
chapter 1 1

Generated Literature
Nick Montfort and Judy Heflin

11.1 Introduction

Literature has been generated by computers since the beginning of the
1950s. We mean “computer” in the usual sense it is used today: a general-
purpose, programmable, electronic digital machine that performs symbol
manipulation automatically. We are also using a standard concept of
literature, or literary art, which includes but is not limited to poetry and
fiction. “Generated” means that computer programs have actually been
written and run, resulting in literary output. Sometimes the output of
programs is reworked before publication in various ways – particular
poems are selected, or the text is smoothed over, or more extensive editorial
intervention is made. But in many cases this output is presented exactly as
originally produced. In this chapter, we deal with the history of literary text
generation, the rise of the author/programmer within this digital literary
art practice, how computer-generated literature speaks in machine voices,
and how critics and scholars can better understand what is happening in
this area, now and in the future.
A sustained type of computer-generated literature practice is now

becoming widespread: that of the author/programmer. Individuals have
worked as both authors and programmers throughout the history of
computer-generated literature. The difference in the twenty-first century
is that the author/programmer is becoming prevalent, and such people are
making computer-generated literature the core of their work, building on
their first explorations and producing more nuanced and compelling
computational literature. To deal thoughtfully with their work, critics,
like author/programmers, will need to have both technical and literary
abilities.
There are certainly machines that precede the literature-generating

computer, such as Ramon Llull’s early fourteenth-century Ars Magna,
allowing the generation of philosophical propositions with paper

194

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009349567.013
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 12 Oct 2025 at 05:14:45, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009349567.013
https://www.cambridge.org/core


volvelles.1 There are also a wealth of fictional text-generating mechanisms,
such as The Engine in Jonathan Swift’s Gulliver’s Travels, George Orwell’s
Versificator in Nineteen Eighty-Four, and The Great Automatic
Grammatizator in Roald Dahl’s short story of the same title.2 Authors
including Stanisław Lem3 and Italo Calvino4 have also offered intriguing
speculative discussions of how computer-generated literature might
develop. Additionally, there are many present-day applications of text-
generation technologies that are not utilized for literary purposes. There
have been many companies in recent years (not only OpenAI, but earlier
ones, including Narrative Science and Automated Insights) that have
provided generation technologies for nonfictional and journalistic pur-
poses. These do have some implications for literary studies and notions of
authorship.5 Because this generation is not directed at literary art, however,
it is beyond our scope.
We have sought different threads of practice, and looked to distinguish

those cases where computer-generated literature is the outcome of a unified
process of programming and writing by author/programmers. By doing so,
we mean to highlight an increasingly prominent practice that has been
neglected in critical and theoretical discussion. It is also possible to slice
computer-generated literature for study in other ways, as some have done.
One could focus on a particular genre, such as poetry or prose; keep to
a particular historical era; or sort literary systems based on the media
elements they use, or based on how their fundamental algorithms work.
There are also different contexts of presentation, including the format of
the printed book, gallery and museum installation, and presentation
online, which could be used as an organizing principle. While these are
worthwhile ways to look at generated literature, we aim to fill a gap and
describe the growing community of individual and distributed author/
programmers. Those working in this community of practice have a variety

1 Anthony Bonner, The Art and Logic of Ramon Llull: A User’s Guide (Leiden: Brill, 2007); Michelle
Gravelle, Anah Mustapha, and Coralee Leroux, “Volvelles,” ArchBook: Architectures of the Book,
December 1, 2012, https://drc.usask.ca/projects/archbook/volvelles.php.

2 Mario Aquilina, “Text Generation, or Calling Literature into Question,” Electronic Book Review
produced by po, June 27, 2017, https://electronicbookreview.com/essay/text-generation-or-calling-
literature-into-question/.

3 Stanisław Lem, “Juan Rambellais et al., A History of Bitic Literature, Volume 1,” in Imaginary
Magnitude (San Diego: Harcourt Brace Jovanovich, 1984), 39–76.

4 Italo Calvino, “Cybernetics and Ghosts,” in The Uses of Literature (San Diego: Harcourt Brace &
Company, 1986), 3–27.

5 Leah Henrickson, “Natural Language Generation: Negotiating Text Production in Our Digital
Humanity,” Proceedings of the Digital Humanities Congress 2018 (Sheffield: The Digital Humanities
Institute, 2018). www.dhi.ac.uk/books/dhc2018/natural-language-generation/.

Generated Literature 195

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009349567.013
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 12 Oct 2025 at 05:14:45, subject to the Cambridge Core terms of

https://drc.usask.ca/projects/archbook/volvelles.php
https://electronicbookreview.com/essay/text-generation-or-calling-literature-into-question/
https://electronicbookreview.com/essay/text-generation-or-calling-literature-into-question/
http://www.dhi.ac.uk/books/dhc2018/natural-language-generation/
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009349567.013
https://www.cambridge.org/core


of approaches to generating literature, working to engage with computing
more explicitly and profoundly than “prompt engineers” who are trying
out companies’ new systems and publishing the results.

11.2 Three Threads in Twentieth-Century Generation

Three significant threads of practice can be seen in the twentieth century:
early programs that produced short-form outputs such as love letters,
stanzas, and sentences, all formally similar; more elaborate story generators
that were the academic projects of computer scientists; and more elaborate
and longer-form literary text generators produced by poets and writers.6

11.3 Early Work in Short Forms

Author/programmers have been developing short-form projects for decades.
One famous example of computerized text generation is seen in the collab-
oration of Brion Gysin and Ian Sommerville (one artist/poet, one program-
mer), who permuted lines of four or five words in the 1960s by computer –
following earlier permutation poems that Gysin had written manually.7

Such collaborations remain productive, although there have also been indi-
vidual author/programmers working by themselves on short-form com-
puter-generated literature, even before Gysin and Somerville collaborated.
Christopher Strachey seems to be the first to have undertaken creative text

generation using a general-purpose computer. Strachey wrote a parody love
letter generator (its first outputs were apparently displayed in 1953) that was
both a humorous intervention and discussed in an art journal.8 Strachey’s
other creative computing work includes a draughts (checkers) player and the
first computer music, both programmed before his love letter generator.9

6 These and many other sorts of text generation systems can be experienced via the text they produced
in Output: An Anthology of Computer-Generated Text, 1953–2023, edited by Lillian-Yvonne Bertram
and Nick Montfort and coming from the MIT Press and Counterpath in August 2024. Here, we
provide a brief, synthetic discussion of three types of significant work.

