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Classifying the Minimal Varieties of
Polynomial Growth

Antonio Giambruno, Daniela La Mattina, and Mikhail Zaicev

Abstract. Let V be a variety of associative algebras generated by an algebra with 1 over a field of charac-
teristic zero. This paper is devoted to the classification of the varietiesV that are minimal of polynomial
growth (i.e., their sequence of codimensions grows like nk, but any proper subvariety grows like nt with
t < k). These varieties are the building blocks of general varieties of polynomial growth.

It turns out that for k ≤ 4 there are only a finite number of varieties of polynomial growth nk, but
for each k > 4, the number of minimal varieties is at least |F|, the cardinality of the base field, and we
give a recipe for their construction.

1 Introduction

One of the more challenging problems in PI-theory is that of classifying the algebras,
up to PI-equivalence, by means of some numerical parameters (invariants) that can
be explicitly computed. In characteristic zero, unlike the Lie or Jordan case [1,5], the
sequence of codimensions of an associative algebra is exponentially bounded ([22]),
and few such parameters related to the asymptotic behavior of such a sequence have
been successfully applied.

For instance, the exponent (measuring the exponential growth of the sequence of
codimensions) has been used in order to classify the minimal varieties of algebras of
exponential growth. It turns out that for any given exponent d ≥ 2, there are only
a finite number of PI-algebras of exponent d, and they can be explicitly described as
upper block triangular matrix algebras with entries in the Grassmann algebra [12,
13].

In this paper we address the problem of classifying the minimal varieties of poly-
nomial growth. We recall that by [15, 16], given a PI-algebra A, its sequence of codi-
mensions either grows exponentially or is polynomially bounded. The exponential
growth of such a sequence was determined in [10, 11], and it turns out to be an inte-
ger called the PI-exponent of A. In the language of varieties of algebras, the exponent
of a variety is the PI-exponent of a generating algebra.

Among varieties, prominent role is played by the minimal varieties. Recall that V
is a minimal variety of exponential growth d ≥ 2 if exp(V) = d and exp(U) < d,
for every proper subvariery U. As we mentioned above, minimal varieties have been
classified.
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Now let V be a variety of algebras and let cn(V), n = 1, 2, . . . , be its sequence of
codimensions. It is well known that if cn(V) is polynomially bounded, then cn(V) ≈
qnk for some integer k and rational number q [7].

We say that V is a minimal variety of polynomial growth nk if cn(V) ≈ ank asymp-
totically for some a 6= 0 and cn(U) ≈ bnt with t < k for any proper subvariety U

of V.
By a well-known theorem of Kemer, there are only two varieties of algebras of

almost polynomial growth (i.e., their growth is exponential but any proper subvari-
ety grows polynomially): the variety generated by the Grassmann algebra G and the
variety generated by the algebra of 2× 2 upper triangular matrices U T2.

In [19, 20] the second author classified all minimal subvarieties of var(G) and
var(U T2), and it turns out that there are only a finite number of them. She also gave,
for each such variety, a finite dimensional generating algebra.

The relevance of such classification relies in the fact that these were the building
blocks that allowed the author to give a complete classification of the subvarieties of
var(G) and var(U T2).

Inspired by these positive results we shall try to classify the minimal varieties of
polynomial growth in general. We shall restrict ourselves to varieties generated by
algebras with 1.

We shall classify explicitly all minimal varieties of polynomial growth nk for k ≤ 5
and give a recipe for classifying all minimal varieties of polynomial growth nk, k > 5.
It will tuns out that for k ≤ 4, there are only a finite number of minimal varieties of
polynomial growth nk, but for k ≥ 5, the number of minimal varieties is at least |F|,
the cardinality of the base field.

2 Preliminaries

Throughout this paper F is a field of characteristic zero and A is an associative F-
algebra with 1. Let F〈X〉 denote the free associative algebra over F on a countable
set X = {x1, x2, . . . }. For any n ≥ 0, we denote by Pn the space of multilinear
polynomials in x1, . . . , xn and we set P0 = span{1}. For a PI-algebra A, we denote
by Id(A) = { f ∈ F〈X〉 | f ≡ 0 on A} the T-ideal of F〈X〉 of polynomial identities
of A. Recall that

cn(A) = dimF
Pn

Pn ∩ Id(A)
, n = 0, 1, 2, . . . ,

is called the sequence of codimensions of A.
A distinguished subspace of Pn is given by Γn, the space of proper polynomials

in x1, . . . , xn. Recall that f (x1, . . . , xn) ∈ Γn is a proper polynomial if it is a linear
combination of products of (long) left normed Lie commutators [xi1 , . . . , xik ]; we
also set Γ0 = span{1}.

Recall that the sequence

cp
n (A) = dimF

Γn

Γn ∩ Id(A)
, n = 0, 1, 2, . . . ,
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is called the sequence of proper codimensions of A.
The relation between ordinary and proper codimensions of a unitary algebra A is

well known and was described by Drensky in [3]: we have cn(A) =
∑n

i=0

(n
i

)
cp

i (A).
In [7] it was also proved that if A is a unitary algebra, then the sequence of (ordi-

nary) codimensions is polynomially bounded if and only if cp
m(A) = 0 for some even

integer m ≥ 2. Moreover, in such a case, cp
n (A) = 0 for all n ≥ m. Therefore, if A is

a unitary algebra whose codimensions are polynomially bounded, the codimensions
of A can be written as a finite sum

(2.1) cn(A) =

k∑
i=0

(
n

i

)
cp

i (A).

