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Abstract

For a connected reductive group G over a finite field, we study automorphic vector bundles on the stack of G-zips.

In particular, we give a formula in the general case for the space of global sections of an automorphic vector bundle

in terms of the Brylinski-Kostant filtration. Moreover, we give an equivalence of categories between the category

of automorphic vector bundles on the stack of G-zips and a category of admissible modules with actions of a

0-dimensional algebraic subgroup a Levi subgroup and monodromy operators.

1. Introduction

The stack of �-zips was introduced by Pink-Wedhorn-Ziegler [PWZ11] and [PWZ15] based on the

notion of F-zip defined in the work of Moonen-Wedhorn ([MW04]). In this article, we investigate vector

bundles on the stack of �-zips. Let � be a connected reductive group over a finite field F@ and let :

denote an algebraic closure of F@ . For a cocharacter ` : Gm,: → �: , Pink-Wedhorn-Ziegler have defined

a smooth finite stack �-Zip` over : , called the stack of �-zips of type `. Many authors have shown

that it is a useful tool to study the geometry of Shimura varieties in characteristic ?. For example, let

Sh(G,X) be a Shimura variety of Hodge type over a number field E with good reduction at a prime ?.

Kisin [Kis10] and Vasiu [Vas99] have constructed an integral model � over OEE at all places E |? in E.

Denote by ( the geometric special fibre of� and by� the special fibre over F? of G (in the context of

Shimura varieties, we take @ = ?). Let ` be the cocharacter attached naturally to X. Then Zhang [Zha18]

has shown that there exists a smooth morphism of stacks Z : ( → �-Zip`, which is also surjective.

The second author and Wedhorn have used the stack �-Zip` to construct `-ordinary Hasse invariants

in [KW18], and this result was later generalised to all Ekedahl-Oort strata with Goldring [GK19a].

In [Kos19], the second author studied the space of global sections of the family of vector bundles

(V� (_))_∈-∗ () ) . To explain what these vector bundles are, first recall that the cocharacter ` yields a

parabolic subgroup % ⊂ �: as well as a Levi subgroup ! ⊂ %, which is equal to the centraliser of ` (see

Subsection 2.2.2 for details). Then for any algebraic %-representation (+, d) over : , there is a naturally

attached vector bundle V(d) of rank dim(+) on �-Zip` modelled on (+, d) (see Subsection 2.4). We

call V(d) an automorphic vector bundle on �-Zip` (cf. [Mil90, Chapter III, §2]).

The vector bundle V� (_) (for _ ∈ -∗()) a character of a maximal torus ) ⊂ �) is by definition

the vector bundle attached to the %-representation +� (_) = Ind%� (_), where � ⊂ % is a Borel subgroup

(containing ) and appropriately chosen), Ind denotes induction and � denotes the set of simple roots
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of !. For a :-algebraic group �, we write Rep(�) for the category of finite-dimensional algebraic

representations of � over : . The natural projection % → ! modulo the unipotent radical induces a

fully faithful functor Rep(!) → Rep(%). In particular, all representations of the form +� (_) lie in the

full subcategory Rep(!). In the case when � is split over F? , we showed in a previous work [Kos19,

Theorem 1] that �0 (�-Zip`,V� (_)) can be expressed as

�0(�-Zip`,V� (_)) = +� (_)
! (F?) ∩+� (_)≤0, (1.0.1)

where +� (_)
! (F?) denotes the !(F?)-invariant subspace of +� (_) and +� (_)≤0 ⊂ +� (_) is defined as

follows: It is the direct sum of the )-weight spaces +� (_)a for the weights a satisfying 〈a, U∨〉 ≤ 0 for

any simple root U outside of !.

In this article, we vastly generalise the formula (1.0.1) to the most general case. We do not assume

that � is split over F@ and, more important, we consider arbitrary representations in the larger category

Rep(%) as opposed to the subcategory Rep(!). In the context of Shimura varieties, there are many inter-

esting vector bundles other than the family (+� (_))_, which may not always arise from representations

in Rep(!). For example, in [Urb14], nearly holomorphic modular forms of weight : and order ≤ A are

defined as sections of the vector bundle l⊗(:−A ) ⊗ SymA (H1
dR
) on the modular curve - (#) for some

level # ≥ 1. Here, H1
dR

is the sheaf of relative de Rham cohomology of the universal elliptic curve

ℰ → - (#), and 0 ⊂ l ⊂ H1
dR

is the usual Hodge filtration. In this context, the group � is GL2, % = �

is a Borel subgroup of �. The vector bundle H1
dR

is attached to the dual of the standard representation

of GL2 (viewed by restriction as a representation of %). Similarly, SymA (H1
dR
) is attached to the Ath

symmetric power of that representation. More generally, on the Siegel-type Shimura variety �6 (which

parametrise principally polarised abelian varieties of rank 6), the universal abelian scheme yields a rank

26 vector bundle H1
dR

on �6. One can extend the definition of H1
dR

to Hodge-type Shimura varieties

after choosing a Siegel embedding. Furthermore, it extends to a vector bundle on the integral model � 
of Kisin and Vasiu. This example shows that it is desirable to also understand vector bundles that arise

from general representations of %. In this article, we determine the space �0(�-Zip`,V(d)) for any

cocharacter datum (�, `) (for the definition of cocharacter datum, see Subsection 2.2.2) and for any

representation (+, d) ∈ Rep(%). By Zhang’s smooth surjective map Z : ( → �-Zip`, this determines

a natural Hecke-equivariant subspace

�0(�-Zip`,V(d))
� �

Z ∗
// �0(( ,V(d)). (1.0.2)

In particular, we obtain Hecke-equivariant sections ofV(d) on ( . Furthermore, we can potentially study

sections on Ekedahl-Oort strata by the same method, as demonstrated in [GK19a]. Another motivation

for describing sections on �-Zip` is that we would like to determine which weights _ admit nonzero

automorphic forms. Specifically, let � denote the set of _ ∈ -∗ ()) such that �0 (( ,V� (_)) ≠ 0.

Similarly, let �zip be the set of _ such that �0 (�-Zip`,V� (_)) ≠ 0 (one can show that they are cones

in -∗())). The inclusion (1.0.2) shows that �zip ⊂ � . Denote by (−)Q>0
the generated Q>0-cones.

Then one can see [Kos19, Corollary 1.5.3] that � ,Q>0
is independent of  , and we conjecture [GK18,

Conjecture 2.1.6] that it coincides with �zip,Q>0
. Goldring and the second author proved this conjecture

in some case in [GK18, Theorem D].

We show that the space �0(�-Zip`,V(d)) is given by the intersection of the !i-invariants of +

with a generalised Brylinski-Kostant filtration (where !i ⊂ ! is a certain 0-dimensional group, see

(3.2.1)). For the general statement, see Theorem 3.4.1. For the sake of brevity, we give a simplified

statement in this introduction. Assume here that % is defined over F@ (in this case, !i = !(F@)).

Let ℘∗ : -∗ ())R → -∗())R be the map induced by the Lang torsor ℘ : ) → ) ; 6 ↦→ 6i(6)−1,

where i : � → � denotes the @th power Frobenius homomorphism. Let + =
⊕

a +a be the weight

decomposition of + . For j ∈ -∗ ())R, let Fil%j+a be the Brylinski-Kostant filtration of +a (see (3.4.2)).
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Theorem 1 (Corollary 3.4.2). Assume that % is defined over F@ . For any (+, d) ∈ Rep(%), we have

�0(�-Zip`,V(d)) = +! (F@ ) ∩
⊕

a∈-∗ () )

Fil%
℘∗−1 (a)

+a .