7 Christopher T. Funkhouser, Prehistoric Digital Poetry an Archaeology of Forms (Tuscaloosa: The
University of Alabama Press, 2007); David Pocknee, “The Permutated Poems of Brion Gysin,” 2019,
http://davidpocknee.ricercata.org/gysin/.

8 Christopher Strachey, “The ‘Thinking’ Machine,” Encounter, October 1954; Noah Wardrip-Fruin,
“Christopher Strachey: The First Digital Artist?” Grand Text Auto, August 1, 2005, https://grand
textauto.soe.ucsc.edu/2005/08/01/christopher-strachey-first-digital-artist/.

9 Alexander Smith, “The Priesthood at Play: Computer Games in the 1950s,” They Create Worlds,
February 2, 2017, https://videogamehistorian.wordpress.com/2014/01/22/the-priesthood-at-play-co
mputer-games-in-the-1950s/; Jack Copeland and Jason Long, “Restoring the First Recording of
Computer Music,” The British Library, September 13, 2016, https://blogs.bl.uk/sound-and-vision/
2016/09/restoring-the-first-recording-of-computer-music.html.

196 nick montfort and judy heflin

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009349567.013
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 12 Oct 2025 at 05:14:45, subject to the Cambridge Core terms of

http://davidpocknee.ricercata.org/gysin/
https://grandtextauto.soe.ucsc.edu/2005/08/01/christopher-strachey-first-digital-artist/
https://grandtextauto.soe.ucsc.edu/2005/08/01/christopher-strachey-first-digital-artist/
https://videogamehistorian.wordpress.com/2014/01/22/the-priesthood-at-play-computer-games-in-the-1950s/
https://videogamehistorian.wordpress.com/2014/01/22/the-priesthood-at-play-computer-games-in-the-1950s/
https://blogs.bl.uk/sound-and-vision/2016/09/restoring-the-first-recording-of-computer-music.html
https://blogs.bl.uk/sound-and-vision/2016/09/restoring-the-first-recording-of-computer-music.html
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009349567.013
https://www.cambridge.org/core


Theo Lutz programmed the German Stochastic Texts (1959) to generate
what read like propositions of second-order logic, using a lexicon drawn
from Franz Kafka’s The Castle.10Victor H. Yngve, who worked in machine
translation, wrote a program to generate random sentences (1961) that used
text from a children’s book and was considered, by some, poetic.11 While
these two people are mainly identified with computing, the same cannot be
said for poet and Neoavanguardia artist Nanni Balestrini, Nobel Prize
winning writer J. M. Coetzee, or Fluxus artist Alison Knowles. Balestrini’s
first significant work was the 1961 TAPE MARK I, an Italian generator of
centos with its output shown on video.12 Coetzee wrote a combinatorial
program with an extensive vocabulary that generated five-word lines
(c.1962–5).13 Knowles, after learning some FORTRAN from composer
James Tenney, worked in collaboration with him to program The House
of Dust (1967), which endlessly produces quatrains describing houses
around the world.14

By the late 1960s the programming language BASIC (Beginners All-
purpose Symbolic Code) had been developed at Dartmouth College.15 It
was used for many diversions, including short-form literary text gener-
ation. In one of very many examples, a program of unknown authorship
simply called POETRY was included in a book published in 1975.16 BASIC
was implemented on microcomputers and became the lingua franca of
personal computing.17 The microcomputer era saw the publication of
a book of poems generated by a BASIC computer program for the TRS-
80 Color Computer (1981), with the source code for the program included
in the back.18 One BASIC “folk program” for Commodore computers

10 Theo Lutz, “Stochastische Texte,” Augenblick 4.1 (1959): 3–9, www.stuttgarter-schule.de/lutz_schu
le_en.htm.

11 Margaret Masterman, “The Use of Computers to Make Semantic Toy Models of Language,” in
Astronauts of Inner-Space: An International Collection of Avant-Garde Activity (San Francisco: Stolen
Paper Review, 1966), 36–37.

12 “TAPE MARK 1, Nanni Balestrini: Research and Historical Reconstruction,” Museo
dell’Informatica Funzionante, June 30, 2017, https://museo.freaknet.org/en/tape-mark-1-nanni-bal
estrini-ricerca-ricostruzione-storica/.

13 Rebecca Roach, “The Computer Poetry of J. M. Coetzee’s Early Programming Career,” Ransom
Center Magazine, June 28, 2017, https://sites.utexas.edu/ransomcentermagazine/2017/06/28/the-co
mputer-poetry-of-j-m-coetzees-early-programming-career/.

14 Funkhouser, Prehistoric Digital Poetry.
15 John G. Kemeny, Man and the Computer (New York: Scribner, 1972).
16 “POETRY,” in 101 BASIC Computer Programs (Maynard: Digital Equipment Corporation, 1975),

169–71.
17 Nick Montfort, Patsy Baudoin, John Bell, et al., 10 PRINT CHR$(205.5 RND(1)); : GOTO 10

(Cambridge, MA: MIT Press, 2013).
18 Ron Clark, My Buttons Are Blue, and Other Love Poems from the Digital Heart of an Electronic

Computer (Woodsboro: ARCsoft Publishers, 1982).

Generated Literature 197

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009349567.013
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 12 Oct 2025 at 05:14:45, subject to the Cambridge Core terms of

http://www.stuttgarter-schule.de/lutz%5Fschule%5Fen.htm
http://www.stuttgarter-schule.de/lutz%5Fschule%5Fen.htm
https://museo.freaknet.org/en/tape-mark-1-nanni-balestrini-ricerca-ricostruzione-storica/
https://museo.freaknet.org/en/tape-mark-1-nanni-balestrini-ricerca-ricostruzione-storica/
https://sites.utexas.edu/ransomcentermagazine/2017/06/28/the-computer-poetry-of-j-m-coetzees-early-programming-career/
https://sites.utexas.edu/ransomcentermagazine/2017/06/28/the-computer-poetry-of-j-m-coetzees-early-programming-career/
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009349567.013
https://www.cambridge.org/core


generates what can be read as concrete poetry and is only a single line
long.19 People with established poetry practices began to write BASIC
programs, too, with prominent early examples written for the Apple II in
the 1980s by bpNichol20 and Geof Huth.21 Both produce animated visual
output, and are a bridge to the more extensive projects discussed later in the
chapter.

