ax) + g{a2))

= (g{ax + a2)) ,ax+a2- k(g(ax + a2)) = l(a + a2) and

l{ax)yl{a2) = (g(ax)yg(a2), G{g{ax), y, g(a2))

+ P8
r
{a'\a2 - k(g(a2))) + (ax - k{g{ax)))yp

g{p^

+ (ax - kg(ax))y{a2 - k(g{a2)))

= {g{axya2) - fc(s(ai))yfc(s(a
2)) - k(s(ax)yg(a2) + k(g(ax))ya2

- k(g(ax))yk(g(a2)) + axyk(g(a2)) - k(g(ax))yk(g(a2))

+ axya2 - axyk(g(a2)) + k(g(ax))yk(g(a2))

= {g{axya2) - a\t<h. ~ k(8(a\Vai)))

= l(axya2).

It is straightforward to verify that / is a bijection. Lastly, consider the
diagram

M U

where i: M -* A is the inclusion. If m e M, then (/ o i){m) — l{m) =
(g(m + M),m- k(g(m + M))) = (g(M), m - k(g(M))) = (0, m - k(0)) =
(0, m) = f{m). Thus / o / = / . If a e A, then {g o l){a) = g\l{a)) =
g\g{a+M), a-k(g(a+M))) = g(a+M) = g(a). Thus g'ol = g. Hence the
diagram commutes, which shows that the extensions A and E = E{p, F, G)
are equivalent.

To conclude this section, we give necessary and sufficient conditions for
the equivalence of any two is-sums, thus also for any two extensions of a
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r-ring M by a P-ring N. In fact, we determine all equivalences between
two extensions of M by N.

THEOREM 3.7. Let E(p,F, G) and E'{p', F', G1) be any two E-sums
of the F -rings N and M. Let k: N —> M be any function with k(0) = 0
satisfying the following conditions for any n, nx, n 2 e N , y € F :

(11) F'(nx, n2) - F(nx, n2) = k{n{) + k(n2) - k(n{ + n2);

(12) G\nx, y, n2)-G{nx ,y,n2) = k(nl)yk(n2)-k(nlyn2)+pn
y>(k(n2)) +

{k{nx))yp
n>;

(13) (p')n-p" = [k(n)].

Then the Junction I: E(p,F,G) - E'(p', F1 ,Gf) defined by l(n, m) =
(n, m - k(n)) is an equivalence isomorphism. Conversely, every equivalence
isomorphism between two extensions of M by N is of this form for some
function k satisfying the conditions (II) to (13) above.

PROOF. It is clear that / is a bijection. We show / is a homomorphism:
If ( « , , mx), (n2, m2) eE,yeT, then

/ ( « , , m,) + l(n2, m2) = {nx + n2, F\nx, n2) + /n, - k(nx) + m2- k(n2))

= (n, + n2, F{ny, n2) - /c(n, + n2) + m, + m2)

(Condition (II))

= /((#!,, ml) + {n2,m2))

and

/(«, , ml)yl(n2,m2) = {nxyn2, G\nx, y, n2) + (//)"'(m2 - k(n2))

+ (mi-k(nl))y(p
1)"2

+\mx-k{ny))y{m2-k{n2)))

= {nxyn2,G\nx ,y,n2) + {p')n
y{m2) - {p')n;{k{n2))

+ (rnl)y(P
>)"1-(lc(ni)y(p')"2

+ mxym2 - mxyk(n2) - k(nx)ym2 + k{nx)yk(n2))

= (nxyn2, G{nx, y, n2) + k{nx)yk{n2) - k{nxyn2)

+ P"i(k(n2)) + (k(nx))yP
n> +pn

y>(m2)

Hk(nl))y(m2)-p^(k(n2))-[k(nx)]y(k(n2))Hmi)yP
ni

+ (ml)y[k(n2)]-(k(nx))yp
n>

- (k(nx))y[k{n2)] + mxym2 - mxyk{n2) - k{nx)ym2

+ f{nx)yf{n2) (Conditions (12) and (13))
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= (nxyn2, G(nx, y, n2) - k(nxyn2)+p"l(m2)

+ (mx)yp
n2 + mxym2)

= l(nxyn2, G(nx, y, n2)+p"l(m2) + (mx)yp"2+ mxym2

= l(nx, mx)y(n2,m2)).