Thus cn(A) is a polynomial in n with rational coefficients of degree k, whose leading
term is q = cp

k (A)
(n

k

)
. Moreover q satisfies the inequality

1

k!
≤ q ≤

k∑
j=2

(−1) j

j!
→ 1

e
, k→∞.

In [9] the lower bound was improved for k odd (q ≥ k−1
k! ), and it was shown that

these bounds are actually achieved.
It is well known that the symmetric group Sn acts on the vector space Pn by per-

muting the variables, and Pn is isomorphic to the left regular Sn-representation (see,
for instance, [14, Section 2.4]). Clearly, Γn ⊂ Pn is an Sn-submodule, and, since
Id(A) is invariant under permutations of the variables, Γn/(Γn ∩ Id(A)) becomes an
Sn-module. Its character, denoted χp

n(A) is called the proper n-th cocharacter of A. By
complete reducibility χp

n(A) decomposes into irreducibles. Let

χp
n(A) =

∑
λ`n

mλχλ,

where χλ is the irreducible Sn-character associated to the partition λ and mλ is the
corresponding multiplicity.

We recall the following terminology: if M and N are two Sn-modules and

χn(M) =
∑
λ`n

mλχλ, χn(N) =
∑
λ`n

m ′λχλ

are the corresponding Sn-characters, then we write χn(M) ≤ χn(N) if mλ ≤ m ′λ for
all λ ` n.

With this terminology in mind, we clearly have that for any PI-algebra A, χp
n(A) ≤

χ(Γn), where χ(Γn) is the Sn-character of Γn.
In what follows we shall actually make use of the representation theory of the

general linear group, which is strictly related to that of Sn.
Let U = spanF{x1, . . . , xm} and F〈x1, . . . , xm〉 the free associative algebra in m

variables. The group GL(U ) ∼= GLm acts naturally on the left on U , and we extend
this action diagonally to an action on F〈x1, . . . , xm〉.
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The space F〈x1, . . . , xm〉 ∩ Id(A) is invariant under this action, hence

Fm(A) =
F〈x1, . . . , xm〉

F〈x1, . . . , xm〉 ∩ Id(A)

inherits a structure of left GLm-module. If Fn
m denotes the subspace of F〈x1, . . . , xm〉

of homogeneous polynomials of degree n, then

Fn
m(A) =

Fn
m

Fn
m ∩ Id(A)

is a GLm-submodule of Fm(A) whose character is denoted by ψn(A). Write

ψn(A) =
∑
λ`n

mλψλ,

where ψλ is the irreducible GLm-character associated with the partition λ and mλ is
the corresponding multiplicity.

The Sn-module structure of Pn/(Pn ∩ Id(A)) and the GLm-module structure of
Fn

m(A) are related by the following: if χn(A) =
∑

λ`n mλχλ is the decomposition of
the n-th cocharacter of A, then mλ = mλ, for all λ ` n whose corresponding diagram
has height at most m (see for instance [6]).

It is also well known that any irreducible submodule of Fn
m(A) corresponding to λ

is generated by a non-zero polynomial fλ, called highest weight vector (hwv), of the
form

fλ =
λ1∏

i=1
Sthi (λ)(x1, . . . , xhi (λ))

∑
σ∈Sn

ασσ,

where ασ ∈ F, the right action of Sn on Fn
m(A), is defined by place permutation, hi(λ)

is the height of the i-th column of the diagram of λ, and

Str(x1, . . . , xr) =
∑
τ∈Sr

(sgn τ )xτ (1) · · · xτ (r)

is the standard polynomial of degree r. We have the following remark.

Remark If
ψn(A) =

∑
λ`n

mλψλ

is the GLm-character of Fn
m(A), then mλ is equal to the maximal number of linearly

independent highest weight vectors fλ in Fn
m(A).

3 Characterizing Minimal Varieties

Recall that if V is a variety of algebras, then cn(V) = cn(A), where V = var(A)
and the growth of V is the growth of the codimensions of A. Also recall that two
functions f (x) and g(x) are asymptotically equal, and we write f (x) ≈ g(x), if
limx→∞

f (x)
g(x) = 1.

We start with the following definition.
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Definition 3.1 A variety V is minimal of polynomial growth nk if cn(V) ≈ qnk for
some k ≥ 1, q > 0, and for any proper subvariety U $ V we have that cn(U) ≈ q ′nt

with t < k, for some q ′.

In the language of algebras, we have the following. Let A be an algebra of polyno-
mial codimension growth with cn(A) ≈ qnk, k ≥ 1, q > 0. Then A generates a min-
imal variety if for any algebra B such that Id(A) $ Id(B), we have that cn(B) ≈ q ′nt ,
for some q ′, where t < k.

Remark Let V be a variety of polynomial growth nk. Then cp
k (V) 6= 0 and cp

i (V) =
0, for all i ≥ k + 1.

This says that in the k-th proper cocharacter of A

χ
p
k (A) =

∑
λ`k

mλχλ,

there exists µ ` k such that mµ 6= 0 and mλ = 0, for all λ ` k + i, i ≥ 1. In other
words, Γk+i ⊆ Id(V), for all i ≥ 1, and there exists a hwv fµ corresponding to µ such
that fµ 6∈ Id(V).