11.4 Story Generation Research

Sometimes the focus of generation projects is on computing, with
researchers seeking to demonstrate aspects of computing or the mind.
James Meehan’s TALE-SPIN, Scott Turner’s MINSTREL, and Michael
Lebowitz’s UNIVERSE are examples of systems meant to model some-
thing general about thinking, writing, or narrative. TALE-SPIN was the
first major academic project in story generation, an interactive storytelling
program developed by Meehan for his 1976 PhD dissertation.22 Noah
Wardrip-Fruin has described it as having a fascinating and complex
underlying model which, unfortunately from an aesthetic standpoint, is
not revealed in the simple surface texts that are generated.23 Turner’s
MINSTREL and Lebowitz’s UNIVERSE were both developed during
the 1980s. MINSTREL24 focused on the simulation of goal-directed
human authorial behaviors, while UNIVERSE25 was designed to generate
continuing serials, or never-ending stories within a universe. At the very
end of the century, another research system, MEXICA, developed by
Rafael Pérez y Pérez and described in his 1999 dissertation, was specifically
designed to automate a model of the human creative writing process.
MEXICA was developed as a research system, to inquire into the nature
of creativity, but in 2017 the curated output of an updated system was

19 Montfort et al., 10 PRINT.
20 bpNichol, First Screening: Computer Poems, 1984. Republished in Vispo, ed. Jim Andrews, Geof

Huth, Lionel Kearns, Marko Niemo, and Dan Waber, March 2007, http://vispo.com/bp/.
21 Geof Huth, “Endemic Battle Collage, 1986-1987,” in Electronic Literature Collection, Volume 2, ed.

Laura Borràs, Talan Memmott, Rita Raley, and Brian Stefans, Cambridge, MA: Electronic
Literature Organization, February 2011, http://collection.eliterature.org/2/works/huth_endemic_
battle_collage.html.

22 Noah Wardrip-Fruin, “The Story of Meehan’s TaleSpin,” Grand Text Auto, September 13, 2006,
https://grandtextauto.soe.ucsc.edu/2006/09/13/the-story-of-meehans-tale-spin/.

23 Noah Wardrip-Fruin, Expressive Processing: Digital Fictions, Computer Games, and Software Studies
(Cambridge, MA: MIT Press, 2009).

24 Noah Wardrip-Fruin, “Turner’s Minstrel Part 1,” Grand Text Auto, March 1, 2006, https://grand
textauto.soe.ucsc.edu/2006/03/01/turners-minstrel-part-1/.

25 Noah Wardrip-Fruin, “Lebowitz’s Universe Part 1,” Grand Text Auto, March 4, 2006, https://gra
ndtextauto.soe.ucsc.edu/2006/03/04/lebowitzs-universe-part-1/.

198 nick montfort and judy heflin

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009349567.013
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 12 Oct 2025 at 05:14:45, subject to the Cambridge Core terms of

http://vispo.com/bp/
http://collection.eliterature.org/2/works/huth%5Fendemic%5Fbattle%5Fcollage.html
http://collection.eliterature.org/2/works/huth%5Fendemic%5Fbattle%5Fcollage.html
https://grandtextauto.soe.ucsc.edu/2006/09/13/the-story-of-meehans-tale-spin/
https://grandtextauto.soe.ucsc.edu/2006/03/01/turners-minstrel-part-1/
https://grandtextauto.soe.ucsc.edu/2006/03/01/turners-minstrel-part-1/
https://grandtextauto.soe.ucsc.edu/2006/03/04/lebowitzs-universe-part-1/
https://grandtextauto.soe.ucsc.edu/2006/03/04/lebowitzs-universe-part-1/
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009349567.013
https://www.cambridge.org/core


published as Mexica: 20 Years–20 Stories as part of the Using Electricity
series. Pérez y Pérez’s involvement with the MEXICA system changed
from solely that of the programmer to that of the literary author/program-
mer, whose name is now on the spine of a book categorized on the back
cover as “Fiction/Artificial Intelligence.”

11.5 Extensive Projects by Poets and Writers

The first published book of computer-generated writing seems to be La
Machine à écrire (1964),26 which contains a selection of unedited outputs
from a text-generation project created by engineer and linguist Jean
Baudot. He used a simple grammar and a constrained lexicon of 630
words to computationally generate phrases. Although this project was
not necessarily created for literary purposes, the output of Baudot’s pro-
gram appeared in the book with contextualizing commentary by poets and
writers including Gatien Lapointe and Oulipo cofounder Raymond
Queneau.
Many later projects were undertaken by poets and writers. The most

well-known is likely The Policeman’s Beard Is Half Constructed (1984),
a book of computational prose and poetry generated by a program called
RACTER that was coauthored by writer and programmer William
Chamberlain along with the help of programmer Thomas Etter.27

Authorial credit is given to RACTER, a system that explores the grammat-
ical structure of the English language with a dynamism propelled by
random number generation.28 RACTER was by no means a short-form
text generator, and was also not a project created with the purpose of
academic research in mind. It was an extensive project by an author/
programmer who wished to explore the creative potential of computer-
generated text. Some criticism of Policeman’s Beard in the 1990s took the
position that the project was a trick, actually done by a human author.29

Espen Aarseth offered in response that computer-generated literature
should be called “cyborg literature,” giving this category of writing the
tentative definition “literary texts produced by a combination of human

26 Jean Baudot, La Machine à Écrire: Mise En Marche Et Programmée Par Jean A. Baudot (Montréal:
Les Éditions du Jour, 1964).

27 RACTER,The Policeman’s Beard IsHalf Constructed (NewYork:Warner Books/Warner Software, 1984).
28 Bill Chamberlain, “Getting a Computer to Write About Itself,” inDigital Deli: The Comprehensive,

User-Lovable Menu of Computer Lore, Culture, Lifestyles and Fancy, ed. Steve Ditlea (New York:
Workman Publishing Company, 1984), 172–173.