Consider the diagram

where /', g, f and g are the functions associated with the extensions E
and E' respectively. If m € M, then (/ o f){m) = l(f(m)) = 1(0, m) =
(0, m-k(0)) = (0, m) = /{m) and, if («, m) eE, then (g'o/)(n, m) =
g'(l(n, m)) — g'(n, m — k(n)) — n = g(n, m). Thus the diagram commutes
and / is an equivalence isomorphism. Conversely, let I: E —> E' be any
equivalence isomorphism between two extensions E and E' of M and N.
If f,f>g and g are as before, the diagram

will commute. Thus g'(l(n, m)) = g{n, m) = n for any (n, m) e E. To
satisfy this, l(n, m) must be of the form («, h(n, m)) where h is some
function from N xM into M. But l{f{m)) = f{m) for any m e M, that
is, /(0, m) = (0, m). Thus /(0, m) = (0, A(0, m)) so that h(0, m) = m.
Consequently, we have the existence of a function h: NxM —• M satisfying
h(0, m) = m for all meM. Define k: N -> M by ik(n) = - / i (« , 0) for
aUneJV. Then l(n, m) = l(0 + n, E(0, n) + m + 0) = l{(0, m) + (n,0)) =
1(0, m) + l(n,0) = (0, h(0, m)) + (n,h(n,0)) = (0, m) + (n, -k(n)) =
(n, m- k(n)). Hence / is of the required form and it remains to be shown
that k satisfies conditions (II) to (13).

(II) / («, , m,) + l(n2, m2) = l((nx, m,) + (n2, m2))

=*> (n, + n2, F'(nx, n2) + m, - k(nx) + m2- k(n2))

= (ny + n2, F(nl, n2) + ml + m2- k(nx + n2))

=• JF ' («, , n2) - k(nx) - k(n2) = F(nx, n2) - k(nx + n2)

=> F'(nx, n2) - F(nx, n2) = k(nx) + k(n2) - k(nx + n2)
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(13)

= l(nyO, G(n,y, 0) + p*(m) + ( 0 ) / + Oym) = /((«, 0)y(0, m))

= l(n, 0)y/(0, m) = (n, 0 - k(n))y(0, m - *(0)) = (n, -k(n))y(0, rn)

= (ny0,G'(n,y,0)+ p'y
n{m) + (-k(n))/0 - k(n)ym)

= (0,p'y
n(m)-[k(n)]Y(m)).

Thus p*{m) = py\m) - [k(n)]y(m), that is, {p'n -pn)y = [k(n)]y. Simi-

larly, y(p
ln - p") = y[k(n)]. Hence p'n - pn = [k(n)].

(12) /(/i,, m,)y/(/i2, m2) = l({nl, mx)y{n2, m2))

^{nxyn2, G(n{, y, n2) + p'"1 (m2 - k(n2)) + (m, -k(nx))yp'ni

+ (m, - k{nx))y{m2 - k{n2))

= {nlyn2, G(nl ,y,n2) +py
l(m2) + (m,)^"1

+ mlym2-k{nxyn2))

=^(n{yn2, G\nx, y, n2) +py'(m2) + k(nx)ym2-p"l{k(n2))

-k(nx)yk(n2) + (mx)yP
n>

+ mxyk{n2) - (k(nx))yp"2 - k(nx)yk(n2) + mxym2 - mxyk{n2)

+ k{nx)yk{n2))

= (nxyn2, G(nx, y, n2)+p"l(m2)+ (ml)yp"2

+ mxym2 - k{nxyn2)) (using Condition (13))

G'(nx ,y,n2) -Py'(k(n2)) - {k{nx))yp
n2 - k(nx)yk(n2)

= G(nx, y, n2) - k{nxyn2)

G'(nx, y, n2)-G(nx, y, n2) = k(nx)yk(n2) - k(nxyn2)