In the more simple case of [Kos19], the space +� (_)≤0 appearing in equation (1.0.1) is a sum of

weight spaces of+ . In the general case,�0 (�-Zip`,V(d)) cannot be written as an intersection of+! (F@ )

with a sum of weight spaces of + (see Examples 4.3.2 for a counterexample). We include examples of

concrete computations of the space �0 (�-Zip`,V(d)) in Section 6.

Our second result concerns the category VB(�-Zip`) of vector bundles on �-Zip`. As explained

above, there is a natural functor V : Rep(%) → VB(�-Zip`). Denote by VB% (�-Zip`) the full

subcategory that is equal to the essential image of V. We give an explicit description of the category

VB% (�-Zip`) of automorphic vector bundles. We define the category of !i-modules with Δ%-

monodromy (see Definition 5.2.2). Its objects are !i-modules , endowed with a set of monodromy

operators indexed by Δ% (where Δ% denotes the set of simple roots outside the parabolic %). There

is a natural functor �MN : Rep(%) → !i-MNΔ% (see (5.2.1)). An !i-module with Δ%-monodromy

is called admissible if it lies in the essential image of �MN. The category of admissible !i-modules

Δ%-monodromy is denoted by !i-MNadm
Δ%

.

Theorem 2 (Theorem 5.1.5). The functor V : Rep(%) → VB(�-Zip`) factors through the functor

�MN : Rep(%) → !i-MNadm
Δ%

and induces an equivalence of categories

!i-MNadm
Δ%
−→ VB% (�-Zip`).

In particular, we deduce the following. Let ( denote again the good reduction special fibre of a

Hodge-type Shimura variety. Similarly, there is a natural functor Rep(%) → VB(( ), where VB(( )

denotes the category of vector bundles on ( . Write againVB% (( ) for the essential image of Rep(%).

In this context, we have the following.

Corollary 3 (Corollary 5.1.6). The functor V : Rep(%) → VB% (( ) factors as

Rep(%)
�MN

// !i-MNadm
Δ%

Z ∗
// VB% (( ).

The results of this article will be used in the follow-up articles [IK21] and [GIK21], where we study

partial Hasse invariants for Shimura varieties of Hodge type.

2. Vector bundles on the stack of �-zips

2.1. Notation

Throughout the article, ? is a prime number, @ is a power of ? and F@ is the finite field with @ elements.

We write : = F@ for an algebraic closure of F@ . Write f ∈ Gal(:/F@) for the @th power Frobenius. For

a :-scheme - and < ∈ Z, we write - (@
<) for the base change of - by f< and i : - (@

<) → - (@
<+1)

for the relative @th power Frobenius morphism. For an algebraic representation (+, d) of an algebraic

group � over : , let (+ (@) , d (@) ) denote the representation d ◦ i : � (@
−1) → � → GL(+).

The notation � will denote a connected reductive group over F@ . We will always write (�,)) for a

Borel pair defined over F@; that is, ) ⊂ � ⊂ �: are a maximal torus and a Borel subgroup defined over

F@ . Let �+ be the Borel subgroup of �: opposite to � with respect to ) (i.e., the unique Borel subgroup

of � such that �+ ∩ � = )). We will use the following notations:

◦ As usual, -∗ ()) (respectively -∗())) denotes the group of characters (respectively cocharacters) of

) . The group Gal(:/F@) acts naturally on these groups. Let, = , (�: , )) be the Weyl group of
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�: . Similarly, Gal(:/F@) acts on, . Furthermore, the actions of Gal(:/F@) and, on -∗ ()) and

-∗()) are compatible in a natural sense.

◦ Φ ⊂ -∗ ()): the set of )-roots of �.

◦ Φ+ ⊂ Φ: the system of positive roots with respect to �+ (i.e., U ∈ Φ+ when the U-root group*U is

contained in �+). This convention may differ from other authors. We use it to match the conventions

of [Jan03, Chapter II, §1.8] and previous publications [GK19a], [Kos19].

◦ Δ ⊂ Φ+: the set of simple roots.

◦ For U ∈ Φ, let BU ∈ , be the corresponding reflection. The system (,, {BU}U∈Δ ) is a Coxeter

system. Write ℓ : , → N for the length function. Hence, ℓ(BU) = 1 for all U ∈ Φ. Let F0 denote the

longest element of, .

◦ For a subset  ⊂ Δ , let, denote the subgroup of, generated by {BU}U∈ . Write F0, for the

longest element in, .

◦ Let  , denote the subset of elements F ∈ , that have minimal length in the coset, F. Then  ,

is a set of representatives of, \, . The longest element in the set  , is F0, F0.

◦ -∗+ ()) denotes the set of dominant characters – that is, characters _ ∈ -∗ ()) – such that 〈_, U∨〉 ≥ 0

for all U ∈ Δ .

◦ For a subset � ⊂ Δ , let -∗
+,�
()) denote the set of characters _ ∈ -∗ ()) such that 〈_, U∨〉 ≥ 0 for all

U ∈ �. We call them �-dominant characters.

Definition 2.1.1. Let % ⊂ �: be a parabolic subgroup containing � and let ! ⊂ % be the unique

Levi subgroup of % containing ) . Then we define a subset �% ⊂ Δ as the unique subset such that

, (!, )) = ,�% . For an arbitrary parabolic subgroup % ⊂ �: containing ) , we put �% = �%′ ⊂ Δ , where

%′ is the unique conjugate of % containing �.

◦ For a parabolic % ⊂ �: , we put Δ% = Δ \ �% .

2.2. The stack of �-zips

In this section, we recall some facts about the stack of �-zips of Pink-Wedhorn-Ziegler.

2.2.1. Zip datum

Let� be a connected reductive group overF@ . In this article, a zip datum is a tupleZ = (�, %, !, &, ", i)

consisting of the following objects:

(i) % ⊂ �: and & ⊂ �: are parabolic subgroups of �: .

(ii) ! ⊂ % and " ⊂ & are Levi subgroups such that ! (@) = " . In particular, the @-power Frobenius

isogeny induces an isogeny i : ! → " .

If � is an algebraic group, denote by 'u (�) the unipotent radical of �. For G ∈ %, we can write

uniquely G = GD with G ∈ ! and D ∈ 'u(%). This defines a projection map \%
!

: % → !; G ↦→ G.

Similarly, we have a projection \
&

"
: & → " . The zip group is the subgroup of % ×& defined by

� := {(G, H) ∈ % ×& | i(\%! (G)) = \
&

"
(H)}. (2.2.1)

In other words, � is the subgroup of % × & generated by 'u(%) × 'u (&) and elements of the form

(0, i(0)) with 0 ∈ !. Let � ×� act on �: by (0, 1) · 6 := 061−1, and let � act on � by restricting this

action to � . The stack of �-zips of type Z can be defined as the quotient stack

�-ZipZ = [�\�: ] .

Although the above definition of�-ZipZ may be the most concise one, there is a more useful, equivalent

definition in terms of torsors: By [PWZ15, §3C and 3D], the stack �-ZipZ is the stack over : such

that for all :-scheme (, the groupoid �-Zip(() is the category of tuples I = (I, I% , I&, ]), where I
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is a �: -torsor over (, I% ⊂ I and I& ⊂ I are a %-subtorsor and a &-subtorsor of I respectively and

] : (I%/'u (%))
(?) → I&/'u (&) is an isomorphism of "-torsors.

