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1. Introduction

In 1921 von Karman [1] showed that the Navier-Stokes equations for steady
viscous axisymmetric flow can be reduced to a set of ordinary differential equa-
tions if it is assumed that the axial velocity component is independent of the
radial distance from the axis of symmetry. He used these similarity equations to
obtain a solution for the flow near an infinite rotating disk. Later Batchelor [2]
and Stewartson [3] applied these equations to the problem of steady flow between
two infinite disks rotating in parallel planes a finite distance apart.

In this paper we give a systematic treatment of the calculation of analytic
approximations to the high Reynolds number flow between two infinite rotating
disks when the effects of viscosity only appear in the boundary layers near the
disks. Some earlier results obtained by Tam [4] and Mellor, Chappie, and Stokes
[5] for particular cases are extended to the general case.

I would like to thank Professor A. F. Pillow and Dr. A. M. Watts, University
of Queensland, for many helpful discussions in connection with this problem.

2. Formulation

The similarity relations first used by von Karman [1] are

Ve = rH*(y),

(2.1) V> = 2 F * W '

' dy'
where

y = (r, 9, y) is the position vector in a cylindrical polar coordinate system,
and

V = (Vr, Ve, Vy) is the velocity vector.

Flows for which (2 • 1) holds will be called self-similar. When these relations are
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substituted into the Navier-Stokes equations for steady viscous axisymmetric flow,
we see that F*(y) and H*(y) are given by

(2.2a) 2H* — + 2F* 1±- - v ^ - = 0,
dy dy dy

(2.2b) :2 t f \ v ^ 0,
dy dy dy

where v is the kinematic viscosity.
The boundary conditions corresponding to an infinite disk rotating in the

y = 0 plane with angular velocity Qo and a second infinite disk in the y = d
plane with angular velocity Qt are

F ' ( 0 ) = ^

(2.3)

rw-^-

= 0, tf*(0) = Go,

= 0, H*(d) =
dy

Non-dimensional variables can be defined by

y = xd,

(2.4) F*{y) = QodF(x),

H*(y) = <20 #(x),

where it is assumed that Qo # 0. Equations (2.2a) and (2.2b) then become

(2.5a) 2HH' + 2FF'"- - F ' v = 0,
R

(2.5b) 2F'H-2FH'+ - H" = 0,
R

where R = Q0d
2/v is the Reynolds number (or the reciprocal of the Ekman

number), and H'{x) = dH/dx, etc. The boundary conditions are now given by

(2.6) F(0) = F'(0) = 0, H(0) = 1,

F(l) = F'(l) = 0, H(l) = Q,

where Q = Qi/Q0.
Since the highest derivatives in the two equations (2.5a) and (2.5b) are multi-

plied by R~1, it is to be expected that a high Reynolds number expansion will be
singular. Hence we shall use the method of matched asymptotic expansions to
obtain approximate solutions.
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3. Physical discussion

The general problem of high Reynolds number flow between two infinite
rotating disks was first discussed by Batchelor [2] and Stewartson [3]. In the case
of flow between a rotating and a stationary disk Batchelor and Stewartson reached
different conclusions. Batchelor thought that boundary layers would be formed at
both disks and the main body of the fluid would rotate with constant nonzero
angular velocity. On the other hand Stewartson thought that only on the rotating
disk would a boundary layer develop and the main body of the fluid would not
rotate at all. Numerical work by Lance and Rogers [6], Pearson [7], and by
Mellor, Chappie and Stokes [5] has shown that both types of flow exist.

The analysis in the next section indicates that the type of flow predicted by
Batchelor for the case of a rotating and a stationary disk exists for the more
general case of both disks rotating in the same direction. This type of flow which
is characterized by boundary layers on both disks and the fluid in the interior
region between the boundary layers having constant nonzero angular velocity
will in this paper be called type A flow. The type of flow predicted by Stewartson
will be called type B flow, and in Section 5 it is shown that this type of flow seems
to exist even when the disks rotate in opposite directions. Its main characteristic
is that the fluid in the interior region does not rotate.

We use the method of matched asymptotic expansions for obtaining analytic
approximations to the flow at high Reynolds number. This method has been used
by Tam [4] for the flow between two disks rotating in opposite directions with
angular velocities of equal magnitudes, and by Mellor, Chappie, and Stokes [5]
who considered the flow between a rotating and a stationary disk.