We shall also use the following terminology.

Definition 3.2 A polynomial g is a consequence of a polynomial f , if g lies in 〈 f 〉T ,
the T-ideal generated by f . In this case we write f  g. Accordingly if Q is a T-ideal
and f , g 6∈ Q, we say that g is a consequence of f (mod Q), and we write f  g
(mod Q) if g ∈ 〈Q, f 〉T .

We can now prove the following theorem.

Theorem 3.3 Let V be a variety of algebras of polynomial growth nk and let χp
n(V) =∑

λ`n mλχλ be its proper cocharacter. Then V is minimal if and only if the following
hold.

(i) There exists λ ` k such that mλ = 1 and mµ = 0 for all µ ` k, µ 6= λ.
(ii) Let fλ 6∈ Id(V), λ ` k, be a hwv. Then for every h < k and for every µ ` h, if fµ

is a hwv such that fµ 6∈ Id(V), we must have fµ  fλ (mod Id(V)).

Proof We start by assuming that V is a minimal variety of polynomial growth nk. By
the above remark, Γk+i ⊆ Id(V) and there exists λ ` k such that mλ 6= 0.

If mλ > 1 there exist two hwv’s, f ′λ and f ′ ′λ , that are linearly independent
mod Id(V). Since f ′λ 6∈ Id(V), the T-ideal Q = 〈 f ′λ , Id(V)〉T properly contains Id(V).
Moreover the fact that f ′λ , and f ′ ′λ are linearly independent mod Id(V) implies that
f ′ ′λ 6∈ Q. This says that the variety corresponding to Q is a proper subvariety of V
and has polynomial growth nk, a contradiction.

It is also clear that if for some µ ` k with µ 6= λ we have that mµ 6= 0, then
there exists a hwv fµ 6∈ Id(V) and 〈 fµ, Id(V)〉T corresponds to a proper subvariety of
polynomial growth nk. Thus mλ = 1 and mµ = 0, for all µ ` k, µ 6= λ, proving (i).

Now let h < k and µ ` h with fµ hwv such that fµ 6∈ Id(V), i.e., mµ 6= 0. Suppose
that fµ 6 fλ (mod Id(V)). This says that fλ 6∈ Q = 〈Id(V), fµ〉T . But then the
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variety corresponding to Q is a proper subvariety of V and has polynomial growth
nk. This contradicts the minimality of V.

Conversely, let V be a variety of algebras satisfying (i) and (ii) and let W be a
proper subvariety of V. For simplicity we denote by mν(W) and mν(V) the multi-
plicities of χν , ν ` n, in χp

n(W) and χp
n(V), respectively.

Since W is a proper subvariety of V, χp
n(W) < χ

p
n(V), i.e., there exists µ ` h ≤ k

such that mµ(W) < mµ(V). Now let λ ` k be such that mλ(V) = 1. If mλ(W) = 0,
then W would have polynomial growth nt , with t < k. Hence we may assume that
mλ(W) = 1.

It follows that if µ ` h is such that mµ(W) < mµ(V), then h < k. This says
that there exists a hwv fµ such that fµ 6∈ Id(V) but fµ ∈ Id(W). By hypothesis
fµ  fλ (mod Id(V)), and so fλ ∈ 〈 fµ, Id(V)〉T ⊆ 〈 fµ, Id(W)〉T = Id(W). This
contradiction completes the proof.

We remind the reader that by a result of Kemer ([18]) any variety of polynomial
growth can be generated by a finite dimensional algebra.

Before starting our classification of varieties of polynomial growth, we record two
results that were proved in [9, 19].

Let U Tk be the algebra of k × k upper triangular matrices over F and let E1 =∑k−1
i=1 ei,i+1 ∈ U Tk denote the diagonal just above the main diagonal of U Tk, where

the ei j ’s are the usual matrix units.
Let Nk be the subalgebra of U Tk defined in [9] as follows

Nk = span{E, E1, E
2
1, . . . , E

k−2
1 ; e12, e13, . . . , e1k},

where E denotes the identity k× k matrix. Notice that if k = 2, then Id(Nk) = Id(F).
We next state the following result characterizing the polynomial identities and the

cocharacter of Nk.

Theorem 3.4 For any k ≥ 3, Nk generates a minimal variety of polynomial growth
nk−1. Moreover,

(i) Id(Nk) = 〈[x1, . . . , xk], [x1, x2][x3, x4]〉T ;
(ii) χ

p
k−1(Nk) = χ(k−2,1);

(iii) cn(Nk) = 1 +
∑k−1

j=2 ( j − 1)
(n

j

)
≈ k−2

(k−1)! nk−1, n→∞.

Proof The minimality of var(Nk) and (ii) were proved in [20, Theorem 11]; (i) and
(iii) were proved in [9, Theorem 3.4].

For t ≥ 1, let Gt denote the Grassmann algebra with 1 on a t-dimensional vector
space over F, i.e.,

Gt = 〈1, e1, . . . , et | eie j = −e jei〉.

The following result characterizes the polynomial identities and the codimensions
of Gt .