2.2.2. Cocharacter datum

A convenient way to give a zip datum is using cocharacters. A cocharacter datum is a pair (�, `) where

� is a reductive connected group over F@ and ` : Gm,: → �: is a cocharacter. There is a natural way

to attach to (�, `) a zip datum Z`, defined as follows. First, denote by %+ (`) (respectively %− (`)) the

unique parabolic subgroup of �: such that %+(`) (:) (respectively %−(`) (:)) consists of the elements

6 ∈ � (:) satisfying that the map

Gm,: → �: ; C ↦→ `(C)6`(C)−1 (respectively C ↦→ `(C)−16`(C))

extends to a morphism of varieties A1
:
→ �: . This construction yields a pair of parabolics

(%+ (`), %− (`)) in �: such that the intersection %+ (`) ∩ %− (`) = !(`) is the centraliser of `. It

is a common Levi subgroup of %+ (`) and %− (`). Set % = %− (`), & = (%+ (`))
(@) , ! = !(`) and

" = (!(`)) (@) . Then the tuple Z` := (�, %, !, &, ", i) is a zip datum, which we call the zip datum

attached to the cocharacter datum (�, `). We write simply �-Zip` for �-ZipZ` . For simplicity, we

will always consider zip data arising in this way from a cocharacter datum.

2.2.3. Frames

In this article, given a zip datum Z = (�, %, !, &, ", i), a frame for Z is a triple (�,), I) where (�,))

is a Borel pair of �: defined over F@ satisfying the following conditions:

(i) One has the inclusion � ⊂ %.

(ii) I ∈ , is an element satisfying the conditions

I� ⊂ & and � ∩ " =
I� ∩ ".

Remark 2.2.1. Let (�,)) be a Borel pair defined over F@ such that � ⊂ %. Then we can find I ∈ ,

such that (�,), I) is a frame. This follows from the proof of [PWZ11, Proposition 3.7].

A frame may not always exist. However, if (�, `) is a cocharacter datum and Z` is the associated zip

datum (Subsection 2.2.2), then we can find a� (:)-conjugate `′ = ad(6)◦` (with 6 ∈ � (:)) such thatZ`′

admits a frame. This follows easily from Remark 2.2.1 and the fact that � is quasi-split over F@ . Hence,

it is harmless to assume that a frame exists, and we will only consider a zip datum that admits a frame.

Remark 2.2.2. If the cocharacter ` is defined over F@ , then so are % and &. In particular, we have in

this case ! = " and %, & are opposite parabolic subgroups with common Levi subgroup !.

For a zip datum (�, %, !, &, ", i), we put � = �% ⊂ Δ . Note that Δ% = Δ \ �.

Lemma 2.2.3 ([GK19b, Lemma 2.3.4]). Let ` : Gm,: → �: be a cocharacter, and let Z` be the
attached zip datum. Assume that (�,)) is a Borel pair defined over F@ such that � ⊂ %. We put
I = f(F0,� )F0. Then (�,), I) is a frame for Z`.

2.2.4. Parametrisation of �-orbits

Recall that the group � from (2.2.1) acts on �: . We review below the parametrisation of �-orbits

following [PWZ11].

Assume that Z has a frame (�,), I). For F ∈ , , fix a representative ¤F ∈ #� ()), such that

(F1F2)
· = ¤F1 ¤F2 whenever ℓ(F1F2) = ℓ(F1) + ℓ(F2) (this is possible by choosing a Chevalley system,

[ABD+66, Exposé XXIII, §6]). For F ∈ , , define �F as the �-orbit of ¤F ¤I−1. We note that �F is inde-

pendent of the choices of ¤F and a frame by [PWZ11, Proposition 5.8]. If no confusion occurs, we write

F instead of ¤F. Define a twisted order on �, as follows. For F, F′ ∈ �, , write F′ 4 F if there exists

F1 ∈ ,! such that F′ ≤ F1Ff(F1)
−1. This defines a partial order on �, [PWZ11, Corollary 6.3].
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Theorem 2.2.4 ([PWZ11, Theorem 6.2, Theorem 7.5]). The map F ↦→ �F restricts to a bijection

�, → {�-orbits in �: }. (2.2.2)

For F ∈ �, , one has dim(�F ) = ℓ(F)+dim(%). Furthermore, forF ∈ �, , the Zariski closure of�F is

�F =

⊔
F′∈�, , F′4F

�F′ .

Each �-orbit is locally closed in �: . Because � is smooth over : , all �-orbits are also smooth over

: . However, the Zariski closure �F of �F may have highly complicated singularities; see [Kos18] for

a description of the normalisation of �F . The closure of an �-orbit is a union of �-orbits; hence we

obtain a stratification of �.

In particular, there is a unique open �-orbit*Z ⊂ �: corresponding to the longest element F0,�F0 ∈
�, via (2.2.2). For an �-orbit �F (with F ∈ �,), we write XF := [�\�F ] for the corresponding

locally closed substack of �-ZipZ = [�\�: ].

If Z arises from a cocharacter datum (Subsection 2.2.2), we write*` for*Z`
. Using the terminology

pertaining to the theory of Shimura varieties, we call *` the `-ordinary stratum of �-Zip`. The

corresponding substack U` := [�\*`] is called the `-ordinary locus. It corresponds to the `-ordinary

locus in the good reduction of Shimura varieties, studied, for example, in [Wor13], [Moo04]. For more

details about Shimura varieties, we refer to Subsection 2.5.

2.3. Reminders about representation theory

If � is an algebraic group over a field  , denote by Rep(�) the category of algebraic representations of

� on finite-dimensional  -vector spaces. We will denote such a representation by (+, d) or sometimes

simply d or + .

Let � be a split connected reductive  -group and choose a Borel pair (�� , )) defined over  .

Irreducible representations of � are in one-to-one correspondence with dominant characters -∗+ ()).

This bijection is given by the highest weight of a representation. For _ ∈ -∗+ ()), let L_ be the line

bundle attached to _ on the flag variety �/�� by the usual associated sheaf construction [Jan03, §5.8].

Define an �-representation +� (_) by

+� (_) := �0(�/�� ,L_). (2.3.1)

In other words, +� (_) is the induced representation Ind��� _. Then +� (_) is a representation of highest

weight _. We view elements of +� (_) as functions 5 : � → A1 satisfying the relation

5 (ℎ1) = _(1−1) 5 (ℎ), ∀ℎ ∈ �, ∀1 ∈ �� . (2.3.2)

For dominant characters _, _′, there is a natural surjective map

+� (_) ⊗ +� (_
′) → +� (_ + _

′). (2.3.3)

In the description given by (2.3.2), this map is simply given by mapping 5 ⊗ 5 ′ (where 5 ∈ +� (_),

5 ′ ∈ +� (_
′)) to the function 5 5 ′ ∈ +� (_ + _

′).

Denote by,� := , (�,)) the Weyl group and F0,� ∈ ,� the longest element. Then +� (_) has a

unique �� -stable line, which is a weight space for the weight F0,�_.
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2.4. Vector bundles on the stack of �-zips

2.4.1. General theory

For an algebraic stack X, write VB(X) for the category of vector bundles on X. Let - be a :-scheme

and � an affine :-group scheme acting on - . If d : � → GL(+) is a finite-dimensional algebraic

representation of �, it gives rise to a vector bundle V�,- (d) on the stack [�\-]. This vector bundle

can be defined geometrically as [�\(- ×: +)], where � acts diagonally on - ×: + . We obtain a functor

V�,- : Rep(�) → VB([�\-]).

In particular, similar to the usual associated sheaf constrution [Jan03, Chapter I, §5.8, Equation (1)], the

space of global sections �0([�\-],V�,- (d)) is identified with

�0 ([�\-],V�,- (d)) = { 5 : - → + | 5 (ℎ · G) = d(ℎ) 5 (G), ∀ℎ ∈ �, ∀G ∈ -} . (2.4.1)

2.4.2. Automorphic vector bundles on �-ZipZ

Fix a zip datum

Z = (�, %, !, &, ", i)

and a frame (�,), I) as usual. By the previous paragraph, we obtain a functor V�,� : Rep(�) →

VB(�-ZipZ), which we simply denote by V. For (+, d) ∈ Rep(�), the space of global sections of

V(d) is

�0(�-ZipZ,V(d)) = { 5 : �: → + | 5 (n · 6) = d(n) 5 (6), ∀n ∈ �, ∀6 ∈ �: } .