EXAMPLE 3.8. Let M and N be any F-rings. Define the functions F, G
and p for an extension of M by iV by F{n{, n2) = G(nx, y, n2) - 0 and
pn = [0] for any n,nx,n2 e N, y eT. Then the E-sum of JV and M
defined by these functions is the same as the direct sum N © M of iV and
M. Therefore, there always exists at least one extension of M by N. From
Theorem 3.7 it follows that any extension E of M by N will be equivalent
to N © M iff there exists a function k: N —• M with k(0) = 0 satisfying
for all n, nx, n2e N, y e F :

(i) F\nx, n2) = k(nx) + k(n2) - k(nx + n2);
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(ii) G'(nl ,y,n2) = k{nx)yk{n2) - k{nxyn2);
(iii) p'" = [k(n)].

DEFINITION 3.9. Let M and N be any F-rings. An extension of M by
N for which F(nl, n2) = G{nl, y, n2) = 0 for all nl, n2 € N, y € F , is
called & factor free extension of M by N and will be denoted by N#M.

4. Double homothetisms of a F-ring

The double homothetism of a ring (cf. Redei [7]) is an important tool in
the study of rings with identity. It is also of much use in the F-ring case.

DEFINITION 4.1. A double homothetism p of a F-ring M is a bitranslation
of M that is amicable with itself.

It is hard not to find double homothetisms of a F-ring M: from Theorem
2.8 we have that the set J{M) of all inner bitranslations of a F-ring M is a
F-ring of amicable double homothetisms of M. For this reason the elements
of ^{M) will be called the inner double homothetisms of M.

The proof of the next result is a straightforward application of Zorn's
Lemma:

THEOREM 4.2. Every set of amicable double homothetisms of a T-ring M
is contained in a maximal set of amicable double homothetisms of a P-ring
M.

THEOREM 4.3. The sub T-ring of £?2{M) generated by any set of amicable
double homothetisms of M is always a Y-ring of amicable double homoth-
etisms of M.

PROOF. Let A be a set of pair wise amicable bitranslations of M, and
let B be the sub F-ring of ^2(M) generated by A . Then B consists of all
sums of the form £ a,- - £ *,• + X) c,7,^,» ai > bt, ct ,d(e A. It can be proved
by straightforward calculation that the elements of B are pairwise amicable,
and hence are in particular double homothetism.

In view of the above result, any maximal set of amicable double homo-
thetisms of a F-ring M must be a F-ring and it will be called a maximal
T-ring of amicable double homothetisms ofM.

From Theorem 4.2 it follows that any set of amicable double homothetisms
of a P-ring M is contained in at least one maximal F-ring of amicable
double homothetisms of M.
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THEOREM 4.4. For any T-ring M, ^f(M) is contained in every maximal
Y-ring of amicable double homothetisms of M.

PROOF. Let p be any double homothetism of M, [n] e ^{M), m e M
and y e F . Then

= (py{m))nn = (p^m))^] and

y ^ ^) = (nym)^ = ([n]y(m))Mp.

Thus [n] and p are amicable. Hence if A is a maximal F-ring of amicable
double homothetism of M, then A u J^Af) is a set of amicable double
homothetisms of M. Let B be the sub F-ring of %?2{M) generated by
A \j^f{M). Then B is a F-ring of amicable double homothetisms of M by
Theorem 4.3 and A C B. Hence A = B, by the maximality of A , whence

C A, as required.

THEOREM 4.5. 7/" & is any Y-ring of amicable double homothetisms of
M, define the Junctions:

(i) F: 3° x & -> M by F(p , , p2) = 0 for all pl, p2 € &,
(ii) G r ^ x F x ^ - ^ A f by G{px, y, p2) = 0 for all />,, /?2 e ^ , y € F

and
(iii) p: & -» r2(Af) by />(/>,) = pPl = p, for all p, e 9>.

Then the triple (p, F, G) defines a factor free extension 3S#M of M by £P.

PROOF. Because every amicable double homothetism of M is a bitransla-
tion of M, p is well denned. The conditions of Construction 3.1 are clearly
satisfied.