Theorem 3.5 For any k ≥ 1, G2k generates a minimal variety of polynomial growth
n2k. Moreover,
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(i) Id(G2k) = 〈[x1, x2, x3], [x1, x2] · · · [x2k+1, x2k+2]〉T ;
(ii) χ2k(G2k) = χ(12k);

(iii) cn(G2k) =
∑k

j=0

( n
2 j

)
≈ 1

(2k)! n2k, n→∞.

Proof The minimality of var(G2k) was proved in [20, Theorem 12], and (i) and
(iii) were proved in [9, Theorem 3.5]. Since var(G2k) is minimal, by Theorem 3.3
χ

p
2k(G2k) = χλ, for some λ ` 2k. Since f(12k) = St2k 6∈ Id(G2k), we get that
χ2k(G2k) = χ(12k).

4 Minimal Varieties of Polynomial Growth ≤ n4

In this section we shall classify, up to PI-equivalence, the algebras with 1 generating
minimal varieties of polynomial growth≤ n4. In the sequel we shall use the following
notation.

Definition 4.1 Two algebras A and B are PI-equivalent, and we write A ∼PI B if
Id(A) = Id(B).

We start by classifying the minimal varieties of polynomial growth nk, k ≤ 3.

Theorem 4.2 Let A be an algebra with 1 such that cn(A) ≤ qn3. Then A generates a
minimal variety if and only if either A ∼PI N3 or A ∼PI N4.

Proof Since A is an algebra with 1, by (2.1),

cn(A) =

3∑
i=0

(
n

i

)
cp

i (A).

Hence [x1, x2][x3, x4] ≡ 0 is an identity of A and A ∈ var(U T2). The result now
follows from [19, Corollary 5.4].

From the above theorem it follows that there are no minimal varieties of linear
growth generated by an algebra with 1. But actually a stronger result holds, since it
can be proved that there are no algebras with 1 of linear codimension growth (see
[8, 9]).

Next we are going to determine all minimal varieties V of polynomial growth n4.
In all cases but one, we shall also determine a finite dimensional generating algebra.

We recall that χ(Γ3) = χ(2,1) and that f(2,1) = [x2, x1, x1] is a corresponding hwv.
Also,

χ(Γ4) = χ(3,1) + χ(22) + χ(2,12) + χ(14),

and it can be easily checked that

f(3,1) = [x2, x1, x1, x1], f(22) = [x1, x2]2,

f(2,12) =
[

x1, x3, [x1, x2]
]
, f(14) = St4(x1, x2, x3, x4)

are hwv’s.
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In the following theorem we give the decomposition of the proper cocharacter of
the varieties whose T-ideal is generated by a hwv of degree 4. For λ = (3, 1), (22),
and (2, 12) the result is due to Drensky [2, 4]. When λ = (14), the corresponding
result is due to Kemer [17].

Theorem 4.3 Let Id(V) = 〈 fλ〉T , where λ ` 4. If

(i) λ = (3, 1), then χp
n(V) =


χ(2,13), n = 5,

χ(12k), n = 2k > 5,

0, n = 2k + 1 > 5;

(ii) λ = (22), then χp
n(V) =


χ(4,1) + χ(2,13), n = 5,

χ(2k−1,1) + χ(12k), n = 2k > 5,

χ(2k,1), n = 2k + 1 > 5;

(iii) λ = (2, 12), then χp
n(V) =

{
χ(2k−1,1) + χ(12k), n = 2k > 5,

χ(2k,1), n = 2k + 1 ≥ 5;

(iv) λ = (14), then χp
n(V) = χ

p
n(M2(F)) +


χ(3,2), n = 5,

χ(32), n = 6,

0, n > 6.

Let V be a minimal variety of polynomial growth n4, and notice that if [x1, x2] ∈
Id(V), i.e., Γ2 ⊆ Id(V), then cn(V) = 1. Hence we must have that [x1, x2] 6∈ Id(V).

By Theorem 3.3, since V is minimal of growth n4, we have χp
4 (V) = χλ, where

λ = (3, 1) or (22) or (2, 12) or (14), and we examine the four cases separately.
Suppose first that χp

4 (V) = χ(22). Then f(22) = [x1, x2]2 6∈ Id(V), and since
[x1, x2, x3]  f(22), we get that 4 is the least degree of a polynomial identity of V.
Hence, since by Theorem 4.3, Γ5 and [x1, x2][x3, x4][x5, x6] belong to the T-ideal
generated by f(3,1), f(2,12), and f(14), we get

Id(V) =
〈

[x2, x1, x1, x1],
[

x1, x3, [x1, x2]
]
, St4(x1, x2, x3, x4)

〉
T
.

Notice that cn(V) =
∑4

i=0

(n
i

)
cp

i (A) = 1 +
(n

2

)
+ 2
(n

3

)
+ 2
(n

4

)
.

A finite dimensional algebra generating V is exhibited in the following theorem.

Theorem 4.4 Let

M =




a b d e f
0 a c g h
0 0 a c i
0 0 0 a b
0 0 0 0 a


∣∣∣∣∣ a, b, c, d, e, f , g, h, i ∈ F

 .

Then M generates a minimal variety of growth n4 and χp
4 (V) = χ(22).
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Proof It is easily checked that [x2, x1, x1, x1], St4, [x1, x3, [x1, x2]] are identities of
M, and so, by Theorem 4.3, Γ5 and [x1, x2][x3, x4][x5, x6] also belong to Id(M).
Moreover, since f(22) = [x1, x2][x1, x2] 6∈ Id(M), we get that χp

4 (M) = χ(22) and
cn(M) ≈ qn4.Hence, Id(M) ⊇ Id(V), and so, by minimality of V,M generates V.