One has the following easy lemma, which follows from the fact that �: admits an open dense �-orbit

(see discussion below Theorem 2.2.4).

Lemma 2.4.1 ([Kos19, Lemma 1.2.1]). Let (+, d) be an �-representation. Then we have
dim�0 (�-ZipZ,V(d)) ≤ dim(+).

The first projection ?1 : � → % induces a functor ?∗
1
: Rep(%) → Rep(�). If (+, d) ∈

Rep(%), we write again V(d) for V(?∗
1
(d)). Let VB% (�-ZipZ) be the essentail image of

V : Rep(%) → VB(�-ZipZ). We call VB% (�-ZipZ) the category of automorphic vector bundles

(cf. [Mil90, Chapter III, Remark 2.3]). The goal of this article is to study the vector bundles V(d)

on �-ZipZ and determine their properties for d ∈ Rep(%). In particular, we seek to understand the

properties of V(d) in terms of the representation (+, d) defining it.

2.4.3. !-representations

Let \%
!

: %→ ! denote again the natural projection modulo the unipotent radical 'u (%), as in Subsection

2.2.1. It induces by composition a functor

(\%! )
∗ : Rep(!) → Rep(%).

It is easy to see that (\%
!
)∗ is a fully faithful functor, and its image is the full subcategory of Rep(%) of

%-representations that are trivial on 'u(%). Hence, we view Rep(!) as a full subcategory of Rep(%). If

(+, d) ∈ Rep(!), we write again V(d) := V((\%
!
)∗(d)). For _ ∈ -∗

+,�
()), write �! := � ∩ ! and define

an !-representation as

+� (_) = Ind!�! (_).

This is the representation defined in (2.3.1) for � = ! and �� = �! . Denote by V� (_) the vector

bundle on �-ZipZ attached to +� (_). We call V� (_) the automorphic vector bundle associated to the
weight _ on �-ZipZ. This terminology stems from Shimura varieties (see Subsection 2.5 for further

details). Note that if _ ∈ -∗ ()) is not !-dominant, then+� (_) = 0 and hence V� (_) = 0. In [Kos19], the
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second author studied the vector bundles V� (_) on�-ZipZ. In particular, he investigated the question of

determining the set �zip of characters _ ∈ -∗
+,�
()) such that the space �0 (�-ZipZ,V� (_)) is nonzero.

In a work in progress [GIK21] with Goldring, we completely determine �zip under the condition that %

is defined over F@ and the Frobenius f acts on � by −F0,� .

2.5. Shimura varieties

In this subsection, we explain the link between the stack of �-zips and Shimura varieties. Let (G,X) be

a Shimura datum [Del79, §2.1.1]. In particular, G is a connected reductive group over Q. Furthermore,

X provides a well-defined G(Q)-conjugacy class {`} of cocharacters of G
Q

. Write E = � (G,X)

for the reflex field of (G,X) (i.e., the field of definition of {`}) and OE for its ring of integers.

Given an open compact subgroup  ⊂ G(A 5 ), write Sh(G,X) for the canonical model at level  

over E (cf. [Del79, §2.2]). For  small enough in G(A 5 ), Sh(G,X) is a smooth, quasi-projective

scheme over E. For a small enough  , every inclusion  ′ ⊂  induces a finite étale projection

c ′/ : Sh(G,X) ′ → Sh(G,X) .

Let 6 ≥ 1 and let (+, k) be a 26-dimensional, nondegenerate symplectic space over Q. Write

GSp(26) = GSp(+, k) for the group of symplectic similitudes of (+, k). Write X6 for the double

Siegel half-space [Del79, §1.3.1]. The pair (GSp(26),X6) is called the Siegel-Shimura datum and

has reflex field Q. Recall that (G,X) is of Hodge type if there exists an embedding of Shimura data

] : (G,X) ↩→ (GSp(26),X6) for some 6 ≥ 1. Henceforth, assume that (G,X) is of Hodge type.

Fix a prime number ? and assume that the level  is of the form  =  ? 
? where  ? ⊂ G(Q?)

is a hyperspecial subgroup and  ? ⊂ G(A
?

5
) is an open compact subgroup. Recall that a hyperspecial

subgroup of G(Q?) exists if and only if GQ? is unramified and is of the form  ? = �(Z?) where � is

a reductive group over Z? such that � ⊗Z? Q? ≃ GQ? and � ⊗Z? F? is connected.

We assume that ? > 2. For any place E above ? in E, Kisin [Kis10] and Vasiu [Vas99] constructed a

family of smoothOEE -schemes� = (� ) ? , where =  ? 
? and ? is a small enough compact open

subgroup of G(A
?

5
). For  ′? ⊂  ? , one has again a finite étale projection c ′/ : � ? ′? → � ? ? ,

where  =  ? 
? and  ′ =  ? 

′? and the tower � = (� ) ? is an OEE -model of the tower

(Sh(G,X) ) ? . We write ( for the geometric special fibre of � .

We take a representative ` ∈ {`} defined over EE by [Kot84, (1.1.3) Lemma (a)]. We can also assume

that ` extends to ` : Gm,OEE
→ �OEE

[Kim18, Corollary 3.3.11]. Denote by L ⊂ GEE the centraliser of

the cocharacter `. We take a parabolic sugroups P of GEE , which has L as a Levi subgroup. Since GQ?
is unramified, it is quasi-split, hence we can choose a Borel subgroup B ⊂ GQ? and a maximal torus

T ⊂ B. There is 6 ∈ G(EE ) such that BEE ⊂ 6P6−1. Write 6 = 160 with 1 ∈ �(EE ) and 60 ∈ �(OEE )

by the Iwasawa decomposition. Then replacing ` by its conjugate by 60, we may assume that BEE ⊂ P.

By properness of the scheme of parabolic subgroups of � [ABD+66, Exposé XXVI, Corollaire

3.5], the subgroups B and P extend uniquely to subgroups ℬ ⊂ � over Z? and � ⊂ �OEE
over OEE

respectively. Let ℒ ⊂ � be the centraliser of ` : Gm,OEE
→ �OEE

. We take a Borel subgroup Bop of

GQ? such that T = B∩Bop. The subgroup Bop extends uniquely to a subgroup ℬ
op ⊂ � over Z? . We put

� = ℬ ∩ℬop. Set � = � ⊗Z? F? and denote by �,), %, ! the geometric special fibre of ℬ,�,�,ℒ

respectively. By slight abuse of notation, we denote again by ` its mod ? reduction ` : Gm,: → �: .

Then (�, `) is a cocharacter datum, and it yields a zip datum (�, %, !, &, ", i) as in Subsection 2.2.2

(because � is defined over F? , in the context of Shimura varieties, we always take @ = ?; hence, i is

the ?th power Frobenius).

By a result of Zhang [Zha18, 4.1], there exists a natural smooth morphism

Z : ( → �-Zip` .