It will be assumed that boundary layers are developed on the disks and that
the effects of viscosity only appear in these layers. The existence of these layers
can be deduced from the approximate solutions for high Reynolds number flow
between two disks which rotate with almost equal angular velocities. Their
existence is also indicated in the experimental work carried out by Picha and
Eckerts [8] for flow between two disks of finite radius.

Approximate solutions are calculated by finding inner expansions, valid in
the boundary layers, which are then matched asymptotically to an outer expansion
valid in the interior region. This matching procedure produces a sufficient number

Figure 1. Sketch showing the location of the boundary layers and the interior region.

https://doi.org/10.1017/S1446788700010387 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010387


486 H. Rasmussen [4]

of boundary conditions so that in most cases all unknown constants appearing in
the solutions can be evaluated.

The location of the different regions of the flow field are shown in Fig. 1;
the two boundary layers are designated by \BL and 2BL.

The boundary value problem for the first term in each of the two expansions
valid in \BL and 2BL is equivalent to that for the selfsimilar flow near an infinite
rotating disk. This problem has been solved numerically by, among others, Rogers
and Lance [9], and since their solutions will be used in the following analysis,
they are described in Appendix 1.

4. Type A flow

In this section we discuss the flow between two disks for which the angular
velocity in the interior region is of the same order of magnitude as that in the
boundary layers. In this case it is shown that the disks must rotate in the same
direction and that the flow is of type A.

In the boundary layers nondimensional variables are defined by

y = (v/f20)*r = d-{vlQofa,

F*(y) = (VO0)*/(T) = -(vG0)*/(a),

H*{y) = Qoh{x) = Qoh(a),

where/(T) and h{t) refer to \BL, and/(ff) and h(a) refer to 2BL, and it is assumed
that Qo ^ 0.

The equations for/and h are, from (2.2a) and (2.2b)

2hf'-2h'J + h" = 0,

and similarly for /(<r) and h(a). The boundary conditions on the disks become

= 0, h(0)=l

/ (0) / ' (0) 0 h(0) = Ql/Qo.

In order that the angular and axial velocity components will be of the same
order of magnitude in the three regions, non-dimensional variables in the interior
region are defined by

y = xd,

F*{y) = eQodF(x),

H*(y) = Q0H(x),

where e = 1/i?* = (v/Q0 d
2)4*. Equations (2.2a) and (2.2b) then become
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2HH' + 2s2FF'"-s3F'v = 0,
(4.3)

2HF'-2FH' + eH" = 0.

The inner and outer expansions are obtained by expanding the dependent
variables in power series in e, i.e.

/ ( T ) = I s%(r), h{x) = £ snhn(x).
n=0 «=0

These expansions are then substituted into the equations for / , h, j , E, F, and H,
and the coefficients of the powers of e are equated to zero.

The inner expansion, valid in \BL, is matched to the outer expansion, valid
in the interior region, near x = 0. Similarly the inner expansion in 2BL is matched
to the outer expansion near JC = 1. The procedure used in the matching is described
in Van Dyke [10] (see Chapter V, pp. 89-90). From the matching we obtain the
following conditions on the first two terms of each expansion.

(4 4)

/o(t) -

/ott> - o,

.(0),

3(0),

Mo) ->

/oOO -

Ha) Z

-Fo(0),

0,

HoU),

as T -» oo; as a -*• oo.

From equation (4.3) we see that the equations for the zero order terms of
the inner expansion in the interior region are

HOH'O = 0,

H0F0 — H'0F0 = 0.

Since we are interested in a solution with non-zero swirl in the interior region, we
take the solution

(4.5) ° *J ~ ? ° '

where y0 and J?o are non-zero constants. The solution H0(x) = 0 will be discussed
in the next section.

The equations for/0(r) and ho(x) are equivalent to (4.1), and the boundary
conditions at x = 0 are

/o(O) =/o(0) = 0, M0) = 1.
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From (4.4) we see that as T -*• oo,

/o(t) ^ 0,

ho(x) -+ tfo(O) = ±/?2.