The operations in the F-ring £B#M of Theorem 4.5 are given, for all
(Pi» m\), (j>2' mi) e & x M a n d y e F by:

ml+m2) and

THEOREM 4.6. The inner double homothetisms of all the extensions of a
Y-ring M induce all the double homothetisms of M.

PROOF. Let M be a F-ring and let E be any extension of M. Let [a] e
<f(E), then [a] — (pa, qa) where p" and a" is a left and a right translation
of E respectively, with pa(b) = ayb and {b)yp

a = bya for all b e E. Let
m e M. Then p"{m) = aym e M and {m)yq

a = mya e M because M<E.
Hence the restrictions of both pa and qa to M, say pa\M and qa\M, are
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left and right translations respectively of M and p = (pa\M, qa\M) is a
double homothetism of M.

Conversely, let p be any double homothetism of M. We show that
p is induced by an inner double homothetism of some extension of M.
Because any double homothetism is amicable with itself, {p} is a set of
amicable double homothetisms. From Theorem 4.2, p is an element of
some maximal F-ring £° of amicable double homothetisms. Form the fac-
tor free extension F-ring &>#M. Then (p, 0) e &>#M; thus [(/>, 0)] €
S(&#M) where [{p, 0)]y(q, m) = (p, O)y(q , m) and (q, m)y[{p, 0)] =
(q,m)y(p,0). Consider [(p, 0)]y\M and y[(p, 0)]\M. We identify M
with the subset {(0, m)\m e M) of <^>#M. Then [(p, 0)]y(0, m) =
(j>,0)y(0,m) = (0,py(m)) and (0, m)y[(p, 0)] = (0,m)y(p,0) -
(0, (m)yp). Hence [{p, 0)]?\M = py and y[(p, 0))\M = yp. Thus p is
induced by the inner double homothetism [{p, 0)] of 3B

5. The holomorph of a F-ring

DEFINITION 5.1. A sub F-ring / of a F-ring M is called characteristic
if it is invariant under any double homothetism of M, that is, if p is any
double homothetism of M, then p (I) c / and (I) rP Q I for all y e F .

THEOREM 5.2. A sub T-ring I of a Y-ring M is characteristic iff it is an
ideal in every extension of M.

PROOF. Use definition 5.1 and Theorem 4.6.

If / is a characteristic sub F-ring of M, i e / , m e M, y e F , then
[m] e ^(M), that is, iym = {i)y[m] e / and myi = [m]y(i) e I. Thus
I<M. Also, if / is a characteristic sub F-ring of M and p is any double
homothetism of M, p will induce a double homothetism of / , since py(I) C
/ and (I)ypQI.

DEFINITION 5.3. A holomorph of a F-ring M is a factor free extension
^#Af of M by any maximal F-ring & of amicable double homothetisms
of M.

THEOREM 5.4. The inner double homothetisms of all the holomorphs of a
Y-ring M induce all the double homothetisms of M.

PROOF. AS in the proof of Theorem 4.6.
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THEOREM 5.5. A sub T-ring of a T-ring M is characteristic iff it is an
ideal in all the homomorphs of M.

PROOF. Follows directly from Definition 5.1 and Theorem 5.4.

6. Unities of F-rings

Unities in F-rings differ from unities in rings in the very important way
that they are not necessarily unique. Contrary to the ring case, we will show
that not every F-ring can be embedded as an ideal in a F-ring with unity. A
F-ring M has a left (right) unity if there exists elements ex, e2, ... , es e M
and yl,y2,...,yssr such that £*=1 e^m = m(£*=1 myiei = m) for any
m e M. For examples see Kyuno [4]. It is possible for a F-ring to have
more than one unity.

DEFINITION 6.1. A F-ring M has a left (right) double homothetism unity if
t h e r e e x i s t d o u b l e h o m o t h e t i s m s p l , p 2 , ... , p s o f M a n d y i , y 2 , ... , y s e
F s u c h t h a t

( s • \

l ^ p ' = m foral l /neAf.
( s

A ring has a unity iff it has only inner double homothetisms (cf. Reidei
[7, p. 197]). The next theorem and the following examples show that this is
not the case for F-rings.