This map is also surjective by [SYZ19, Corollary 3.5.3(1)]. The map Z amounts to the existence of

a universal �-zip I = (I, I% , I&, ]) over ( , using the description of �-Zip` provided at the end of

Subsection 2.2.1. In the construction of Zhang, the�: -torsor I and the %-torsor I% over ( are actually

the reduction of a �-torsor and a �-torsor over � , which we denote by ℐ and ℐ� respectively.
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Example 2.5.1. We explain the example of the Siegel-type Shimura variety. In this case, one has

G = GSp(+, k) for a symplectic space (+, k) of dimension 26 (6 ≥ 1) over Q. The Z?-model

� = GSp(Λ, k) is given by a self-dual Z?-lattice Λ ⊂ +Q? ; that is, a lattice satisfying Λ∨ = Λ, where

Λ∨ := {G ∈ +Q? | ∀H ∈ Λ, k(G, H) ∈ Z?}. The cocharacter ` : Gm,Z? → GZ? induces a decomposition

Λ = Λ0 ⊕ Λ1, where Λ0, Λ1 are free Z?-modules of rank 6. Here I ∈ Gm acts via ` on Λ8 by the

character I ↦→ I8 for 8 ∈ {0, 1}. Define two filtrations

Fil0(Λ) : 0 ⊂ Λ0 ⊂ Λ and

Fil1(Λ) : 0 ⊂ Λ1 ⊂ Λ.

Then � can be defined as the parabolic subgroup of � stabilising Fil0 (Λ). The scheme � (with

 =  ? 
? and  ? = �(Z?) as above) is a moduli space classifying triples (�, b, [ ?) where � is

an abelian variety of rank 6 endowed with a principal polarisation b and a  ?-level structure [ ? .

Here [ is a symplectic isomorphism �1(�,A?) ≃ + ⊗ A? and [ ? is its  ?-coset in the set of such

isomorphisms.

Let � → � denote the universal abelian scheme. Then

ℋ := �1
dR(�/� )

is a rank 26 vector bundle on � , and the principal polarisation b induces on ℋ a perfect, symplectic

pairing, which we denote by kb . The vector bundle ℋ also carries a natural Hodge filtration (which we

denote by FilHdg):

0 ⊂ Ω�/� ⊂ℋ,

where Ω�/� is the push-forward of the sheaf of relative Kähler differentials Ω1
�/� 

by the structural

morphism 5 : � → � . It is a rank 6-subbundle of ℋ. We obtain a �-torsor ℐ and a �-torsor ℐ�

over � as follows: For an � -scheme (, we define ℐ(() by

Isom
O(

(
(Λ ⊗ O( , k), (ℋ ⊗O� 

O( , kb )
)

and ℐ� (() by

Isom
O(

(
(Λ ⊗ O( , k, Fil0 (Λ) ⊗ O(), (ℋ ⊗O� 

O( , kb , FilHdg ⊗O� 
O()

)
.

This defines two fppf sheaves on � . Furthermore, � acts naturally on ℐ via its action on Λ. Further-

more, because the parabolic group � ⊂ � stabilises Fil0(Λ), the group � acts naturally on ℐ�. This

defines respectively a �-torsor and a �-torsor on � .

Over ( = � ⊗ F? , the �-zip I = (I, I% , I&, ]) is defined as follows. First define I and I% to be

the base change to ( of ℐ and ℐ�. To define the &-torsor I&, recall that � := �1
dR
(�/( ) admits

a conjugate filtration Filconj ⊂ �: Let 5 : � → ( denote the universal abelian scheme (with � :=

� ⊗� ( ), then there is a conjugate spectral sequence �01
2

= '0 5∗(H
1 (Ω•

�/( 
)) ⇒ �0+1

dR
(�/( ).

For abelian varieties, this spectral sequence degenerates and gives the filtration Filconj on �1
dR
(�/( ).

Note that the conjugate filtration only exists on the special fibre of � , contrary to the Hodge filtration.

For an ( -scheme (, we put

I& (() = Isom
O(

(
(Λ ⊗ O( , k, Fil1 (Λ) ⊗ O(), (� ⊗O( O( , kb , Filconj ⊗O( O()

)
.

Because & stabilises the filtration Fil1 (Λ) ⊗ F? , it acts naturally on I&, and again we obtain a &-torsor

on ( . Finally, the isomorphism ] : (I%/'u(%))
(?) → I&/'u (&) is naturally induced by the Frobenius

and Verschiebung homomorphisms (or, more generally, the Cartier isomorphism; see [MW04, 7.3]).
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For each L-dominant character _ ∈ -∗(T), we have the unique irreducible representation V� (_) of P

over Q? of highest weight _. Because we are in characteristic zero, V� (_) coincides with �0 (P/B,L_),

as defined in (2.3.1) in Subsection 2.3. It admits a natural model over Z? , namely,

V� (_)Z? := �0(�/ℬ,L_),

where L_ is the line bundle attached to _ viewed as a character of �. Its reduction modulo ? is the

%-representation+� (_) = �
0 (%/�,L_) over : = F? . Because � is endowed naturally with a �-torsor

ℐ�, we obtain a vector bundle �� (_) on � by applying the �-representation V� (_)Z? to ℐ�. The

vector bundle �� (_) for _ ∈ -∗ (T)+,� is called the automorphic vector bundle associated to the weight
_. For an OEE -algebra ', the space �0(� ⊗OEE

',�� (_)) may be called the space of automorphic

forms of level  and weight _ with coefficients in '. More generally, by the same formalism, we have a

commutative diagram of functors

Rep
Z?
(�)

�
//

��

VB(� )

��

Rep
F?
(%)

V
// VB(( )

where the vertical arrows are reduction modulo ? and the horizontal arrows are obtained by applying

the �-torsor ℐ� and the %-torsor I% respectively. The vector bundles obtained in this way on � and

( are called automorphic vector bundles following [Mil90, Chapter III, Remark 2.3].

Furthermore, the map Z : ( → �-Zip` induces a factorization of the lower horizontal arrow of the

above diagram as

Rep
F?
(%)

V
//VB(�-Zip`)

Z ∗
//VB(( ). (2.5.1)

Note also that for any %-representation (+, d), the map Z : ( → �-Zip` induces by pullback a natural

injective morphism

�0 (�-Zip`,V(d)) → �0(( ,V(d)).

In Section 3, we determine the space �0(�-Zip`,V(d)) in all generality (i.e., even for cocharacter data

(�, `) that are not attached to Shimura varieties). For general pairs (�, `) with ` minuscule (but not

necessarily attached to Shimura varieties), one has the following remark.

Remark 2.5.2. Let � be a local field with ring of integers O and residue field F@ . Let� be an unramified

reductive group over O. Let (�,)) be a Borel pair of �, and let ` be a dominant cocharacter of �.

Then Xiao-Zhu define the moduli of local shtukas Shtloc
` classifying modifications bounded by ` of a

�-torsor and its Frobenius twist (see [XZ17, Definition 5.2.1]). Similarly, there is a moduli Sht
loc(<,=)
`

of restricted local shtuka [XZ17, §5.3], with a natural projection Shtloc
` → Sht

loc(<,=)
` . In the case when

` is minuscule, Xiao-Zhu show in [XZ17, Lemma 5.3.6] that there exists a natural perfectly smooth

morphism Sht
loc(2,1)
` → �-Zip`,pf , where pf denotes the perfection and the special fibre of � is again

denoted by � (see Subsection 3.5 for further details).

3. The space of global sections �0(�-Zip`,V(d))

3.1. Adapted morphisms

To determine the space �0(�-Zip`,V(d)) (for (+, d) a %-representation), we use a similar method as

in [Kos19, §3.2], where we studied representations of the type +� (_). We review some of the notions

introduced in [Kos19, §3.2].
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Let - be an irreducible normal :-variety and let * ⊂ - be an open subset such that ( = - \* is

irreducible of codimension 1. For 5 ∈ �0(*,O- ), denote by /* ( 5 ) ⊂ * the vanishing locus of 5 in

* and let /* ( 5 ) be its Zariski closure in - . We endow all locally closed subsets of schemes with the

reduced structure. Let . be an irreducible :-variety and k : . → - be a :-morphism.