This boundary value problem for /0(x) and ho(x), which is discussed in
Appendix 1, corresponds to that for the steady flow near an infinite disk which
rotates with angular velocity 1 in a fluid which far from the disk rotates with
angular velocity + J8Q • Now, as explained in Appendix 1, no satisfactory numerical
solution has been obtained for this problem when the two angular velocities are of
opposite signs. Thus we will here insist that H0(x) is positive so that ho(z) -> +fil.

The solution for/0(x) and ho(x) can be written in the form

/0(x)=M(/?2,x),

The functions M(PQ , T) and N(fi%, T) are described in Appendix 1 and will here
be considered as known functions.

The equations for fo(
a) a nd ^o(ff) are also equivalent to (4.1), and the

boundary conditions at a = 0 are

/o(o) =7,5(0) = o, KO(O) = QJQO.

As a -» oo we have from (4.4) that

0,

As before we insist that Ho(0) and fto(°°) a re of the same sign, so we assume that
QJQo is positive and set it equal to a2. From Appendix 1 the solutions for/0(c7)
and S0(

ff) are

/0(a) = /?0P(a2//^,)V),

where a2 = QJQ0- The functions P and Q are described in Appendix 1.
The value of /f2, for a given a is determined by the condition that

/o(°°) = -7o = -7o(°°)-

From (4.6) and (6.7) we see that this implies that
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This equation has been solved for different values of a2 using the information
given in Appendix 1, and the graphs of Pi vs a2 and y0 vs a2 are plotted in Fig. 2.
A graph of Pi vs a2 similar to the one given in Fig. 2 was first obtained by Rott
and Lewellen [11].

.20 .40 .60 .80 tOO

Figure 2. Graphs of {i\ and y0 against a2.

In order to obtain the solutions (4.6) and (4.7) for the boundary layers we
have implicitly assumed that 1 ^ Pi 2: a2. That this inequality must hold can
easily be shown using the functions M, N, P, Q. That the inequality must hold
can also be shown by physical arguments. Assume, for example, that

1 > a2 > Pi > 0.

This means that the fluid in the interior region rotates slower than either of the
disks, and it can be expected that the axial flow at the edges of the boundary layers
would be towards the disks. This would require the axial flow to change direction
somewhere in the interior region which contradicts the fact that JFO(*) is constant.

The higher order terms can now in theory be determined, but since they will
only modify the flow slightly, they will not be calculated here.

The main characteristic of the type of flow discussed in this section is that the
radial flow takes place in the boundary layers and that the interior region rotates
with a constant nonzero velocity. There is a radial inflow near the slower disk and
a radial outflow near the faster disk. Thus one of the functions of the interior
region which rotates with an angular velocity between those of the disks is to
transport fluid from one boundary layer to the other.

5. Type B flow

In the previous section we noticed that there seems to be flows for which the
angular velocity in the interior region is identically zero to a first approximation.
One of these flows is the type B flow which was discussed briefly in Section 3;
it is now considered in more detail in this section.

Only in the interior region will the formulation of the problem be different
from the one used in the previous section. In this region non-dimensional variables
are defined by
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y = xd,

F*(y) = SQodF(x),

H*(y) = sQ0H(x),

where £ = 1/i?*. The governing equations (2.2a) and (2.2b) become

2HH' + 2FF'"-sF'r = 0,
(5.1)

2HF'-2FH' + sH" = 0.

An outer expansion valid in the interior region is obtained by expanding
F(x) and H(x) in power series in s, i.e.

F(x) = f e"Fn(x), H(x) = f a"Hn(x).
71 = 0 « = 0

From (5.1) we see that Fn{x) and Hr(x) are given by

'nLl = 0,
j = o

where quantities with negative subscripts are set equal to zero.
Again the inner and outer expansions are matched near x = 0 and x = 1,

and only the conditions on the swirl are different from the ones given in (4.4)
and (4.5). The new conditions on the swirl are

as T -> oo, and

(5.4) 5 ° ( " - 0 '
(,(«)-> w.0),

a s a -*• oo.

The equations for the zero order terms in the interior region, obtained from
(5.2), are

H0H'0 + F0F'd' = 0,

H0F0 — H'0F0 = 0.