29 Espen Aarseth, Cybertext: Perspectives on Ergodic Literature (Baltimore: Johns Hopkins University
Press, 1997).

Generated Literature 199

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009349567.013
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 12 Oct 2025 at 05:14:45, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009349567.013
https://www.cambridge.org/core


and mechanical activities.”30 The introduction to Policeman’s Beard claims
that “Once it’s running, RACTER needs no input from the outside
world.” Aarseth found this at least misleading, as the work is not com-
pletely autonomous: Chamberlain’s creative efforts are embodied in dia-
logue templates, the writing of source texts, and the selection of generated
output for the printed book, activities Aarseth organizes into preprocessing
and postprocessing, as he notes that coprocessing is also possible.31 This,
however, is not inconsistent with the claim in the introduction, which
simply states that the version of the RACTER program used to produce the
book doesn’t take any user input after it has started running. (To muddy
the waters further, there was also a commercial version of the RACTER
software for home computers, not the version of the program that gener-
ated the book, which was interactive.) The perspective that critics and
authors take on generated literature today, whether it is produced by bots
that used to operate on Twitter or printed in books from poetry presses,
acknowledges that there are always some “cyborg” aspects and that text
cannot arise from a computer without some human involvement.
Several twentieth-century computer-generated books were produced by

one author with the substantial programming done beforehand by others.
An example is John Cage’s Anarchy: New York City – January 1988, pub-
lished posthumously in 2002. It consists of twenty mesostic poems gener-
ated using MESOLIST, a program written by Jim Rosenberg, and ic, an
I Ching program written by Andrew Culver.32 Having some familiarity
with computing, poet Charles O. Hartman began a series of experiments
with programs that were in line with his literary interests in the prosody of
free and metrical verse. He developed a system to automate the process of
scansion, and continued along these lines until publishing a book of poems
in 1995 called Sentences. The poems in the book were generated in part by
TRAVESTY, a system by Hugh Kenner, who is listed as a coauthor. Also
used was a program Hartman devised, DIASTEXT, which automates the
diastic writing strategy of poet Jackson Mac Low. Hartman’s work dem-
onstrates a personal literary exploration by way of computation that
resulted in not only printed output in the form of poetry but also computer
programs that engage with literary questions and forms of analysis.33

As compelling as many of these twentieth-century projects were, they

30 Ibid., 134. 31 Ibid., 135.
32 Andrew Culver, “John Cage Computer Programs,” Anarchic Harmony Foundation, www.anarchi

charmony.org/People/Culver/CagePrograms.html.
33 Charles O. Hartman, The Virtual Muse: Experiments in Computer Poetry (Middletown: Wesleyan

University Press).

200 nick montfort and judy heflin

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009349567.013
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 12 Oct 2025 at 05:14:45, subject to the Cambridge Core terms of

http://www.anarchicharmony.org/People/Culver/CagePrograms.html
http://www.anarchicharmony.org/People/Culver/CagePrograms.html
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009349567.013
https://www.cambridge.org/core


were often isolated experiments. In the twenty-first century, author/pro-
grammers more frequently engage in a sustained type of practice, and the
emergence of communities of practice encourage and support further work
in this area.

11.6 New Directions in Generation

There are now numerous author/programmers creating literary work that
depends on a wide variety of computational approaches – not just the
combinatorial and permutational work of Strachey, Lutz, Knowles, or
Gysin, but many explorations involving, for instance, machine learning,
word/image juxtapositions, performance, small-scale programs, large lan-
guage models, remix, and free software culture. There is no single sort of
author/programmer, as work is advancing in many new directions.

11.7 Communities of Practice

Among the several developing communities of practice, makers of
Twitterbots34 devised systems that cleverly intervene in social media
feeds, producing computer-generated literature for this context. Twitter
(now X) proved an amazing context for creative work in the early twenty-
first century. Eleven good examples of bots, discussed and archived in an
online anthology,35 include:

• Allison Parrish’s @everyword, which tweeted every word in an English
lexicon from 2007 to 2014,

• Everest Pipkin’s @tiny_star_field, a generator of visual poems,
• Darius Kazemi’s conflation system @TwoHeadlines, the output of

which included “China’s Lawyer to Unveil New Evidence on Colbert
Show,”

• Zach Whalen’s @ROM_TXT, which finds runs of text in ROM data
from videogames, and

• Ranjit Bhatnagar’s @pentametron, which locates tweets that happen to
be in iambic pentameter, and happen to rhyme, and pairs them into
couplets.

34 Tony Veale and Mike Cook, Twitterbots: Making Machines That Make Meaning (Cambridge, MA:
MIT Press, 2018).

35 “Bots,” Electronic Literature Collection, Volume 3, ed. Stephanie Boluk, Leonardo Flores,
Jacob Garbe, and Anastasia Salter (Cambridge, MA: Electronic Literature Organization),
February 2016, http://collection.eliterature.org/3/collection-bots.html.

Generated Literature 201

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009349567.013
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 12 Oct 2025 at 05:14:45, subject to the Cambridge Core terms of

http://collection.eliterature.org/3/collection-bots.html
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009349567.013
https://www.cambridge.org/core


Some bots with literary and artistic aspects are nonfictional, as with
@censusAmericans, which presents very short factual statements about
Americans drawn from census data but “textualized” in forms such as “I
haven’t moved recently. I work for a private company. I was widowed.”36

There are also several fine literary bots that originate as academic research
projects in computational creativity.37 Botmakers were, of course, in touch
with each other and aware of each other’s work through the social network
they were using. After a large-scale purge of bots from Twitter in 2018,
some botmakers moved to the federated social network Mastodon.38