Definition 3.1.1. We say that k is adapted to 5 (with respect to*) if

(i) k(. ) ∩* ≠ ∅ and

(ii) k(. ) ∩ ( is not contained in /* ( 5 ).

Lemma 3.1.2. If k(. ) intersects* and k(. ) ∩( is dense in (, then k is adapted to any nonzero section
5 ∈ �0 (*,O- ).

Proof. We need to show that condition (ii) is satisfied. We may assume that /* ( 5 ) ≠ ∅. Then, the

closed subset /* ( 5 ) has codimension 1 in - and intersects*; hence, /* ( 5 ) ∩ ( has codimension ≥ 1

in (, so it cannot contain k(. ) ∩ (. �

Lemma 3.1.3 ([Kos19, Lemma 3.2.2]). Let k : . → - be a morphism adapted to 5 ∈ �0(*,O- ).
Then 5 extends to - if and only if k∗ ( 5 ) ∈ �0(k−1 (*),O. ) extends to. . In this case, 5 vanishes along
( if and only if k∗( 5 ) vanishes along k−1 (().

We apply the above notions to the following situation. From now on, let (�, `) be a cocharacter

datum, with attached zip datum Z = (�, %, !, &, ", i) as in Subsection 2.2.2. Assume that (�,)) is

a Borel pair defined over F@ such that � ⊂ %. We take a frame (�,), I) as in Lemma 2.2.3. Consider

the variety �: and the open subset *` ⊂ �: (the `-ordinary stratum, defined after Theorem 2.2.4).

The complement of *` in �: is not irreducible in general, so in order to apply the previous results,

we slightly modify the problem. Recall the parametrisation of �-orbits in �: (2.2.2). Using Theorem

2.2.4, we have

�: \*` =

⋃
U∈Δ%

/U, /U = � · BU, (3.1.1)

where � · BU denotes the �-orbit of BU and the bar denotes the Zariski closure. Indeed, by (2.2.2),

the �-orbits of codimension 1 in �: are the �-orbits of FI−1 where F ∈ �, is an element of length

ℓ(F0,�F0) − 1. These elements are of the form F0,� BUF0 for U ∈ Δ% . Because I = f(F0,� )F0, the

element FI−1 has the form F0,� BUf(F0,� ). Because (F0,� , f(F0,� )) ∈ � , this element generates the

same �-orbit as BU. This proves the decomposition (3.1.1) above. For any U ∈ Δ% , define an open subset

-U := �: \
⋃

V∈Δ% , V≠U

/V .

Clearly, *` ⊂ -U and one has -U \ *` = � · BU. In particular, -U \ *` is irreducible. We define a

morphism that satisfies the conditions of Definition 3.1.1 for the pair (-U,*`).

We take an isomorphism DU : Ga → *U for U ∈ Φ so that (DU)U∈Φ is a realisation in the sense of

[Spr98, §8.1.4]. In particular, we have

CDU (G)C
−1

= DU (U(C)G) (3.1.2)

for G ∈ Ga and C ∈ ) . For U ∈ Φ, there is a unique homomorphism

qU : SL2,: → �:

such that

qU

((
1 G

0 1

))
= DU (G), qU

((
1 0

G 1

))
= D−U (G)
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as in [Spr98, §9.2.2]. Also note that qU (diag(C, C−1)) = U∨(C).

Let U ∈ Δ% . Set . = � × A1 and

kU : . → �: ; ((G, H), C) ↦→ GqU (�(C)) H
−1 where �(C) =

(
C 1

−1 0

)
∈ SL2,: .

Note that qU (�(0)) = BU in, . The following identity will be crucial for later purposes:

�(C) =

(
1 0

−C−1 1

) (
C 0

0 C−1

) (
1 C−1

0 1

)
. (3.1.3)

Let ℘ : ) → ) ; 6 ↦→ 6i(6)−1 be the Lang torsor. Then ℘ induces the isomorphism

℘∗ : -∗())R
∼
−→ -∗())R; X ↦→ ℘ ◦ X = X − @f(X).

We put XU = ℘−1
∗ (U

∨). Recall that f denotes the @th power Frobenius action on Δ . We put

<U = min{< ≥ 1 | f−<(U) ∉ �} (3.1.4)

and CU = C−1U(i(XU (C)))
−1 = CU(XU (C))

−1 ∈ CQ, where C is an indeterminate.

Proposition 3.1.4. The following properties hold:
(1) The image of kU is contained in -U.
(2) For any (G, H) ∈ � and C ∈ A1, one has kU ((G, H), C) ∈ *` ⇐⇒ C ≠ 0.
(3) For all (G, H) ∈ � , we have kU ((G, H), 0) ∈ � · BU.

Proof. It suffices to show (2) and (3). If C = 0, we have qU (�(0)) = BU in , . Hence, kU ((G, H), 0) ∈

� · BU. Assume that C ≠ 0. We put

DC ,U =

<U−1∏
8=1

qf−8 (U)

((
1 −C

1

@8

U

0 1

))
,

where the products are taken in the increasing order of indices. By (3.1.3) and the definitions of XU, CU
and DC ,U, we have

qU (�(C)) = qU

((
1 0

−C−1 1

))
XU (C)i(XU (C))

−1qU

((
1 C−1

0 1

))

= qU

((
1 0

−C−1 1

))
XU (C)qU

((
1 CU
0 1

))
i(XU (C))

−1

= qU

((
1 0

−C−1 1

))
XU (C)DC ,U

(
i(XU (C))qU

((
1 −CU
0 1

))
DC ,U

)−1

. (3.1.5)

We have (
qU

((
1 0

−C−1 1

))
XU (C)DC ,U, i(XU (C))qU

((
1 −CU
0 1

))
DC ,U

)
∈ � (3.1.6)

because

qU

((
1 0

−C−1 1

))
∈ 'u (%), qf−(<U−1) (U)

((
1 −C

1

@<U−1

U

0 1

))
∈ 'u(&)

by U ∉ � and f−(<U−1) (U) ∉ f(�). Hence, we have kU ((G, H), C) ∈ *` if C ≠ 0. �

Set .0 := � × Gm ⊂ . . We obtain a map kU : .0 → *`.
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Corollary 3.1.5. Let 5 : *` → A
= be a regular map. Then 5 extends to a regular map �: → A= if

and only if for all U ∈ Δ% , the map 5 ◦ kU : .0 → A
= extends to a map . → A=.

Proof. Applying Lemma 3.1.2 and Lemma 3.1.3 to the coordinate functions of 5 , we can extend 5 to⋃
U∈Δ% -U. Because the complement of

⋃
U∈Δ% -U in � has codimension ≥ 2, we can extend 5 to �

by normality. �

3.2. The space of `-ordinary sections

Recall that U` = [�\*`] ⊂ �-Zip` denotes the `-ordinary locus (see Subsection 2.2.4). The open

substack U` ⊂ �-Zip` is dense and hence induces an obvious injective map

�0(�-Zip`,V(d)) → �0(U`,V(d))

for any (+, d) ∈ Rep(%). This will give an upper bound approximation of the space �0(�-Zip`,V(d)).

We claim that 1 ∈ *`. Indeed, by Theorem 2.2.4, *` coincides with the �-orbit of the element

F0,�F0I
−1. Because I = f(F0,� )F0, we obtain F0,�F0I

−1 = F0,�f(F0,� ). This element is in the same

�-orbit as 1, because (F0,� , f(F0,� )) ∈ � . This proves the claim.

We denote by !i ⊂ � the scheme-theoretical stabiliser of the element 1. Note that

!i = � ∩ {(G, G) | G ∈ �: } (3.2.1)

is a 0-dimensional algebraic group. In general it is nonsmooth. Denote by !0 ⊂ ! the largest algebraic

subgroup defined over F@ . In other words,

!0 =

⋂
=≥0

! (@
=) .