The second equation can be integrated to give

H0(x) = p0F0(x),
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where /?0 is a constant. Two different types of solution result from the first equa-
tion depending on whether /Jo = 0 or /?0 # 0. The first case which corresponds
to H0(x) = 0 will be considered in detail in this section, and in order to simplify
the calculations we shall assume that the higher order terms are also identically
zero, i.e. H(x) = 0. The second case will be discussed briefly in the end of the
section.

In the first case, only the fluid in the boundary layer has angular momentum.
The two disks act as fans so there is a radial outflow of fluid in the boundary layers.
This outflow causes an axial inflow to the boundary layers from the interior region.

Since there is no angular velocity in the interior region, the problem is un-
altered in character by a change in the direction of the rotation of one of the disks.
Hence we shall only consider h(0) = QJflo = <*2> i-e. the disks rotate in the same
direction. The boundary conditions on the zero-order terms of the expansion in
2BL at a - 0 then become

/o(0)=/o(0) = 0, ho(O) = a2.

From (4.1) we see that the equations for/0(cr) and ho(a) are

and from (4.5) and (5.4) we have the following boundary conditions

/o(oo) = -F0(l),

/o(oo) - 0,

K0(oo) = 0.

Hence the solution is

/o(ff) = ceM(0, aa),

ho(a) = cc2N(0, off).

Similarly the zero-order terms in \BL are given by

,< , , /o(t) = M(0, T),
(3.0)

K{x) = N(0, t),

satisfying the condition

/o(«>) = Fo(0).

From (5.2) we see that, if H0(x) = 0, F0(x) is given by
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with solution
F0(x) = A+Bx + Cx2,

where A, B, C are constants.
In Appendix 1 M(0, oo) is given as —.442, so since

/o(oo) = M(0, <x>) = Fo(0),
and

/o(oo) = aM(0, oo) = -FO(1),
we find that

(5.7) F0(x) = -M2[l-(x+l)x]-C(x-x2).

In order to evaluate C we must consider the first-order terms.
The equations for the first-order terms in 12?L,/i(T) and h^r), are obtained

from equation (4.1). Thus

2(M;+Mo+/o/r+/i/o'')-/,'F = o,
2(Kfi+h1n-foh'l-f1h'0)+h\' = o

with the following boundary conditions at x = 0

Since
/ 0 ( T ) = M(0, T),

A0(T) = N(0, T),

we can consider (5.8) as a system of linear equations with known coefficients. In
Appendix 2 two fundamental solutions have been calculated numerically. If we
replace/i(T) by q> and /*I(T) by i//, and let the subscript 1 designate the solution
which satisfies

9>i(0) = <p[(0) = 0, ?i'(0) = 1,

•Ai(O) = ^i(O) = 0,

and the subscript 2 designate the solution which satisfies

<p2(0) = <p'2(0) = cp'2'(0) = 0

^2(0) = 0, ^ ( 0 ) = 1,

the solutions f o r / ^ t ) and h^i) can be expressed in the form

^()

https://doi.org/10.1017/S1446788700010387 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010387


[11 ] High Reynolds number flow 493

where ax and a2 are constants.
The first-order terms in 25L,/1(<T) and Si(o'), are also given by equation (5.8)

with/0 and h0 replaced by/0 and Ko. Since

/o(«r) = aM(0, our),

ho(a) = oc2iV(0, aa),

we see from equation (5.8) that/ t(a) and Hi(a) are related to /^ r ) and AJ(T) in
the following manner

Ji%{a) = aA1(acr).
Thus since

we have that

/i(ff)

From the matching conditions (4.4), (4.5), (5.3), and (5.4) we see that the
first-order terms in the boundary layers must satisfy the following conditions

/i(oo) = .Fo(O) = .442(1 + a) -C,

*i(oo) = 0,

/ ! ' ( « ) = n ( l ) = .442(1+a)+ C,

fit(oo) = 0.

These conditions together with the solutions (5.9) and (5.10) give us three
equations, which can be solved for ax, a2 and C, using the values of (pi(oo),
(p'2(co), ^i(oo) and t/̂ 2(oo) given in Appendix 2. The solutions are

cx = -.001,

a2 = .155,

C = .442(a-l).

Hence we see that F0(x) is given by

(5.11) *o(*) = --442(1 -

Thus we have a complete solution for the zero-order terms. Again in theory
the higher order terms could be calculated.