Now suppose that χp
4 (V) = χ(2,12). Then, f(2,12) = [x1, x3, [x1, x2]] 6∈ V, and since

[x1, x2, x3] [x1, x3, [x1, x2]], then also [x1, x2, x3] 6∈ V. Hence,

Id(V) =
〈

[x2, x1, x1, x1], [x1, x2]2, St4

〉
T
.

Notice that in this case, cn(V) =
∑4

i=0

(n
i

)
cp

i (A) = 1 +
(n

2

)
+ 2
(n

3

)
+ 3
(n

4

)
.

Now let χp
4 (V) = χ(3,1). Then f(3,1) = [x1, x2, x1, x1] 6∈ V and from Theorems 3.3

and 3.4 we deduce that V = var(N5). Hence

Id(V) = Id(N5) =
〈

[x1, x2][x3, x4], [x1, x2, x3, x4, x5]
〉

T
,

cn(A) =

4∑
i=0

(
n

i

)
cp

i (A) = 1 +

(
n

2

)
+ 2

(
n

3

)
+ 3

(
n

4

)
.

Finally, in case χp
4 (V) = χ(14), St4 6∈ V and from Theorems 3.3 and 3.5 we deduce

that V = var(G4). Hence,

Id(V) = Id(G4) =
〈

[x1, x2, x3], [x1, x2][x3, x4][x5, x6]
〉

T
.

We summarize the results obtained in the following theorem.

Theorem 4.5 Let A be a unitary algebra such that cn(A) ≈ qn4, for some q > 0. Then
A generates a minimal variety if and only if Id(A) coincides with one of the following
T-ideals:

(i) 〈[x1, x2][x3, x4], [x1, x2, x3, x4, x5]〉T ,
(ii) 〈[x1, x2, x3], [x1, x2][x3, x4][x5, x6]〉T ,
(iii) 〈[x2, x1, x1, x1], [x1, x3, [x1, x2]], St4〉T ,
(iv) 〈[x2, x1, x1, x1], [x1, x2]2, St4〉T .
In the first three cases we have that A ∼PI N5 or A ∼PI G4, or A ∼PI M, respectively.

5 Minimal Varieties of Polynomial Growth n5

In this section we shall classify the minimal varieties of polynomial growth n5. We
start by recalling the decomposition of the S5-character of Γ5:

χ(Γ5) = χ(4,1) + 2χ(3,2) + 2χ(3,12) + 2χ(22,1) + 2χ(2,13).
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It can be easily checked that

f(4,1) = [x2, x1, x1, x1, x1],

f ′(3,12) = [x, z, x][x, y]− [x, y, x][x, z],(5.1)

f ′ ′(3,12) = [x, y][x, z, x]− [x, z][x, y, x],

f ′(3,2) = [x, y, x][x, y], f ′ ′(3,2) = [x, y][x, y, x],(5.2)

f ′(22,1) = [x, y, z][x, y] + [y, x, y][x, z] + [x, y, x][y, z],(5.3)

f ′ ′(22,1) = [x, y][x, y, z] + [x, z][y, x, y] + [y, z][x, y, x],(5.4)

f ′(2,13) = [x, y, x][z, t]− [x, z, x][y, t] + [y, z, x][x, t] + [x, t, x][y, z](5.5)

− [y, t, x][x, z] + [z, t, x][x, y],

f ′ ′(2,13) = [z, t][x, y, x]− [y, t][x, z, x] + [x, t][y, z, x] + [y, z][x, t, x](5.6)

− [x, z][y, t, x] + [x, y][z, t, x]

are linearly independent hwv’s.
Given a minimal variety V of polynomial growth n5, we shall study five distinct

cases according as χp
5 (V) = χλ, where λ is one of the five partitions appearing in the

decomposition of χ(Γ5). We shall classify the corresponding varieties and we shall
see that in four out of five cases there are infinitely many distinct varieties.

Let V be a minimal variety and assume that χp
5 (V) = χλ, where χλ is one of the

four characters appearing with multiplicity 2 in the decomposition of Γ5. If f ′λ and
f ′ ′λ are linearly independent, since V is minimal, one of f ′λ and f ′ ′λ , say f ′ ′λ , is not an
identity of V. Hence there exist α, β ∈ F, not both zero and unique up to a scalar
such that α f ′λ + β f ′ ′λ ≡ 0 is an identity of V.

Then define the following T-ideals:

Q5 = 〈Γ6, f ′µ , f ′ ′µ , α f ′λ + β f ′ ′λ | µ ` 5, µ 6= λ〉T ,

Q4 =
〈

Q5, fν | fν , ν ` 4, hwv such that fν 6 f ′ ′λ (mod Q5)
〉

T
.

Also, set Q3 = 〈Q4, f(2,1)〉T if f(2,1) 6 f ′ ′λ (mod Q4), and Q3 = Q4 otherwise. Fi-
nally, set Q2 = 〈Q3, f(12)〉T if f(12) 6 f ′ ′λ (mod Q3), and Q2 = Q3 otherwise. Notice
that Q2 = Q3, since all proper polynomials of positive degree follow from f(12).