In view of (3.2.1), it is clear that the restriction of the first projection � → % induces a closed immersion

!i → %. Hence, we will identify !i with its image and view it as a subgroup of %.

Lemma 3.2.1 ([KW18, Lemma 3.2.1]).

(1) One has !i ⊂ !.
(2) The group !i can be written as a semidirect product

!i = !◦i ⋊ !0 (F@)

where !◦i is the identity component of !i . Furthermore, !◦i is a finite unipotent algebraic group.
(3) Assume that % is defined over F@ . Then !0 = ! and !i = !(F@), viewed as a constant algebraic

group.

Proposition 3.2.2. The stack U` is isomorphic to �(!i) = [1/!i], the classifying stack of !i .

Proof. The action map � → *`, 4 ↦→ 4 · 1 induces an isomorphism �/!i ≃ *`. Hence, U` =

[�\*`] ≃ [�\(�/!i)] ≃ [1/!i]. �

Corollary 3.2.3. The category of vector bundles on U` is equivalent to the category Rep(!i) of
representations of !i . Furthermore, for all (+, d) ∈ Rep(!i), the space of global sections of the
attached vector bundle V(d) on U` identifies with the space of !i-invariants of +:

�0 (U`,V(d)) = +
!i . (3.2.2)

Furthermore, this identification is functorial in (+, d).

The identity (3.2.2) can be seen as an isomorphism between two functors Rep(!i) → Vec: . The

notation +!i for the space of invariants is to be understood in a scheme-theoretical way as the set of
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E ∈ + such that for any :-algebra ', one has d(G)E = E in + ⊗: ' for all G ∈ !i ('). In particular, if

(+, d) ∈ Rep(%) and V(d) is the attached vector bundle on �-Zip`, the restriction of V(d) to U` is

attached to the restriction of d to !i , and the formula (3.2.2) applies similarly.

By (2.4.1), any 5 ∈ +!i = �0 (U`,V(d)) corresponds bijectively to a unique function

5̃ : *` → + (3.2.3)

satisfying 5̃ (1) = 5 and 5̃ (0G1−1) = d(0) 5̃ (G) for all (0, 1) ∈ � and all G ∈ *`. The strategy to

determine the space �0(�-Zip`,V(d)) will be to characterise which of these functions extends to a

function �: → + . We will use Corollary 3.1.5 for this purpose. As another preliminary, we introduce

(a generalisation of) the Brylinski-Kostant filtration in the next section.

3.3. Brylinski-Kostant filtration

Lemma 3.3.1. Let U ∈ Φ. Let + be a finite-dimensional algebraic representation of )*U. Let E ∈ +a
for a ∈ -∗ ()). Then we have

DU (G) (E) − E =

∞∑
9=1

G 9E 9 ,

where E 9 ∈ +a+ 9 U.

Proof. This is proved in the proof of [Don85, Proposition 3.3.2]. We recall the argument. We write

DU (G)E as
∑
9≥0 G

9E 9 for some E 9 ∈ + . We note that E0 = E. By (3.1.2), we have E 9 ∈ +a+ 9 U. �

For U ∈ Φ, we define �
( 9)
U : + → + by

DU (G)E =
∑
9≥0

G 9�
( 9)
U (E)

for 9 ≥ 0 and put �
( 9)
U = 0 if 9 < 0. By Lemma 3.3.1, we have �

( 9)
U (E) ∈ +a+ 9 U for E ∈ +a .

Let Ξ = (U1, . . . , U<) ∈ Φ<. Let � be a closed subgroup scheme of � contaning ) and *U8 for

1 ≤ 8 ≤ <. Let + be a finite-dimensional algebraic representation of �. Let a = (01, . . . , 0<) ∈ (:
×)<

and r = (A1, . . . , A<) ∈ R
<. We put

(Z<)r =

{
(=1, . . . , =<) ∈ Z

<

�����
<∑
8=1

=8A8 = 0

}
,

ΛΞ,r =

{
<∑
8=1

=8U8

����� (=1, . . . , =<) ∈ (Z
<)r

}
.

For [a] ∈ -∗ ())/ΛΞ,r, we put

+[a ] =
⊕
a∈[a ]

+a .

We use the notation j for ( 91, . . . , 9<) ∈ Z
<. For [j] ∈ Z</(Z<)r and [a] ∈ -∗ ())/ΛΞ,r, we put

[j] · r =

<∑
8=1

98A8 ∈ R,

[a] + [j] · Ξ =

[
a +

<∑
8=1

98U8

]
∈ -∗ ())/ΛΞ,r,
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which are well defined. For [a] ∈ -∗ ())/ΛΞ,r and a function X : -∗ ()) → R, we define Fil
Ξ,a,r
X

+[a ] by

⋂
[j] ∈Z</(Z<)r

⋂
j∈[a ]+[j] ·Ξ,
[j] ·r>X (j)

Ker
©­«
∑
j∈[j]

prj ◦0
91
1
�
( 91)
U1
◦ · · · ◦ 0

9<
< �

( 9<)
U< : +[a ] → +j

ª®¬
,

where prj : +[a ]+[j] ·Ξ → +j denotes the projection.

Example 3.3.2. Assume that Ξ = (U) ∈ Φ, A1 = 1 and X is a constant function 2 ∈ R. Then ΛΞ,r = 0

and +[a ] = +a for a ∈ -∗ ()). In this case,

FilΞ,a,r2 +a =
⋂
9>2

Ker
(
�
( 9)
U : +a → +a+ 9 U

)
, (3.3.1)

which we simply write FilU2+a . This is a Brylinski-Kostant filtration (cf. [XZ19, (3.3.2)]).

3.4. Main result

We now investigate the space of global sections over �-Zip` of the vector bundle V(d) for (+, d) ∈

Rep(%). By (3.2.2), this space is contained in +!i . Conversely, the problem is to determine which

5 ∈ +!i correspond to sections of V(d) that extend from U` to�-Zip`. Equivalently, we ask for which

5 ∈ +!i the regular function 5̃ : *` → + defined in (3.2.3) extends to a regular function �: → + .

Recall the definition of the integer <U in (3.1.4) for each U ∈ Δ% . For example, if % is defined

over F@ , then <U = 1 for all U ∈ Δ% . We put aU = (−1, . . . ,−1) ∈ (:×)<U . For U ∈ Δ% , we put

ΞU = (−U, f−1(U), . . . , f−(<U−1) (U)) and rU = (AU,1, . . . , AU,<U ), where AU,1 = 1 − 〈U, XU〉 and

AU,8 =
〈U, XU〉 − 1

@8−1

for 2 ≤ 8 ≤ <U. We view XU as a function -∗ ()) → R by j ↦→ 〈j, XU〉.

Theorem 3.4.1. Let (+, d) ∈ Rep(%). Via the inclusion �0(�-Zip`,V(d)) ⊂ +!i (see Corollary
3.2.3) one has an identification

�0 (�-Zip`,V(d)) = +!i ∩
⋂
U∈Δ%

⊕
[a ] ∈-∗ () )/ΛΞU,rU

Fil
ΞU ,aU ,rU
XU

+[a ] . (3.4.1)

Proof. Let 5 ∈ +!i , and let 5̃ : *` → + be the function defined in (3.2.3). It suffices to show that 5̃

extends to � if and only if

5 ∈
⊕

[a ] ∈-∗ () )/ΛΞU,rU

Fil
ΞU ,aU ,rU
XU

+[a ]

for all U ∈ Δ% . By Corollary 3.1.5, 5̃ extends to �: if and only if 5̃ ◦kU : .0 → + extends to a function

. → + . We now give an explicit formula for 5̃ ◦ kU ((G, H), C). Using (3.1.5) and (3.1.6), the element

kU ((G, H), C) ∈ * can be written as G1G
−1
2

with (G1, G2) ∈ � and

G1 = GqU

((
1 0

−C−1 1

))
XU (C)DC ,U, G2 = Hi(XU (C))qU

((
1 −CU
0 1

))
DC ,U .