The difference between type B flow, given by (5.5), (5.6), and (5.11), and
type A flow which was discussed in the previous section, is that in type B flow
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the radial velocity is not zero in the interior region but the angular velocity is,
while in type A flow the contrary is the case. Since in type B flow the angular
velocity is zero in the interior region, it is in this case possible for the disks to
rotate in opposite directions.

Discussion of the case fi0 # 0.

In this case the solutions of F0(x) and H0(x) are

F0(x) = A0+Ai sin pox + A2 cos pox,

H0{x) = j80F0(*),

where Ao, Alt A2 are constants. As before the zero-order terms in the boundary
layers are given by

and
/ 0 ( T ) = M(0, T),

ho(z) = N(0, T).

The boundary conditions on F0(x) and H0(x) are obtained from the matching
conditions (4.4), (4.5), (5.3), and (5.4):

Fo(0) = / o ( « ) = -.442,

Ho(0) = fciCco),

Fott) = ~/o(«) = -442,

Since the first-order terms in the boundary layers are not known, we see that
the matching process only gives two boundary conditions on F0(x). Now the
solution (5.12) for F0(x) contains four unknown constants which cannot therefore
all be evaluated. Thus it seems that the flow in the interior region is not uniquely
determined; at present it is not known if this non-uniqueness is caused by the
perturbation scheme.

If the solutions for F0(x) and H0(x) are substituted into the equations for
^(JC) and Hi(x), a solution for F^x) can be obtained. The third and fourth
derivatives of this solution become infinite at certain values of x; the physical
interpretation of this phenomenon is not yet clear.
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6. Conclusions

The analysis in the previous sections has indicated that there are two main
types of high Reynolds number flow between two infinite rotating disks when the
effects of viscosity are assumed to be important only near the disks. In a type A
flow, which is only possible when the disks rotate in the same direction, the radial
velocity is zero in the interior region and the angular velocity equals a nonzero
constant in this region. Since the angular velocity is zero for a type B flow, it is
possible to obtain this type of flow when the disks do not rotate in the same direc-
tion. The physical interpretation of the sinusoidal solution for the interior region,
obtained at the end of Section 5, is uncertain, and it is not clear if this solution
points to the existence of flows with viscous behaviour outside the boundary
layers on the disks.

From their numerical solutions for the flow between a rotating and a station-
ary disk Mellor, Chappie, and Stokes [5] came to the conclusion that there exist
two types of one-cell flow of which one tends to the type A flow as the Reynolds
number tends to infinity while the other tends to the type B flow. The results
obtained in this paper seem to indicate that the first type of one-cell solutions can
only occur when the disks rotate in the same direction or when one disk is station-
ary. The other type seems to be possible even when the ratio of the angular veloci-
ties of the disks is negative.

In order to consider the nonuniqueness of the flow for high Reynolds number
it is necessary to discuss the boundary conditions that may be imposed on the
flow far from the axis of rotation. We shall not go into the details of this problem
here but will only describe two physical flow situations where type A and type B
flows are obtained in part of the flow field.

The high Reynolds number flow between two disks of finite radius which
rotate with almost equal angular velocities and which are contained in a rotating
cylinder of equal radius is discussed in Rasmussen [12], Chapter 6. If the angular
velocity of the cylinder is equal to that of the faster disk, the following flow is
obtained. On the two disks there are Ekman layers of thickness R~^ and on the
cylinder a Stewartson layer of thickness /?"*. The flow in the Ekman layers and
the interior region outside the boundary layers is selfsimilar, i.e. satisfies the von
Karman similarity relations. In the interior region the angular and axial velocity
components are constant and nonzero while the radial velocity component is
zero. The fluid flows radially outwards in the Ekman layer on the faster disk into
the Stewartson layer on the cylinder through which it flows to the Ekman layer
on the slower disk. From this layer it moves into the interior region where it then
flows back to the Ekman layer on the faster disk. Thus we see that the flow in
the Ekman layers and the interior region forms a type A flow.

It is not certain if a type A flow will be obtained if the difference between the
angular velocities of the disks and the cylinder is not small. Since in this case the
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governing equations cannot be linearized, the analysis of the boundary layer on
the cylinder becomes rather difficult.