THEOREM 6.2. A Y-ring has a left and a right unity iff it has a left and
right double homothetism unity and only inner double homothetisms.

PROOF. Assume M has a left and a right unity, that is, there exist ex, e2,
... , es e M, y x , y 2 , ... ,ys£T a n d a , , a 2 , . . . , at € M, A , , k2,... , kt e
F such that

i=\ 7 =

For each i = 1, 2, . . . , s , [*>,] G S(M) and Tfi=l[e,]yi{m) = £•=, elyim =
m for all m e M. Hence the double homothetisms [ex], [e2 ] , . . . , [es] of M
and y,, y2, ... , ys e F form a left double homothetism unity for M. Like-
wise the double homothetism \ax\, [a2],..., [at] of M and A,, X2, ... , kt

€ F form a right double homothetism unity for M. Let p be any double
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homothetism of M, m e M, /z e F . Then

385

1=1 1=1

(«)•

Li=l

Also,

We now show that E - ^ e , ) ^ = E'j=iPxiai) '•
s I

1=1

Thus

L i = l

and ^p = - J X l
Li=l

Hence p is the inner double homothetism of M induced by p —
Y!j=\Px (aj) • Therefore, M has only inner double homothetisms. Con-
versely, suppose M has only inner double homothetisms and M has a left
and a right double homothetism unity. Let pl, p2,..., ps be the double
homothetisms and y,, y2,..., ys € F for which £^=1 Py.C"1) = m • Because
M has only inner double homothetisms, there exists el, e2, • •. , es e M
such that />' = [e(]. Similarly, if ql, q2, ... , q' and A,, A2, . . . , Xt e F is a
right double homothetism unity of A/ there exists a, , a2, . . . , as e M such
that qJ = [a^. If m e M, then

s

E ^ / w =
= m a n d

= m •
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T h u s el, e2, ... , es € M a n d y x , y 2 , ... , y s e Y f o r m a left u n i t y o f M,
while ax, a2, ... , at e M and Xx, X2, ... , Xt e F form a right unity of M.

The next two examples will show that the two conditions required in The-
orem 6.2 are independent.

EXAMPLE 6.3. Let M = Z2 = {0, 1} and r = {y} s Z, = {0}. Define
the mapping ( - , - , - ) : Mx Yx M —> M by mlym2 = 0 for all m,, m2 e
Af, y e F . Then M is a T-ring. End(A/+) = {/0, / , } , where /0(m) - 0
and /,(m) = m for all m & M. Then f(Af) = {/>0} where po(y) - f0

for all y e F . It follows that Af has only one double homothetism p with
p (m) = (m) p = 0 for any m € M, y e F . Moreover, /? is the inner
double homothetism induced by both 0 and 1 in M. Thus M has only
inner double homothetisms. Since pAm) = 0 for any m e M, y 6 F , we

have 52/=!^ (1) = 0 # 1 f ° r a n v ?, e F and any double homothetisms p'
of M. Hence M does not have a left double homothetism unity. Similarly,
it does not have a right double homothetism unity. It is also clear from the
definition that M does not have a unity although all its double homothetisms
are inner double homothetisms.

The next example shows that the existence of a left and a right double
homothetism unity is not sufficient to ensure the existence of a left and a
right unity.

EXAMPLE 6.4. Let M = Z2 = {0, 1} and F = Z2 = {0, 1} and define the
mapping ( - , - , - ) : M x Fx M —> M by mlym2 = 0 for all m,, m2 e M,
y e F . Then M is a F-ring. End(Af+) = {/0, / ,} with fo(m) = 0 and
fl(m) = m for all m e M. Define a double homothetism p as follows:

/J0(m) = (#»)„? = /0(/n) = 0 and

p,(m) = (m),/? = /,(/n) = m for all m € Af.

Simple calculations will verify that p is a double homothetism of M. Since
/^(m) = m for any /w from M, the double homothetism p with 1 e F is
a left double homothetism unity of M. Similarly, p and 1 e F is also a
right double homothetism unity of M. For any n e M, [n]j(l) = 0 ^ 1 ,
while />j(l) = 1, hence p is not an inner double homothetism of M. As in
Example 6.3, this F-ring does not have a left nor a right unity.