Twitter became even more inhospitable for creative bots after Elon
Musk’s disastrous takeover of the company at the end of October 2022.
With the rebranding of the company, the last creative bots were eradicated.
NaNoGenMo (National Novel Generation Month) is the main annual

event in which people develop computer-generated literature. It was
conceived by Kazemi in 2013, who was riffing on NaNoWriMo
(National Novel Writing Month) and who included the constraint from
NaNoWriMo that “novels” be at least 50,000 words in length.39 This
informal framework is welcoming and encourages offhand projects and
experimentation. It also encourages people to return year after year and to
develop a practice in literary generation. The technical and conventionally
literary aspects of NaNoGenMo are reflected in the requirements for
participation: sharing one’s code and producing and sharing the textual
output. Some remarkable books generated in recent Novembers include
Leonard Richardson’s Alice’s Adventures in the Whale, in which dialog from
Moby-Dick replaces that in Alice in Wonderland;40 Liza Daly’s Seraphs,
a book intended to look like the undeciphered Voynich Manuscript;41

visually innovative works, such as i’ve never picked a protected flower by
Pipkin; and Nick Montfort’s Hard West Turn, which pieces together
English and Simple English Wikipedia entries related to gun violence in
the United States. With the results consolidated online on GitHub, and

36 Jia Zhang, “Introducing CensusAmericans, a Twitter Bot for America,” FiveThirtyEight, July 24,
2015, https://fivethirtyeight.com/features/introducing-censusamericans-a-twitter-bot-for-america/.

37 “The Best of Bot Worlds,” Creative Language Systems Group, http://afflatus.ucd.ie/.
38 Rob Dozier, “Twitter’s New Developer Rules Might End One of Its Most Enjoyable Parts,” Slate

Magazine, August 8, 2018, https://slate.com/technology/2018/08/twitters-new-developer-guide
lines-might-end-fun-bot-accounts.html.

39 Josh Dzieza, “The Strange World of Computer-Generated Novels,” The Verge, November 25, 2014,
www.theverge.com/2014/11/25/7276157/nanogenmo-robot-author-novel.

40 Leonard Richardson, “In Dialogue,” November 18, 2013, www.crummy.com/software/NaNoGen
Mo-2013/.

41 Liza Daly, Seraphs: A Procedurally Generated Mysterious Codex (San Francisco: Blurb, 2014).

202 nick montfort and judy heflin

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009349567.013
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 12 Oct 2025 at 05:14:45, subject to the Cambridge Core terms of

https://fivethirtyeight.com/features/introducing-censusamericans-a-twitter-bot-for-america/
http://afflatus.ucd.ie/
https://slate.com/technology/2018/08/twitters-new-developer-guidelines-might-end-fun-bot-accounts.html
https://slate.com/technology/2018/08/twitters-new-developer-guidelines-might-end-fun-bot-accounts.html
http://www.theverge.com/2014/11/25/7276157/nanogenmo-robot-author-novel
http://www.crummy.com/software/NaNoGenMo-2013/
http://www.crummy.com/software/NaNoGenMo-2013/
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009349567.013
https://www.cambridge.org/core


the resulting texts frequently discussed by bloggers and journalists,
NaNoGenMo has helped to foster new communities, critical and artistic.
Publishing computer-generated literature in print helps to raise the

visibility of this form and also furthers the growth of such communities.
Author/programmers often self-publish books and chapbooks, but books
have also recently been put out by established presses. Named after one of
the lines in Knowles’s The House of Dust, Using Electricity is a series of
computer-generated books published by Counterpath that critically
engages with the long history of computer-generated literature while
building a community of authors and introducing this type of work to
readers through events such as group readings on the East Coast of the
United States. Others have also had public gatherings to engage with
interested readers and connect fellow author/programmers. Jhave
Johnston, for instance, undertook a year-long project of human–computer
collaboration, rising each day to revise the output of a computational
poetry system he programmed. His project, titled ReRites and published
by Anteism, includes essays by nine others and is contextualized by its own
critical community. Johnson has done several readings from the project, as
well as performances and recordings. Another performative project is Ross
Goodwin’s 1 the Road, a reference to Jack Kerouac’s book and road trip,
published by Jean Boîte Éditions. The book was produced using an
instrumented car that collected locative, visual, audio, and textual data.
This seeded a long-short-term-memory recurrent neural network42 that
generated short texts related to particular moments. The project, sup-
ported by Google, was well documented, and Goodwin promoted it in
public blog posts and offered a GitHub repository of his code.
Documentation is one of the key ways that author/programmers are

building community and inspiring new projects. This may involve outlin-
ing a creative process in a blog post, creating repositories on GitHub or
other code-sharing websites, publishing and distributing zines, or even
developing frameworks or libraries to inspire new types of generative work
and promote inclusivity.43 There is also growing community-driven insti-
tutional support, whether through corporate sponsorship, publishing
deals, or increased attention to creative coding in academic and teaching
environments.

42 For further details on LSTM (Long Short-Term Memory) RNN (Recurrent Neural Network), see
www.analyticsvidhya.com/blog/2021/03/introduction-to-long-short-term-memory-lstm/.

43 Kate Compton, Ben Kybartas, and Michael Mateas, “Tracery: An Author-Focused Generative Text
Tool,” Lecture Notes in Computer Science, volume 9445, (2015): 154–161, https://doi.org/10.1007/978-
3-319-27036-4_14.

Generated Literature 203

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009349567.013
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 12 Oct 2025 at 05:14:45, subject to the Cambridge Core terms of

http://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-short-term-memory-lstm/
https://doi.org/10.1007/978-3-319-27036-4%5F14
https://doi.org/10.1007/978-3-319-27036-4%5F14
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009349567.013
https://www.cambridge.org/core


11.8 Concise Programs, Extensive Output

In identifying threads of twentieth-century work, we described short-form
projects, which had early origins, and distinguished these from the gener-
ation of more extensive and often book-length texts. In the twenty-first
century the distinction between short-form and extensive projects does not
hold in the same way. One can, for example, produce intentionally concise
and simple programs to generate book-length literary output; indeed, in
response to the complexity and obscurity of contemporary computing,
Montfort has taken this approach and promoted it.44