Picha and Eckerts [8] studied experimentally the high Reynolds number flow
between two finite disks. When the disks were rotating freely, i.e. not contained in
a cylinder, they found that no rotation of the fluid core could be observed for the
case of counterrotating disks. This would seem to indicate that a type B flow is
obtained in this case.

Throughout the treatment in this paper of high Reynolds number flow
between two disks it has been assumed that the effects of viscosity only appear
in the boundary layers on the disks. There seems to be no physical reason why a
flow should not exist in which a viscous shear layer appears somewhere in the flow
field. An analysis of this problem has been started but is not yet completed.

Appendix 1

In this appendix we describe the numerical solutions obtained by Rogers and
Lance [9] for the one-disk problem with no radial flow at infinity.

The governing equations are

dy

dy dy dy
with boundary conditions

40) - f
dy

=> 0, ff(0) = Go ̂  0,

>• 0, H -> Qx ^ 0 as y -> oo.
dy

Here Qo and Qx are the angular velocities of the disk and the fluid at infinity,
respectively.

When the disk rotates faster than the fluid at infinity, i.e. when Qo ^ Q^,,
and Qo # 0 we define dimensionless variables by

y = (v/Qo)**,

= Q0N(s2,x),

where s2 = QJQ0 and 0 g s2 g 1. Equations (Al.l) and (A1.2) then become

2NN' + 2MM'"-M'r= 0,

2M'N-2MN' + N" = 0,
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with boundary conditions

M(s2, 0) =
dM

~dx~
= 0,

x = 0

dM
= 0,

N{s2, 0) = 1 N(s2, oo) = s2.

When the disk rotates slower than the fluid at infinity, i.e. when Qo <
and Qx > 0, nondimensional variables are defined by

y = (v/G,)**,

F(y)=(vQj±P(t2,x),

= QX)Q(t2,x),

where t2 = fi0/^oo and 0 <: t2 < 1. Equations (Al.l) and (A1.2) then become

' + 2PP'"-P'V = 0,

2QP'-2PQ' + Q" = 0,

with boundary conditions

dx
-o, f

x = O dX

= 0,

Q(t2,ao)=l.

Rogers and Lance integrated these two boundary value problems numerically
for several values of s2 and t2. They also attempted to obtain numerical solutions
for Qx/Q0 negative. In this case which corresponds to the disk and the fluid
rotating in opposite directions, the numerical procedure did not converge, and
they were unable to obtain a solution. It has not yet been proved that a solution
does not exist but in this paper we have assumed that this is the case.

Since the treatment in Sections 4 and 5 only require the relationships between
s2 and M(s2, oo) and between t2 and Pit1, oo), these are the only parts of the
solutions which are reproduced here in Tables 1 and 2. More details can be found
in [9] where a different notation is used.

TABLE 1

s2

0.0

0.1

0.2

0.4

M(s2, oc)

—.44223

—.45885

—.43088

—.32998

s2

0.6

0.8

0.9

1.0

M(s2, oo)

—.21539

—.10401

—.05101

0.00000
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TABLE 2

t2

0.0

0.1

0.2

0.4

P(t2, oo)

.68481

.59758

.51540

.36304

t2

0.6

0.8

0.9

1.0

Pit2, oo)

.22689

.10636

.05155

0.00000

Appendix 2

If we let

we can write equations (5.8) for the first order terms in the boundary layers in
the form

hoil, = 0,

(A2.2) il/"-2foxl/' + 2f^-2h'o(p + 2ho(p' = 0.

The zero order terms/0(T) and ho(t) are given by

/ 0 ( T ) = M(0, T),

AO(T) = N(0, T).

These terms can be approximated by the first five terms of an approximate solution
calculated by Fettis [13]. Thus

3 ( e 2 e ) +
4C 576C

hJx) = e ( e e ) ( 3 e 3 2 e

12C4 1152C8

where C = -.8759.
Let <PI(T) and IZ'I(T) be the solutions of equations (A2.1) and (A2.2) satisfying

the initial conditions

9»i(0) = *i(0) = 0, ri'(0)=l,

^i(0) = ^1(0) = 0,

and Q>2(i0 and i/̂ OO the solutions satisfying

<P2(0) = q>'2(0) = 92(0) = 0,

<A2(0) = 0, ^i(0) = 1.
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These solutions were calculated by integrating (A2.1) and (A2.2) using a
fourth-order Runge Kutta procedure. The computations were carried out at the
University of Queensland Computer Centre using a subprogram produced by the
centre. The solutions are tabulated below.

