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NONOCCURENCE OF STABILITY SWITCHING IN SYSTEMS 
WITH DISCRETE DELAYS 

BY 

H. I. FREEDMAN* AND K. GOPALSAMYf 

ABSTRACT. A two dimensional system of differential equations 
with a finite number of discrete delays is considered. Conditions are 
derived for there to be no stability switching for arbitrary such 
delays. 

1. Introduction. Many mathematical models of ecological systems involve 
differential equations with time delays. In a number of models, time delays are 
considered as parameters and questions of stability of equilibria and periodicity 
are often discussed. 

The question of stability switching is discussed in [1], [2], [3], [6], [8], [10]. In 
some papers ([4], [7], [8], [9], [11], [14]) criteria are established which when 
satisfied will imply that a system which is stable in the absence of delays will be 
stable for all delays. In other works ([10], [15]) it is shown that for certain 
values of the delay, there occur unstable equilibria with periodic oscillations. 
For general discussions of stability and instability of such systems we refer to 
[5], [12], [13], [15]. 

In the present paper we consider a two dimensional system with a finite 
number of discrete delays (such systems with two delays are discussed in [8], 
[15]). We are interested in deriving sufficient conditions for there to be no 
stability switching of positive equilibrium for arbitrary delays. This question 
has been considered in the case of a single delay in [7], [14] and for two delays 
in [8]. 

In the next section we carry out the analysis and in section 3 we will apply our 
analysis to two models of ecological systems namely a prey-predator model and 
a mutualist system. In the final section we give a brief discussion of our 
results. 
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2. Analysis of a linear system. In this section we derive criteria for there to be 
no stability switchings. Our technique will be to obtain conditions for the real 
parts of the eigenvalues of the characteristic equation of the linear variational 
system about an equilibrium to have the same sign for arbitrary nonnega-
tive values of all the delays. Hence we consider as a variational system the 
following: 

du(t) 
= auu\i) 1- aX2v\j) -r 

7 = 1 '" ~J 7 = 1 

MO 
= a2\U[j) -t- a22v{t) -t-

7 = 1 ~J ~" 7 = 1 

(2.1) ~ = auu(t) + aX2v(t) + 2 bXju(t - rXJ) + 2 byv(t - r2j) 

= a2Xu(t) + a22v(t) + 2 cly.i/(/ - iXj) + 2 c^.v(/ - £2y) 

in which T^, ^ (/ = 1, 2, y = 1, 2, . . . , /w) are nonnegative constants. The 
characteristic equation associated with (2.1) is 

(2.2) p(X) = A2 - X(an + «22) + 0*11*22 ~ #12*21) 

mm m 

+ 2 2 v2/_A(T"+^ + «1, 2 V"**" 

w w m 

+ *„ 2 A ^ - H - 02, 2 V ' A T 2 y " «12 ^ C , / " ^ ' 
7 = 1 7 = 1 7 = 1 

m m 

- 2 2 cuV""**'-̂  = 0. 

We let À = iœ (o) being a real number) in (2.2), separate the real and imaginary 
parts of (2.2) leading to the two equations in the real unknown parameter co. 

(2.3) <o2 - (axxa22 - aX2a2X) 

{ m m \ 

2 by COS(COTXJ -f IT/2) + 2 c2j cos(<o£2y + ir/2) J 
m m 

+ ÛJJ 2 C2j COS <o£2- + #22 2 by COS COTj • 
7=1 7=1 

mm m 

+ 2 2 bXic2j cos{co(Th- + T2j) } - a2X 2 b2j cos WT2J 
/ = l y = l y = l 

m m 

*12 2 Cly COS <o£ly- - 2 2 C,,.* .̂ COS{<o(£h- + fey) } 
7 = 1 ^ = l 7 = l 
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(2.4) u(au 4 a22) 11 ^ " 2 2 

m r / m m \ 

= ~U>! 2 6w sin(coTy 4 IT/2) 4 2 ^ sin(<o£2y + 7T/2)\ 

+ flu 2 ^2/ s m w ^2/ + a22 2 by sin coTy 

mm m 
4 2 2 buc2j sin{co(Tll- 4 £2y.) } - a21 2 b2j sin COT̂ -

- a12 2 c v sin <o£y - 2 2 q ^ sin{(o(£w 4 T^) } 
7 = 1 i = l 7 = 1 

If we denote by /(to) the sum of the squares of the right sides of (2.3) and (2.4) 
then we have after some algebraic manipulations and simplifications, 

/(<o) ^ j32co2 4 2j8y<o 4 (y 4 ô)2 (2.5) 

where 

jS = 2 ( |6„-l + |c2,-| ) 
i 

Y = 2 (Iaiic2,l + |a22
6i/l + Iai2ci«l + \a2\hi\) 

7,/c 

Hence we get that 

(2.6) <o4 4 (a? - 2a2)co2 4 a | ^ j S V 4 2j8y<o 4- (y 4 8? 

where a{ = (an 4 a22) and a2 = aua22 — aX2a2X. A sufficient condition for 
there to be no stability switches is that inequality (2.6) not be satisfied for any 
real <o. This is equivalent to the condition that 

(2.7) g(u) = co4 4 (a2 - 2a2 - j82)<o2 - 2£y<o 4 a\ - (y 4 Ô)2 > 0 

for all real co. (2.7) can be written as 

(2.8) to4 + (a] - 2a2 - )32) 

+ a2 - (y + 8? 

fiy 
a] - 2a2 - p2\ 

>2.,2 fy 
a] - 2a2 - 01 > 0 

for all real to. From the above the following theorem is clear. 
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THEOREM. If 

(2.9) 

(2.10) 

(i) a\ - 2«2 - p2 > 0 

(ii) («i 2a9 /82)[«2
2 (y + S)2] > >S2S2 

then the trivial solution of the system (2.1) has the same stability for all nonnegative 
values of the delay parameters. 