We claim that Id(V) = Q2.
In fact we shall prove that the variety Q determined by Q2 is minimal of growth n5.
First, Q5 ⊆ Q2 and f ′ ′λ 6∈ Q2 says that χp

6 (Q) = 0 and χp
5 (Q) = χλ. Moreover, if

fµ, µ ` h ≤ 4 is a hwv such that fµ 6∈ Q2, then since Qh ⊆ Q2, fµ 6∈ Qh. Hence by
the definition of Qh, fµ  f ′ ′λ (mod Qh+1). This means that f ′ ′λ ∈ 〈 fµ,Qh+1〉T ⊆
〈 fµ,Q2〉T , i.e., fµ  f ′ ′λ (mod Q2). We have shown that the requirements of Theo-
rem 3.3 are fulfilled, and the claim is proved.

In light of the above, if V is a minimal variety of growth n5 such that χp
5 (V) = χλ,

with λ ∈ {(3, 2), (3, 12), (22, 1), (2, 13)}, then V is uniquely determined, up to a
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scalar, by a linear combination α f ′λ + β f ′ ′λ ≡ 0 of two linearly independent hwv’s
that is an identity of V.

Then it is worth introducing the notation Id(V) = Qα f ′λ +β f ′ ′λ
.

Throughout, we let V be a minimal variety of polynomial growth n5, and we ex-
amine the following five distinct cases.

Case 1. χp
5 (V) = χ(4,1).

Then f(4,1) = [x2, x1, x1, x1, x1] 6∈ V and by Theorems 3.3 and 3.4 we deduce that
V = var(N6). Hence,

Id(V) = Id(N6) =
〈

[x1, x2][x3, x4], [x1, x2, x3, x4, x5, x6]
〉

T
.

Case 2. χp
5 (V) = χ(3,12).

We consider the two linearly independent hwv’s corresponding to the partition
(3, 12) given in (5.1):

f ′(3,12) = [x, z, x][x, y]− [x, y, x][x, z], f ′ ′(3,12) = [x, y][x, z, x]− [x, z][x, y, x].

Since χp
5 (V) = χ(3,12), we deduce that one of them is not an identity of V.

Clearly

(5.7) f(12), f(2,1)  f ′(3,12), f ′ ′(3,12),

(here we mean that each polynomial on the left-hand side implies each polynomial
on the right-hand side).

Also, by Theorem 4.3,

(5.8) f(22), f(3,1), f(2,12)  f ′(3,12), f ′ ′(3,12).

Finally, we consider f(14) = St4. By [17] we deduce that

(5.9) f(14)  f ′(3,12) − f ′ ′(3,12) and f(14) 6 f ′ ′(3,12), f ′(3,12) + α f ′ ′(3,12) for any α 6= −1.

If we now collect the results obtained in (5.7)–(5.9) and combine them with The-
orem 3.3 and the above remark, we get the following.

Theorem 5.1 Suppose that either χp
5 (V) = χ(4,1) or χp

5 (V) = χ(3,12). Then V is a
minimal variety of growth n5 if and only if Id(V) coincides with one of the following
T-ideals:

(i) Id(N6) = 〈[x1, x2][x3, x4], [x1, x2, x3, x4, x5, x6]〉T ,
(ii) Q f ′

(3,12)
+ f ′ ′

(3,12)
= 〈Γ6, f(4,1), f ′µ , f ′ ′µ , f ′(3,12) + f ′ ′(3,12) | µ ` 5, µ 6= (3, 12), (4, 1)〉T ,

(iii) Q f ′
(3,12)
− f ′ ′

(3,12)
=

〈 f(14),Γ6, f(4,1), f ′µ , f ′ ′µ , f ′(3,12) − f ′ ′(3,12) | µ ` 5, µ 6= (3, 12), (4, 1)〉T ,
(iv) Q f ′ ′

(3,12)
= 〈Γ6, f(4,1), f ′µ , f ′ ′µ , f ′ ′(3,12) | µ ` 5, µ 6= (3, 12), (4, 1)〉T ,

(v) Q f ′
(3,12)

+α f ′ ′
(3,12)

= 〈Γ6, f(4,1), f ′µ , f ′ ′µ , f ′(3,12) + α f ′ ′(3,12) | µ ` 5, µ 6= (3, 12), (4, 1)〉T ,
where α ∈ F is any scalar such that α 6= ±1.
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Case 3. χp
5 (V) = χ(3,2).

Take the two linearly independent hwv’s corresponding to the partition (3, 2)
given in (5.2):

f ′(3,2) = [x, y, x][x, y], f ′ ′(3,2) = [x, y][x, y, x].

Since χp
5 (V) = χ(3,2), one of them is not an identity.

Clearly f(12), f(2,1)  f ′(3,2), f ′ ′(3,2).
Also, by Theorem 4.3 and [17] we deduce that

f(22), f(3,1), f(2,12)  f ′(3,2), f ′ ′(3,2)

and
f(14) 6 f ′ ′(3,2), f ′(3,2) + α f ′ ′(3,2) for any α ∈ F.

By collecting the results obtained so far and combining them with Theorem 3.3 as
in the previous case, we get the following theorem.