Collaborations between Bill Kennedy and Darren Wershler involved
developing conceptually simple programs to achieve compelling effects.
One of their books, Apostrophe, is a compilation of statements that begin
with “you are” that were collected by a web-crawling program, while
another, Update, uses a simple substitution algorithm to mine personal
RSS feeds and databases of names to generate updates from dead
poets.45 More recently, Montfort’s The Truelist and Milton Läufer’s
A Noise Such as a Man Might Make are examples of books by individual
author/programmers that were published with the code included.46 The
former includes all data and code used on a single printed page; the
latter uses two source novels, but is generated from a program just two
pages long.
An advantage of short programs is that, when the code is made available

as free/open-source software, they can be easily reworked by other author/
programmers into new projects. A poetry generator that has undergone
very extensive “remix” is Montfort’s “Taroko Gorge.”s Invitations to write
short programs from scratch can also be welcoming to author/program-
mers. During the 2019 NaNoGenMo, Montfort declared an additional
special event or competition: Nano-NaNoGenMo, in which the generat-
ing computer programs are restricted to be no more than 256 characters in
length.47 Even with this severe limitation, some remarkable work was

44 Nick Montfort and Natalia Fedorova, “Small-Scale Systems and Computational Creativity,” in
Proceedings of the Third International Conference on Computational Creativity, ed. Mary Lou Maher,
Kristian Hammond, Alison Pease, et al. (Dublin: Association for Computational Creativity; May,
2012), 82–86.

45 Bill Kennedy and Darren Wershler, Apostrophe (Chicago: ECW Press, 2006); Bill Kennedy and
Darren Wershler, Update (Montreal: Snare, 2010).

46 Nick Montfort, The Truelist (Denver: Counterpath, 2017); Milton Läufer, A Noise Such as a Man
Might Make (Denver: Counterpath, 2018).

47 Gregory Barber, “Text-Savvy AI Is Here to Write Fiction,” Wired. November 22, 2019, www
.wired.com/story/nanogenmo-ai-novels-gpt2/.

204 nick montfort and judy heflin

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009349567.013
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 12 Oct 2025 at 05:14:45, subject to the Cambridge Core terms of

http://www.wired.com/story/nanogenmo-ai-novels-gpt2/
http://www.wired.com/story/nanogenmo-ai-novels-gpt2/
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009349567.013
https://www.cambridge.org/core


produced. An example is Martin O’Leary’s Dublin Walk, generated by
linking together words from Ulysses and Dubliners based on whether they
are anagrams or near-anagrams.48

11.9 The Prevalence of Author/Programmers

Some author/programmers working today can be identified as having
started their work as poets, writers, and artists. Among them are John
Cayley, J. R. Carpenter, and Talan Memmott, whose digital poetry prac-
tices originate in the 1990s, with or (in Cayley’s case) prior to the World
Wide Web. Similarly, some author/programmers started to investigate the
intersection of computation and language from the perspective of the
programmer. Significant effort has been expended by computer scientists
in developing natural language generation systems, but there are also
literary generation projects undertaken by programmers, within and
beyond the context of NaNoGenMo. Some who work in computer-
generated literature are professionally software engineers, including Daly,
but also have extensive background in literary computing – developing
interactive fiction, in her case, as well as working in the related area of
digital publishing for many years.
While the “divide” of the slash between author and programmer does

have meaning, many current author/programmers did not begin on one
side or the other, but have been involved with both literary authorship and
programming more or less from the beginning of their practice. For these
people in particular, computation is not mainly anOther to be confronted,
but a medium of art. Of the people mentioned already, we will venture to
claim this is the case at least with Bhatnagar, Goodwin, Läufer, Parrish,
Pipkin, Whalen, and Zilles.
One result of the increasing sophistication of author/programmers is that

they have been able to make literary use of cutting-edge machine learning
techniques, which take a statistical approach and improve their performance
as additional data is provided. Johnson and Goodwin provide two examples.
Another is offered by Sofian Audry, who displayed how the results of
different epochs of training unfolded in his for the sleepers in that quiet
earth (2019), the product of a deep recurrent neural network using only
Wuthering Heights as data. Author/programmers have also made extensive
use of word embeddings (in which words are represented as vectors), with

48 Martin O’Leary, “Dublin Walk · Issue #102 · NaNoGenMo/2019,” GitHub, November 2019,
https://github.com/NaNoGenMo/2019/issues/102.

Generated Literature 205

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009349567.013
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 12 Oct 2025 at 05:14:45, subject to the Cambridge Core terms of

https://github.com/NaNoGenMo/2019/issues/102
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009349567.013
https://www.cambridge.org/core


Word2vec models being of recent interest. Transformer-based approaches,
in combination with pre-training on vast amounts of text, have been the
latest major advance. The main large language models used in creative text
generation are from OpenAI and include GPT-2, GPT-3, and ChatGPT
(backed by GPT-4), which is trained by people to “align” with corporate
purposes. Free and open models have been developed in addition to these
proprietary ones. One of the early open access large language modes was
GPT-NeoX 20B, a formidable model that is free by design and can be used
by researchers (and artists) without restriction.

11.10 Machine Voices Wake Us

Poetry, and certainly modernist poetry, has been obsessed with “human
voices” – the ones mentioned in the last line of “The Love Song of J. Alfred
Prufrock.” Eliot even initially thought to give The Waste Land, with its
dialectal expressions, the title He Do the Police in Different Voices. In
computer-generated literature, the machine “does” the voices, but they
are not always imitations of human ones. To adhere to our law enforce-
ment theme for a moment, the second, short poem in the computer system
RACTER’s book The Policeman’s Beard Is Half Constructed reads:

Awareness is like consciousness. Soul is like spirit.
But soft is not like hard and weak is not like
strong. A mechanic can be both soft and hard, a
stewardess can be both weak and strong. This is
called philosophy or a world-view.

The bland statements about similarity in the first three sentences seem, from
today’s perspective, like something that would be straightforwardly gener-
ated from word embedding data, or from a computerized lexical resource
such as WordNet. Although they are felicitous examples of the English
language, they certainly do not have dialectical nuance in them. Instead,
like the rest of the poem, they wear their computer-generated nature proudly
on their sleeve. This is an example of a machine voice, not a human voice. It
showcases how computers think and speak, at least inasmuch as the creators
of RACTER imagined this. And how is that? Computers understand
similarities (near-synonymy) and oppositions (antonymy), but they also
understand that people are complex entities that can embody supposedly
opposite characteristics. They use simple declarative sentences. The com-
puter circa 1984 also seems to have some perspective on gender, naming
a stereotypically male profession (mechanic) and using a female-gendered

206 nick montfort and judy heflin

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009349567.013
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 12 Oct 2025 at 05:14:45, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009349567.013
https://www.cambridge.org/core


term for flight attendant. This, we might say, is a hint of what is called
philosophy or a world-view – and, in particular, a machinic one.
An example that is similarly formulaic but will likely seem even less

human, as its grammar and lexicon are more constrained, is provided by
Darby Larson’s 9,450-word story “Pigs” (2011),49 which begins:

The pig pigged with the pigs. The pigs pigged in pens. The pigs pigged on pigs.
The pigs pigged in pens. The pigs pigged on pigs. The pig pigged over pigs. The
pig pigged with the pigs. The pigs pigged in pens. The pigs pigged with the pigs.