THEOREM 6.5. If M is a T-ring that has a left or a right unity, then M
is isomorphic to the Y-ring ^(M) of all inner double homothetisms of M.

PROOF. Define the mapping / : M -> ^{M) by f{m) - [m].

Straightforward calculations will show that / is a surjective F-ring ho-
momorphism. / is injective: let ex, e2, ... , es e M, yx,y2, ... ,ys eY
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be a right unity of M. If m , , m2 e M such that / ( m , ) = f(m2), then
[m,] = [m2], that is, [ m , ] ^ ^ ) = [m2],, (*?,) for i=l,2, ... ,s. Thus

1=1 1=1
s s

= m2.

Hence / is an isomorphism from M onto ^f{M). The result follows sim-
ilarly if M has a left unity.

THEOREM 6.6. A T -ring has a left and right unity iff it has a left and a right
double homothetism unity and it is a direct summand in all its extensions.

PROOF. If M has a left and right unity, then M has a left and a right
double homothetism unity (Theorem 6.2). Let E be any extension of M
and let a e E. Then [a] e ^(E). In view of Theorem 4.6 there exists a
double homothetism p of M with py{m) = [a]y{m) and {m)yp = (m)y[a]
for all m e M and y e f . Since M has a left and a right unity, it has only
inner double homothetisms (Theorem 6.2). Hence there exists an m e M
such that

[a]x(n) = px{n) = [m]x(n) and {n)x[a] = (n)yp = (n)x[m]

for all n e M, XeT.

This m is uniquely determined by a. Indeed, if m € M with [a]A(n) =
[m']x(n) and («)A[a] = (n)x[m] for all « 6 M and A e V, then [wj^/i) =
[>"']/«) for all n e M, A e T. Thus, if ex,e2, ... ,es e M and y,, y2,
. . . , ys e F is a right unity of M, then

i=i i=i 1=1 i=i

Since [a]^(/i) = [m]x(n) and {n)x[a] = (n)x[m], akn = mkn and nka =
nkm or (a - m)kn = nk(a - m) = 0 for all X e T, n e M. Because m
is uniquely determined by a, the element b = a - m of E is uniquely
determined by a. Thus b is an element of M for which Mn = nXb = 0
for all n e M and X e T, that is, bXM = MXb = 0 for all X e T. Hence
6 G 5 = {c € £|cAM = MXc = 0 for all X e T}. From the definition of
6, we have that a — b + m where both b e B and m e M are uniquely
determined by a. Since a was an arbitrary element of E, it follows that
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every element of E can be written as a unique expression as a sum of an
element of B and an element of M. To complete the proof, we show that
B is an ideal of E: Let b,bx,b2eB, a&E, fieT, then

(Z>, - b2)XM = b{XM - b2kM = 0 - 0 = 0 and

Mk{bx - b2) = MXbx - MXb2 = 0 - 0 = 0 for all A e F.

Hence bx-b2eB. Also, (bfia)XM = bn(aXM) c b^M = 0 and

Ml(bfia) = (MXb)(ia = Ofia = 0 for a l U e F.

Hence bfia e B. Likewise a/ib e B and hence E = B © M. Conversely,
suppose that M is a direct summand in all its extensions. In particular, it
is also a direct summand in any holomorph £B#M of M. Thus 3°#M is a
factor-free ii-sum of & (any maximal set of amicable double homothetisms
of M) and M. Let the functions of &>#M be given by

F':&>x&>->M byFi{pl,p2) = 0 for all pl, p2 € &,

(j-.&xTx&^M by G'{pl ,y,p2) = 0 for all px, p2 e &>, y € Y and

p : & -* V2(M) by p'{px)= p"' = p, for all p, € &.