TABLE 3

The solutions of equations (A2.1) and (A2.2) which satisfy the initial conditions (A2.3)

0
1
2
3

4
5

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

22
23

24
25

26

0.00000
0.49230
1.88919

3.93182
6.31810
8.85853

11.47048
14.12258
16.80085
19.49665
22.20376
24.91780
27.63589
30.35623
33.07780
35.80000
38.52254
41.24523
43.96801
46.69083
49.41367

52.13652
54.85937
57.58223

60.30508
63.02794
65.75079

0.00000
0.97280
1.77445
2.25745
2.48409
2.58406
2.63515

2.66689
2.68824
2.70233
2.71117
2.71644
2.71944

2.72108
2.72195
2.72241
2.72263

2.72275
2.72280
2.72283
2.72284
2.72285
2.72285
2.72285
2.72286

2.72286
2.72286

9>i"M

1.00000
0.92385
0.64885
0.33186
0.14492
0.06763

0.03895
0.02581
0.01734
0.01116
0.00681
0.00395
0.00220
0.00118
0.00062
0.00032
0.00016
0.00008
0.00004
0.00002
0.00001
0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
-0.27003
-1.56356

-3.50294
-5.31467
-6.63958
-7.48156
-7.97206
-8.24178
-8.38420
-8.45717
-8.49371
-8.51167
-8.52037

-8.52453
-8.52649
-8.52742
-8.52785
-8.52804
-8.52814
-8.52818

-8.52820
-8.52820
-8.52821
-8.52821

-8.52821
-8.52821

Vi'to

0.00000
-0.73857
-1.75863

-1.97760
-1.58912
-1.06577

-0.64210
-0.36115
-0.19378
-0.10049
-0.05079
-0.02515
-0.01226

-0.00589
-0.00280
-0.00132
-0.00062
-0.00028
-0.00013
-0.00006
-0.00003
-0.00001
-0.00001
-0.00000
-0.00000

-0.00000
-0.00000
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TABLE 4

The solutions of equations (A2.1) and (A2.2) which satisfy the initial conditions (A2.4)

0
1
2
3
4
5

6
7

8
9

10
11

12
13
14
15

16
17
18
19

20
21

22
23
24
25

26

0.00000
0.06232
0.71400
2.53251
5.59543

9.65312
14.39241
19.55782
24.97390

30.53106
36.16489
41.83924
47.53450
53.24034
58.95146
64.66515

70.38009
76.09564
81.81146
87.52742
93.24344
98.95950
104.67556
110.39163
116.10770
121.82378

127.53985

0.00000
0.22959
1.17916
2.46583
3.61365

4.44771
4.98808
5.31380
5.50047

5.60340
5.65843

5.68712
4.70175
4.70909
5.71271
5.71447
5.71532
5.71572
5.71591

5.71600
5.71604
5.71606
5.71607
5.71607
5.71607

5.71608
5.71608

0.00000
0.59392
1.21786
1.27135
0.99808

0.67574
0.41911
0.24516
0.13735
0.07439
0.03919
0.02017
0.01019
0.00506
0.00248
0.00120
0.00057
0.00027
0.00013

0.00006
0.00003
0.00001
0.00001
0.00000
0.00000
0.00000
0.00000

Vi(j)

0.00000
0.98123
1.73081
1.90585
1.60356
1.13519
0.71105
0.40216

0.20321
0.08485
0.01823

-0.01775
-0.03659
-0.04621
-0.05102
-0.05339
-0.05454

-0.05509
-0.05535
-0.05548
-0.05553
-0.05556
-0.05557

-0.05558
-0.05558
-0.05558
-0.00558

1.00070
0.93732
0.48777

-0.11345
-0.43369
-0.46798
-0.36975
-0.24980
-0.15337

-0.08826
-0.04848
-0.02570
-0.01326
-0.00669
-0.00332
-0.00162
-0.00078
-0.00037
—0.00018
-0.00008
-0.00004
-0.00002
-0.00001

-0.00000
—0.00000
-0.00000
-0.00000
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