The story is generated by permuting lists of starting nouns, verbs, and
prepositions with final nouns. There are only four or five options in each
of these lists, and the resulting work exhausts all possible permutations of
sentence structure, with added wrappers to shuffle the presentation of the
generated sentences. While authors have experimented with these kinds of
permutations without programming, the affordances of computation allow
authors to lay bare the workings of combinatorial writing in more accurate,
exhaustive, and ambitious ways. Larson’s “Pigs” is one extreme example,
showing that with a simple grammar and limited lexicon, one can achieve
a piece of writing that is extensive, diverse, and even at times entertaining.
Machine voices do not always ring out in such formulaic ways, however.

In the first part of Parrish’s Articulations, lines of verse harvested from
Project Gutenberg are automatically linked together based on phonetic
similarity. The result resonates with the concern for similarity of sound in
traditional poetry, but creates connections that neglect sense and differ
from those humans have made:

And like a dream sits like a dream: sits like a queen, shine like a queen.
When like a flash like a shell, fled like a shadow; like a shadow still.

Lies like a shadow still, aye, like a flash o light, shall I like a fool, quoth he, You
shine like a lily like a mute shall I still languish, – and still, I like Alaska.50

To generate Articulations, Parrish developed a novel procedure to compu-
tationally represent phonetic similarity,51 using that to creatively engage
with language in surprising, machinic ways. Through this representation,

49 Darby Larson, “Darby Larson: Pigs,” Calamari Press, July 9, 2011, www.calamaripress.com/SF/X/
070911_Larson.htm; Blake Butler, “If You Build the Code, Your Computer Will Write the Novel,”
Vice, September 11, 2013, www.vice.com/en_us/article/nnqwvd/if-you-build-the-code-your-com
puter-will-write-the-novel.

50 Allison Parrish, Articulations (Denver: Counterpath, 2018), 45.
51 Allison Parrish, “Poetic Sound Similarity Vectors Using Phonetic Features,” AAAI Conference on

Artificial Intelligence and Interactive Digital Entertainment (2017).

Generated Literature 207

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009349567.013
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 12 Oct 2025 at 05:14:45, subject to the Cambridge Core terms of

http://www.calamaripress.com/SF/X/070911%5FLarson.htm
http://www.calamaripress.com/SF/X/070911%5FLarson.htm
http://www.vice.com/en%5Fus/article/nnqwvd/if-you-build-the-code-your-computer-will-write-the-novel
http://www.vice.com/en%5Fus/article/nnqwvd/if-you-build-the-code-your-computer-will-write-the-novel
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009349567.013
https://www.cambridge.org/core


one can find the precise word that phonetically lies between two other
words; for example, the phonetic halfway point between “kitten” and
“puppy” is “committee.”52 This specific relationship between computation
and language opens up new ways of poetic thinking, and Parrish’s book is
an ambulatory textualization, or articulation, of this new thought.
More semantically concerned – and probing more explicitly into

machine cognition or at least the way computers view and organize
data – is the book Machine, Unlearning. Li Zilles’s generation process for
this work involved using machine learning techniques to develop ques-
tions, rather than the usual declarations:

Could LITERATURE be algorithmic in the way that psychology can be
algorithmic?

If someone teaches LITERATURE, do they teach sociology?
What separates a leader in LITERATURE from a leader in economics?
Can someone study LITERATURE like they study psychology?53

Practical text generation for informative purposes, as with many research
projects in text generation, offers humanlike texts. Along these lines,
computer generation systems have been used for literary hoaxes in which
their output was presented as human-written.54 Acknowledging these
humanlike uses of computing with regard to literary generation, we find
that computer text generation has a special applicability in the area of
machine voices. There are some famous examples of human-authored text
that read as computational, such as Samuel Beckett’sWatt, written before
general-purpose computing. And there are some less famous and more
recent examples, such as Cigarette Boy: A Mock Machine Mock-Epic
Presented as a Proposal to The Mackert Corporation.55 The truly machinic
investigation of machine voices is a unique contribution, however, extend-
ing more deeply and broadly into questions of computer cognition.
To see the ways in which contemporary computer-generated literature

goes beyond these human-authored texts, consider another of Zilles’s
computer-generated books, The Seeker,56 developed for NaNoGenMo

52 Strange Loop, “‘Experimental Creative Writing with the Vectorized Word’ by Allison Parrish,”
YouTube, September 2017, https://youtu.be/L3D0JEA1Jdc.

53 Li Zilles, Machine, Unlearning (Denver: Counterpath, 2018), 65.
54 Erica T. Carter, Jim Carpenter, and StephenMcLaughlin, ISSUE 1: Fall 2008 (forgodot.com, 2008);

Jim Carpenter, “Erica T. Carter: The Collected Works,” Public Override Void, April 17-June 10,
2004, Slought Foundation, Philadelphia, https://slought.org/resources/public_override_void.

55 Darick Chamberlin, Cigarette Boy: AMockMachine Mock-Epic Presented As a Proposal to the Mackert
Corporation (Seattle: Rogue Drogue, 1991).