Because M is a direct summand of &>#M, ̂ #M is equivalent to the direct
sum & © M of ^ and Af. The latter is an extension of M by & with
respect to the functions denned as follows:

F:&>x&>^M by-F(p,, p2) = 0 for all px, p2 e ^ ,

G i ^ x T x ^ ^ A f by G(p,, y, p2) = 0 for all px, p2 e &, y € T and

p:&>^£2{M) by p{px) = p"1 = 0 for all p, e ^ .

Thus Theorem 3.7 shows the existence of a function f:^-*M with
/ ( 0 ) = 0 , satisfying the following conditions for all p 1 , p2 e &, y e F :

(i) F ' ( p , , /;2) - F(pl, p2) = f(pl) + f(p2) - f(Pl + p2), that is, /(/>,) +

(ii) G'(p,, y, p2) - G(p,, y, />2) = fipjyfipj - f(plyp2)+Pp
y
l(f{P2)) +

yP"2, that is, f(j>x)yf{p2) = /(p,yp2);
(iii) p'Pl -pP' = [f(p{)], that is, p, = [/(p,)]. From Condition (iii) above

it follows that for any p e &, y G F and m € M

PY(m) = [f(p)]y(m) and (m)yp = (m)y[f(p)].

Hence p is the inner double homothetism of M induced by f{p). Therefore
any J 5 consists of only inner double homothetisms of M. Let p be any
double homothetism of M. Then p is amicable with itself. Hence {p} is
a set of amicable double homothetisms of M. Thus it is contained in some
maximal set ^ 0 of amicable double homothetisms of M (Theorem 4.2).
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From the previous part of the proof p must be an inner double homothetism
of M. Hence M have only inner double homothetisms. Since M has both
a left and a right double homothetism unity, it must have both a left and a
right unity (Theorem 6.2).

COROLLARY 6.7. Every Y-ring that has both a left and a right unity has
only one holomorph.

PROOF. Let &>{#M and &>2§M be two holomorphs of M, where J*
and £?2 are maximal sets of amicable double homothetisms of M. Because
M has both a left and a right unity, it has only inner double homothetisms
(Theorem 6.2). Hence 3°x, 9°2 C S{M). But f{M) c ^ and JT{M) Q
&>2 (Theorem 4.4), which yields &x = J{M) = -^2 • T h u s ^i#M = ^ 2 # A f

so that M has only one holomorph.

COROLLARY 6.8. In a T-ring that has both a left and a right unity, all
ideals are characteristic.

PROOF. Let M be a F-ring that has both a left and a right unity. Let
I<M. Theorem 6.6 yields that M is a direct summand in all its holomorphs
&>#M. Thus ^#Af = &>®M. Since I<M, {0}®I<&>®M = &>#M
with / = {0} © / . Thus / is an ideal in every holomorph of M. Hence /
is a characteristic sub T-ring of M.

Corollaries 6.7 and 6.8 coincide with the corresponding results for rings
(cf. Redei [7]). The next result gives a necessary condition for a F-ring to
be embedded in an ideal in a F-ring with a left or a right unity.

THEOREM 6.9. Let M beany Y-ring. If M can be embedded as an ideal in
a Y-ring with left (right) unity, then M has a left (right) double homothetism
unity.

PROOF. Suppose M can be embedded as an ideal in a F-ring E that has
a left unity. Then there exists el,el,... ,es e E and y{, y2, ..., ys e Y
such that Y?i=i eiyia = a for all a e E. Since el; e E, each [et] e J r (£ ' ) .
Thus there exists for each i = 1, 2, ... , s a double homothetism p' of M
such that p'Y(m) = [e{] (m) for all m e M, y e F (Theorem 4.6). Hence
for any m e M we have that

Y\\S) 5>7'm = m •
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This shows that the double homothetisms px, p2, ... , ps of M and y,, y2,
... , ys e F form a left double homothetism unity of M. Similar arguments
show that if E has a right unity, then M must have a right double homo-
thetism unity.

For the special case where M is a F-ring with myn = 0 for all m, n € M
and y e F , we have the converse:

THEOREM 6.10. If M is a F -ring that has a left (ring) double homothetism
unity and myn — 0 for all m, n e M, y G F, then M can be embedded as
an ideal in a Y-ring with a left (right) unity.