Theorem 5.2 Let χp
5 (V) = χ(3,2). Then V is a minimal variety of growth n5 if and

only if Id(V) coincides with one of the following T-ideals:

(i) Q f ′(3,2)+ f ′ ′(3,2)
= 〈 f(14),Γ6, f(4,1), f ′µ , f ′ ′µ , f ′(3,2) + f ′ ′(3,2) | µ ` 5, µ 6= (3, 2), (4, 1)〉T ,

(ii) Q f ′(3,2)− f ′ ′(3,2)
= 〈 f(14),Γ6, f(4,1), f ′µ , f ′ ′µ , f ′(3,2) − f ′ ′(3,2) | µ ` 5, µ 6= (3, 2), (4, 1)〉T ,

(iii) Q f ′ ′(3,2)
= 〈 f(14),Γ6, f(4,1), f ′µ , f ′ ′µ , f ′ ′(3,2) | µ ` 5, µ 6= (3, 2), (4, 1)〉T ,

(iv) Q f ′(3,2)+α f ′ ′(3,2)
= 〈 f(14),Γ6, f(4,1), f ′µ , f ′ ′µ , f ′(3,2) +α f ′ ′(3,2) | µ ` 5, µ 6= (3, 2), (4, 1)〉T ,

where α ∈ F is any scalar such that α 6= ±1.

Case 4. χp
5 (V) = χ(22,1).

We consider the two linearly independent hwv’s corresponding to the partition
(22, 1) given in (5.3) and (5.4):

f ′(22,1) = [x, y, z][x, y] + [y, x, y][x, z] + [x, y, x][y, z],

f ′ ′(22,1) = [x, y][x, y, z] + [x, z][y, x, y] + [y, z][x, y, x].

Since χp
5 (V) = χ(22,1), one of them is not an identity of V.

Clearly f(12)  f ′(22,1), f ′ ′(22,1).
Also, by Theorem 4.3,

f(2,1), f(22), f(3,1), f(2,12)  f ′(22,1), f ′ ′(22,1)

and, by [17]

f(14)  f ′(22,1) + f ′ ′(22,1)

f(14) 6 f ′ ′(22,1), f ′(22,1) + α f ′ ′(2,2,1), for any α 6= 1.

By collecting the results obtained so far and combining them with Theorem 3.3,
we get the following theorem.
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Theorem 5.3 Let χp
5 (V) = χ(22,1). Then V is a minimal variety of growth n5 if and

only if Id(V) coincides with one of the following T-ideals

(i) Q f ′
(22 ,1)

+ f ′ ′
(22 ,1)

=

〈 f(14),Γ6, f(4,1), f ′µ , f ′ ′µ , f ′(22,1) + f ′ ′(22,1) | µ ` 5, µ 6= (22, 1), (4, 1)〉T ,

(ii) Q f ′
(22 ,1)
− f ′ ′

(22 ,1)
= 〈Γ6, f(4,1), f ′µ , f ′ ′µ , f ′(22,1) − f ′ ′(22,1) | µ ` 5, µ 6= (22, 1), (4, 1)〉T ,

(iii) Q f ′ ′
(22 ,1)

= 〈Γ6, f(4,1), f ′µ , f ′ ′µ , f ′ ′(22,1) | µ ` 5, µ 6= (22, 1), (4, 1)〉T ,
(iv) Q f ′

(22 ,1)
+α f ′ ′

(22 ,1)
= 〈Γ6, f(4,1), f ′µ , f ′ ′µ , f ′(22,1) + α f ′ ′(22,1) | µ ` 5, µ 6= (22, 1), (4, 1)〉T ,

where α ∈ F is any such that α 6= ±1.

Case 5. χp
5 (V) = χ(2,13).

We take now the two linearly independent hwv’s corresponding to the partition
(2, 13) given in (5.5) and (5.6):

f ′(2,13) = [x, y, x][z, t]− [x, z, x][y, t] + [y, z, x][x, t] + [x, t, x][y, z]

− [y, t, x][x, z] + [z, t, x][x, y],

f ′ ′(2,13) = [z, t][x, y, x]− [y, t][x, z, x] + [x, t][y, z, x] + [y, z][x, t, x]

− [x, z][y, t, x] + [x, y][z, t, x].

Clearly f(12)  f ′(2,13), f ′ ′(2,13).
By [2] we deduce that

f(22)  f ′(2,13) + f ′ ′(2,13) and f(22) 6 f ′ ′(2,13), f ′(2,13) + α f ′ ′(2,13), for any α 6= 1;

f(3,1)  f ′(2,13) − f ′ ′(2,13) and f(3,1) 6 f ′ ′(2,13), f ′(2,13) + α f ′ ′(2,13), for any α 6= −1;

f(2,12), f(14)  f ′(2,13), f ′ ′(2,13).

By collecting the results obtained so far and combining them with Theorem 3.3,
we get the following theorem.