3. Applications. 

EXAMPLE 1. Predator-Prey systems. 
We consider a predator-prey system modeled by 

(3.1) 
dxx(t) 

dt 

dx2(t) 

dt 

= Bx(xx(t - T „ ) ) - Dx(xx(t), x2(t - T 1 2 ) ) 

= B2(xx(t - r21), x2(t - r22) ) - D2(x2(t) ) 

where Tt{i9j = 1 , 2 ) are nonnegative constants and Bx, the prey birth function, 
Dx the prey death function (due to natural causes and prédation), B2 the 
predator birth function and D2 the predator death function (due to lack of its 
food, the prey) are nonnegative scalar valued continuous functions of their 
arguments having continuous partial derivatives. Let (xx, x2) denote a steady 
state of (3.1). A linear variational system corresponding to (3.1) about (xx, x2) is 
of the form (2.1), where m = 2 and where 

(3.2) 
3Z), 

dx. 
an = 0; bxx = — ; bX2 = - — - ; 

8JCI 8x9 

^21 0; b22 = 0; # 22 
az> 
9x? 

2 . 

0; cX2 = 0; c: 21 
dB 

dX] 

2. 
L22 dx2 

all partial derivatives in (3.2) being evaluated at (xl9 x2). 
A set of sufficient conditions for the nonoccurence of stability switching of 

the steady state (xl9 x2) is 

[\dxj \dxj \ 
(3.4) (ii) 

dxx 

dBx 

dx 

+ 

+ 

dB, 

dx2 

3B2 

W2 dBx 

dx2 dxx 
-h 

SDX 3B2 

dxx dx2 
+ 

dx2 

dBx dB2 

dxx dx2 

j at (xl9 x2). 

W-rf1)2 

1 JLlVdXj ax2/ 
dDx dB2\)

2] 
dx2 dxx 
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> 

X 

( — 
Vdx{ 

dB, 

( — vdxx 

dx2 

1 9 # 2 

dPx 

dxx 

dP2 

dx2 
4- (|Ml| + M ) 

\ i9xi I '9x9 '/ 

dx0 

4 
9/)! 9£2 

9x2 9.x; ! )f at (3cj, x2). 

EXAMPLE 2. A mutualist system. 

We consider a mutualist system modeled by 

(3.5) 
dxx(t) 

dt 
= Bx(xx(t - T U ) ) - ZM*i(0) 

+ ^ l ( * l C - Tll)> X2(t - T12)) 

dx2(t) 

dt 
= 52(X2(/ - T22) ) - Z>2(*2(/) ) 

4 Af^X^/ - T21), *2(* - T22) ) 

where Bx, B2 denote the birth rates, D1? D2 denote the death rates and Mx, M2 

denote effects of mutualism between the species. As before it is assumed that 
Bl9 B2, Dx, D2, Mx, M2 are nonnegative valued continuous functions of their 
respective arguments having continuous partial derivatives. Assuming the exis­
tence of a steady state for (3.5) and proceeding as before one can show that a set 
of sufficient conditions for the nonoccurence of stability switching in (3.5) is 

0.6, ( 1 )(î&F + (î&F>(a + ̂  + M» + 
\oxo' \dx2! \0Xy ox^ dx1 

(3.7, (,,)(fl dMx\
2(dB0 

9x, 

9M2^2 

dx0 

2 

dDx 

dxx 

9M2 

dx2 

dM 

9x9 

, dM2(dBx dMx dB2 9M2 

9xi \9x 9 x i dx^ 

< 

X 

4 

dBx 

9x mf + CM _ (: 
[\dxxl \9x 2 / I 

/ \àx2J \àx2 \oxx 

dx0 

dM 
4 

2 3*1 

12 

1 | 9^2 
dx*, 

dM?\
2] 

dx~> 

\idDx\
2(dDA2 

4 
dMx 

9xi 

dPx(dB2 3M2 dPx(dB2 

9xi \9x9 9x0 

iWx MX\(W2 9M2\9M1 9M 2 | 2 | 

\9xi 9xi /\9x-> dx? / dx? 9xi J J 

the partial derivatives being evaluated at the steady state. 
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4. Discussion. In this paper we have considered two dimensional systems 
with arbitrary finite number of time delays. We have derived criteria in terms of 
the characteristic equation of the linearized system which when they hold will 
imply that a given equilibrium will not change its stability as a function of the 
delay parameters. 

It is well known [4], [5], [11], [12] that in many examples in models of 
ecosystems, stability of equilibria does indeed change as a function of the delay 
parameters. On the other hand in [7] and [8], criteria for no switching were given 
for one and two time delays respectively for predator-prey systems. The novelty 
of this paper is that we have established criteria for no stability switching where 
there are arbitrarily many delays. 

We have applied our criteria to a predator-prey model and a mutualist model 
with four delays. The key criteria for no stability switching inequalities (3.3), 
(3.4), (3.6), (3.7) are difficult if not impossible to interpret biologically. We note 
from [7] that even in the case of one delay, biological interpretation of such 
criteria is difficult. 

We expect a similar technique will work in higher dimensional systems, 
however the computations involved become increasingly more tedious and 
lengthy. We also expect that in the case of distributed delays, one could develop 
similar criteria for the nonswitching of the stability of the equilibrium states. 
Unfortunately the same techniques used in this paper do not seem to work in 
the case of distributed delays and we leave this investigation for future work. 
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