56 Li Zilles, The Seeker ([n.p.]: thricedotted, 2014).

208 nick montfort and judy heflin

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009349567.013
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 12 Oct 2025 at 05:14:45, subject to the Cambridge Core terms of

https://youtu.be/L3D0JEA1Jdc
https://slought.org/resources/public_override_void
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009349567.013
https://www.cambridge.org/core


2014 under the nom de plume thricedotted. Each page ofThe Seeker has the
appearance of a visual poem, with formats that recur in varied ways
throughout the book. In it, an algorithm seems to be trying to understand
humanity by reading the instructional websiteWikiHow (which is actually
used as input by the generating system) and dreaming. That the text not
only presents a machine voice, but also seems to offer a glimpse into
a machine mind, is a crucial aspect for mathematician Marcus du
Sautoy, who writes, with reference to The Seeker in particular: “This may
in fact be the ultimate goal of any algorithmically generated literature: to
allow us to understand an emerging consciousness (if it ever does emerge)
and how it differs from our own.”57

11.11 Critically Reading Computer-Generated Literature

No one can read an original Blake text, or a facsimile text, and not be
struck by the following fact: that such a work has set in motion two
large signifying codes, the linguistic code (which we tend to privilege
when we study language-based arts like knowledge and poetry) and
the bibliographic code (which interpreters, until recently, have largely
ignored).58

Jerome McGann’s observation can be expanded: William Blake was an
artist as well as a poet. Engagement with visual art and art history, not just
the form of the book, is of course important. Similarly, we argue that
understanding the work of author/programmers requires an understanding
of both literary art and computation. To understand computer-generated
literature, understanding the formal and material nature of the computer
as a symbol-manipulating machine – knowing something about how to
program it – is essential. Otherwise, as would be the case with Blake, we
can at best understand a sequence of words, not the work.
Montfort has developed a preliminary typology of computational writ-

ing that distinguishes systems based on “whether they sample or enumer-
ate; whether they use a static or dynamic supply of source texts (or textons);
their level of complexity; and their use of text only or multiple media.”
Each of these four axes are orthogonal, and thus each of these significant
aspects is independent. This helps to show why characterizing a project
with a single term (e.g., “random” or “multimedia”) is inadequate. In

57 Marcus du Sautoy, The Creativity Code (Cambridge, MA: Belknap Press of Harvard University
Press, 2019), 265.

58 Jerome McGann, The Textual Condition (Princeton: Princeton University Press, 1991).

Generated Literature 209

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009349567.013
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 12 Oct 2025 at 05:14:45, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009349567.013
https://www.cambridge.org/core


explaining this typology, in the context of a book on poetics, a small
amount of code (five lines of Python, two lines of BASIC) makes the
discussion concrete. The two very short programs explain enumerating all
combinations of text and sampling from a uniform and nonuniform
distribution.59

Critical readers of computer-generated literature will need to come to
terms with more code than this, because code, rather than language, is an
essential medium for computer-generated literature. The author/program-
mer (or collaborative team) develops a text-generating system by writing
code that runs on a particular computational platform, for instance the
Manchester Mark I computer (in Strachey’s case), FORTRAN IV (in
Alison Knowles’s case), the Apple II and Applesoft BASIC (in bpNichol
andHuth’s case) or Python (used bymany currently). This particular code,
with specific variable and function names, and particular implementations
of different algorithms, has a form and function. That is, it works in
a particular way, possibly taking data as input. Above the level of form
and function, the system presents some sort of interface, graphical or
command-line. Finally, there is a level of reception and operation, where
a person considers how to interact and responds to the result.60 A complete
understanding of a work of computer-generated literature will include not
only an analysis of the code that implements the system, but also an
awareness of the platform’s affordances. This is the major idea behind
Platform Studies, initiated by Montfort and Ian Bogost.61

Another important approach is Critical Code Studies (CCS), described
by Mark C. Marino in 2006 and developed in the online Critical Code
Studies Working Groups run since 2010 by Marino and Jeremy Douglass.
Those working in this area argue that to understand any culturally signifi-
cant computer systems, poetic or otherwise, an understanding of program-
ming is important and must be joined to more conventional types of
critical reading ability. Marino’s manifesto, for instance, states:

CCS will require the artful combination of knowledge of programming
languages and knowledge of interpretive approaches. These analytic projects
will require programmers to help open up the contents and workings of

59 Nick Montfort, “Conceptual Computing and Digital Writing,” Postscript: Writing After Conceptual
Art, ed. Andrea Andersson (Toronto: University of Toronto Press, 2018), 197–210.

60 NickMontfort, “Combat in Context,”Game Studies 6.1 (December 2006), http://gamestudies.org/
0601/articles/montfort.

61 Ian Bogost and Nick Montfort, “Platform Studies: Frequently Answered Questions,” in Proceedings
of the Digital Arts and Culture Conference, Irvine, CA, December 2009; Nick Montfort and
Ian Bogost, Racing the Beam: the Atari Video Computer System (Cambridge, MA: MIT Press, 2009).

210 nick montfort and judy heflin

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009349567.013
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 12 Oct 2025 at 05:14:45, subject to the Cambridge Core terms of

http://gamestudies.org/0601/articles/montfort
http://gamestudies.org/0601/articles/montfort
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009349567.013
https://www.cambridge.org/core


programs, acting as theorists along with other scholars, as they reflect on the
relationships between the code itself, the coding architecture, the function-
ing of the code, and specific programming choices or expressions, to that
which it acts upon, outputs, processes, and represents.62

Marino now holds that, rather than requiring that programmers and critics
join together, critics with knowledge of programming will help drive CCS
forward. Marino is such a critic himself, and writes in his recent book on
CCS, which includes large amounts of code, “it is my hope that the book
will be intriguing enough to nonprogrammers to draw them deeper into
the study of computers and programming languages, for programming is
one of the key literacies of our age.”63

Platform Studies and Critical Code Studies are not specific to computer-
generated literature, but they provide important methodologies for critics
of this sort of work. By joining technical knowledge to interpretive ability,
those reading this sort of literature will be able to bring it fully into the
discourse on human writings and other sorts of creative computing.

62 Mark C. Marino, “Critical Code Studies,” Electronic Book Review, December 4, 2006, http://elect
ronicbookreview.com/essay/critical-code-studies/.

63 Mark C. Marino, Critical Code Studies (Cambridge, MA: MIT Press, 2020).

Generated Literature 211

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009349567.013
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 12 Oct 2025 at 05:14:45, subject to the Cambridge Core terms of

http://electronicbookreview.com/essay/critical-code-studies/
http://electronicbookreview.com/essay/critical-code-studies/
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009349567.013
https://www.cambridge.org/core