Theorem 5.4 Let χp
5 (V) = χ(2,13). Then V is a minimal variety of growth n5 if and

only if Id(V) coincides with one of the following T-ideals

(i) Q f ′
(2,13)

+ f ′ ′
(2,13)

=

〈 f(22),Γ6, f(4,1), f ′µ , f ′ ′µ , f ′(2,13) + f ′ ′(2,13) | µ ` 5, µ 6= (2, 13), (4, 1)〉T ,
(ii) Q f ′

(2,13)
− f ′ ′

(2,13)
=

〈g, f(3,1),Γ6, f(4,1), f ′µ , f ′ ′µ , f ′(2,13)− f ′ ′(2,13) | µ ` 5, µ 6= (2, 13), (4, 1)〉T ,

(iii) Q f ′ ′
(2,13)

= 〈Γ6, f(4,1), f ′µ , f ′ ′µ , f ′ ′(2,13) | µ ` 5, µ 6= (2, 13), (4, 1)〉T ,

(iv) Q f ′
(2,13)

+α f ′ ′
(2,13)

= 〈Γ6, f(4,1) f ′µ , f ′ ′µ , f ′(2,13) + α f ′ ′(2,13) | µ ` 5, µ 6= (2, 13), (4, 1)〉T ,

where α ∈ F is any such that α 6= ±1, where

g = f(2,1) ∈ Q f ′
(2,13)
− f ′ ′

(2,13)
if f(2,1) 6 f ′(2,13), f ′ ′(2,13) (mod Q̃ f ′

(2,13)
− f ′ ′

(2,13)
)
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and g = 0 otherwise.
Here Q̃ f ′

(2,13)
− f ′ ′

(2,13)
is the T-ideal generated by the generators of Q f ′

(2,13)
− f ′ ′

(2,13)
except g.

As the referee has pointed out, the list of generators of the T-ideals Qα f ′λ +β f ′ ′λ
, can

be shortened by applying the results of Popov given in [21].

6 Minimal Varieties of Higher Growth

The procedure of the previous section can be generalized to higher growth.
Let V be a minimal variety of polynomial growth nk, k ≥ 2. Let Bk be the space of

homogeneous proper polynomials of degree k. Decompose Bk = ⊕µ`kBµ, where Bµ

is the sum of the irreducible submodules of Bk with character χµ and µ runs over all
partitions of k corresponding to proper polynomials.

According to Theorem 3.3, χp
k (V) = χλ, for some character χλ and let χ(Γk) =

· · · + mλχλ + · · · , i.e., mλ is the multiplicity of χλ in χ(Γk); in other words, Bλ is the
direct sum of mλ irreducible submodules, each generated by a hwv that is a proper
polynomial. Fix these mλ linearly independent h.v.w.’s say, f1, . . . , fmλ

, and let Hλ

denote the vector space generated by them.
Since dim Hλ ∩ Id(V) = mλ − 1, there is an mλ × (mλ − 1) matrix (αi j), with

entries in F of rank mλ − 1 such that the polynomials

f ′1 =

mλ∑
i=1

αi1 fi , . . . , f ′mλ−1 =

mλ∑
i=1

αi,mλ−1 fi

span Hλ ∩ Id(V).
Let f ′ ′ 6∈ span{ f ′1 , . . . , f ′mλ−1} be another proper polynomial that is a h.v.w. cor-

responding to λ. Clearly f ′ ′ 6∈ Id(V) as dim Hλ ∩ Id(V) = mλ − 1.
Define the following sequence of T-ideals

Qk = 〈Γk+1,H
µ, f ′1 , . . . , f ′mλ−1 | µ ` k, µ 6= λ〉T

and for 1 ≤ i ≤ k− 2,

Qk−i =
〈

Qk−i+1, fν | ν ` k− i, and fν hwv with fν 6 f ′ ′ (mod Qk−i+1)
〉

T
.

Hence
Qk ⊆ Qk−1 ⊆ · · · ⊆ Q2,

and we claim that Id(V) = Q2.
Let Q be the variety determined by Q2. Now, Γk+1 ⊆ Qk ⊆ Q2 says that χp

k+1(Q) =
0. Also, by the construction of the T-ideals Qk−i , f ′ ′ 6∈ Qk implies that f ′ ′ 6∈ Qk−1

and by induction f ′ ′ 6∈ Q2. Thus, since f ′1 , . . . , f ′m−1 ∈ Q2, we get that χp
k (Q) = χλ.

Next we check that the second condition of Theorem 3.3 is satisfied.
Let fµ, µ ` h ≤ k − 1 be a hwv such that fµ 6∈ Q2. Then since Qh ⊆ Q2,

fµ 6∈ Qh. Hence by the definition of Qh, fµ  f ′ ′ (mod Qh+1). This means that
f ′ ′ ∈ 〈 fµ,Qh+1〉T ⊆ 〈 fµ,Q2〉T , i.e., fµ  f ′ ′ (mod Q2). We have proved that the
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requirements of Theorem 3.3 are fulfilled and that Q is a minimal variety coinciding
with V.

Write
χ(Γk) =

∑
λ`k

mλχλ.

The above construction point out that a minimal variety V of polynomial growth nk

is determined by

(a) a partition λ ` k,
(b) a subspace span{ f1, . . . , fmλ−1} ⊆ Bλ, where f1, . . . , fmλ−1 ∈ Bλ ∩ Id(V) are

linearly independent h.w.v’s.

Hence we introduce the notation Id(V) = Q f1,..., fmλ−1 .
We have proved the following theorem.

Theorem 6.1 Let V be a minimal variety of polynomial growth nk, k ≥ 5. If χ(Γk) =∑
µ`k mµχµ is the decomposition of the Sk-character of Γk into irreducibles, then there

exist a partition λ ` n and mλ − 1 linearly independent h.w.v’s f1, . . . , fmλ−1 ∈ Bλ ∩
Id(V) such that Id(V) = Q f1,..., fmλ−1 .

Acknowledgment We are deeply grateful to the referee for his very valuable com-
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