PROOF. Suppose M is a F-ring that has a left double homothetism unity.
Let E/ be the direct sum of the groups £^,(M) (all left translations of M)
and M, that is, E/ = %,{M)®M. Define the mapping ( - , - , ): E,
by

(Pl, rn^yip2, m2) = (plyp2, p\(m2)) for all (pl, m,) , (p2, m2)

E/ is a F-ring: we only show one of the requirements, the others being easy
to verify. Let (p1 ,mi),{p2, m2), (p3, w3) € E, y, /* € F . Then

(Pl, mx)y[{p2, m2)fi{p\ w3)] = (pl, /

= [(Pl, mx)y{p2, 2 3

The subset M' — {(0, m)\m e M} of E/ is an ideal of E, and is isomor-
phic (as a F-ring) to M. Let the double homothetisms pl, p2, . . . , ps of
M and yx, y2, ... , ys G F form a left double homothetism of M. Define
for each / = 1, 2, . . . , s an element q' of ^(M) by q'y = p'y for all y € F .
Then for any p e E, , m G M:

Li=i J^ i=i i=i

Thus, Y?i=i Q^iP = P for all p e ^(M). Also, for each / = 1, 2 . . . , 5,
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{q', 0) G E, . If (p, m) is any element of E^ , then

1=1 1=1

1=1

Thus, (<?', 0), (q2, 0 ) , . . . , {qs, 0) G E, and y,, y2, . . . , ys G F form a
left unity of E/ . Hence M can be embedded as an ideal in a T-ring with
left unity. Similarly, if M has a right double homothetism unity, then M
is isomorphic to an ideal of Er = M® %r{M), which is a T-ring with right
unity where ^ is the set of right translations of M.

COROLLARY 6.11. A T-ring that does not have a left (right) double homo-
thetism unity, cannot be embedded as an ideal in a Y -ring with left or right
unity.

COROLLARY 6.12. If M is any T-ring that has only inner double homoth-
etisms and there exists a Y-ring E with a left (right) unity such that M<E,
then M has a left (right) unity.

The F-ring of Example 6.3 is an example of a F-ring that does not have a
left nor a right double homothetism unity. Consequently it is also an example
of a F-ring that cannot be embedded as an ideal in a F-ring with left or right
unity. In the same way it can be shown that any F-ring M with M / {0}
and F = {0} has only one double homothetism, namely the inner double
homothetism induced by 0. Thus any such F-ring has neither a left nor a
right double homothetism unity and cannot, therefore, be embedded as an
ideal in a F-ring with left or right unity.

EXAMPLE 6.13. Let M = Z4 = {0, 1, 2, 3} and F = {y0, y,} =* Z2.

Define a mapping ( - , - , - ) : Af x F x Af -> M with mlym2 for any
m,, m2 G M, y eY given by

myon = 0 for all m, n e M and
2 i f m , « G { l , 3 } \

otherwise J"

Then M is a F-ring. End(M+) = {/0, / , , f2, f3} , where

fo{m) = 0 and fx(m) — m for all m G M,

/2(0) = 0, /2(1) = 3, /2(2) = 2 and/2(3) = 1,

/3(0) = /3(2) = 0 and /3(1) = /3(3) = 2.
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&'(M) = {po,pi}, where

Po(y) = fo foraUyeT, PM = f0 and pl(yl) = f3.

Thus, for any double homothetism p of M, py(m) is either equal to
fo(m) or /3(w) for any m e M. Thus py{m) — 0 or py(m) = 2 for any
m £ M, y G F and any double homothetism p of M. Hence p (1) = 0 or
p (1) = 2 for any y and p . Also, any finite sum of elements from the subset
{0,2} of M is always equal to 0 or 2. Thus for any double homothetisms
p 1 ,p2,...,ps of M and any y , , y2, ... , yT e T

or

Hence M does not have a left double homothetism unity so that it cannot
be embedded as an ideal in a T-ring with a left unity. Similarly, M does not
have a right double homothetism unity so that M also cannot be embedded
as an ideal in a T-ring with a right unity.
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