It follows that

( 5̃ ◦ kU) ((G, H), C) = 5̃ (G1G
−1
2 ) = d(G1) 5 = d(G)d

(
qU

((
1 0

−C−1 1

))
XU (C)DC ,U

)
5 .
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Hence, the function 5̃ ◦ kU extends to . if and only if the function

�U : C ↦→ d

(
qU

((
1 0

−C−1 1

))
XU (C)DC ,U

)
5

lies in : [C] ⊗ + . Write 5 =
∑
a∈-∗ () ) 5a by the weight decomposition of 5 . We put

5
j

a,ΞU
= �

( 91)
−U �

( 92)

f−1 (U)
· · · �

( 9<U )

f−(<U−1) (U)
5a ∈ +a+j·ΞU

for j = ( 91, . . . , 9<U ) ∈ Z
<U and a ∈ -∗ ()). We obtain

�U (C) = d

(
XU (C)qU

((
1 0

−U(XU (C))C
−1 1

))
DC ,U

)
5

=

∑
a

d

(
XU (C)qU

((
1 0

−C 〈U,XU 〉−1 1

)) <U∏
8=2

qf−(8−1) (U)

((
1 −C

1

@8−1

U

0 1

)))
5a

=

∑
a

d (XU (C))
∑

j∈Z<U

(
(−C 〈U,XU 〉−1) 91

<U∏
8=2

(−C

1

@8−1

U ) 98

)
5

j

a,ΞU

=

∑
a

∑
j∈Z<U

C 〈a+j·ΞU , XU 〉

(
(−C 〈U,XU 〉−1) 91

<U∏
8=2

(−C

1

@8−1

U ) 98

)
5

j

a,ΞU
.

For fixed j ∈ -∗()), let �U,j (C) be the +j-component of �U (C). Then we have

�U,j (C) =
∑

j∈Z<U

C 〈j, XU 〉

(
(−C 〈U,XU 〉−1) 91

<U∏
8=2

(−C

1

@8−1

U ) 98

)
5

j

j−j·ΞU ,ΞU

=

∑
[j] ∈Z<U /(Z<U )rU

∑
j∈[j]

C 〈j, XU 〉−j·rU (−1)
∑<U
8=1

98 5
j

j−j·ΞU ,ΞU
.

The exponents of C in two terms in the last expression are equal if and only if the indices belong to the

same coset in Z<U/(Z<U )rU . Therefore, �U,j (C) lies in : [C] ⊗+j for all j ∈ -∗()) if and only if we have

∑
j∈[j]

(−1)
∑<U
8=1

98 5
j

j−j·ΞU ,ΞU
= 0

for all j ∈ -∗()) and [j] ∈ Z<U/(Z<U )rU such that j · rU > 〈j, XU〉. This condition is equivalent to

that 5 belongs to
⊕
[a ] ∈-∗ () )/ΛΞU,rU

Fil
ΞU ,aU ,rU
XU

+[a ] . Hence, the claim follows. �

We now give some corollaries of Theorem 3.4.1 in that case where the formula (3.4.1) becomes

simpler. For a ∈ -∗()) and j ∈ -∗ ())R, we put

Fil%j+a =
⋂
U∈Δ%

Fil−U〈j,U∨ 〉+a (3.4.2)

where Fil−U
〈j,U∨ 〉

+a was defined in Example 3.3.2. The morphism ℘ : ) → ) induces the isomorphism

℘∗ : -∗())R
∼
−→ -∗ ())R; _ ↦→ _ ◦ ℘ = _ − @f−1(_).
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Corollary 3.4.2. Assume that % is defined over F@ . Let (+, d) ∈ Rep(%). Via the inclusion
�0 (�-Zip`,V(d)) ⊂ +! (F@ ) one has

�0(�-Zip`,V(d)) = +! (F@ ) ∩
⊕

a∈-∗ () )

Fil%
℘∗−1 (a)

+a .

Proof. For U ∈ Δ% and a ∈ -∗ ()), we have

Fil
ΞU ,aU ,rU
XU

+[a ] = Fil−U〈a, XU 〉+a = Fil−U
〈℘∗−1 (a) ,U∨ 〉

+a .

Hence, the claim follows from Lemma 3.2.1(3) and Theorem 3.4.1. �

Assume again that % is defined over F@ . To simplify further, assume that (+, d) ∈ Rep(%) is trivial

on the unipotent radical 'u(%). Then we have �
( 9)
−U = 0 for all U ∈ Δ% and all 9 > 0. It follows that

Fil−U2 +a = +a for 2 ≥ 0 and Fil−U2 +a = 0 for 2 < 0. We obtain that for all j ∈ -∗ ())R, one has

Fil%j+a =

{
+a if for all U ∈ Δ% one has 〈j, U∨〉 ≥ 0,

0 otherwise.

Define a subspace +Δ%

≥0
⊂ + as follows:

+Δ%

≥0 =

⊕
〈a, XU 〉≥0, ∀U∈Δ%

+a . (3.4.3)

For example, if ) is split over F@ , then XU = −U∨/(@ − 1), and therefore +Δ%

≥0
is the direct sum of the

weight spaces +a for those a ∈ -∗ ()) satisfying 〈a, U∨〉 ≤ 0 for all U ∈ Δ% .

Corollary 3.4.3. Assume that % is defined over F@ and furthermore that (+, d) ∈ Rep(%) is trivial on
the unipotent radical 'u (%). Then one has an equality

�0 (�-Zip`,V(d)) = +! (F@ ) ∩+Δ%

≥0 .

This formula recovers the result [Kos19, Theorem 1] (with slightly different notation). In [Kos19,

Theorem 1], only the special case when � is split over F? and + is of the form +� (_) was considered.

3.5. Perfection

As noted in Remark 2.5.2, the perfection of the stack of �-zips appears in connection with the moduli

of local shtukas. In [XZ17, Lemma 5.3.6], the zip datum that appears satisfies that % is defined over

F@ . We do not make this assumption here. For a scheme - over : , define the perfection of - as the

projective limit

-pf := lim
←−−
i-

-

where i- denotes the absolute @th power Frobenius endomorphism of - . There is a natural map

-pf → - . We have an isomorphism

-pf ≃ lim
←−−

(
· · ·

i
−→ - (@

−2) i
−→ - (@

−1) i
−→ -

)
,

where i denotes the relative @th power Frobenius endomorphism. The perfection of �-Zip` is then

given by

�-Zip`,pf
= [�pf\�

pf

:
] .
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Similar to Proposition 3.2.2, the perfection of the `-ordinary locusU
pf
` is isomorphic to [1/!

pf
i ]. Because

!i = !◦i ⋊ !0 (F@) by Lemma 3.2.1(2), we obtain

U
pf
` = [1/!0 (F@)] . (3.5.1)

If (+, d) is a %-representation, then we obtain a %pf-representation by pullback, which we denote by

dpf . This yields a vector bundle V(dpf) on �-Zip`,pf , which also coincides with the pullback of V(d)

under the natural map

�-Zip`,pf → �-Zip` .

By equation (3.5.1), we see that the space �0 (�-Zip`,pf ,V(dpf)) is naturally a subspace of +!0 (F@) .

Corollary 3.5.1. Let (+, d) ∈ Rep(%). We have

�0(�-Zip`,pf ,V(dpf)) = +!0 (F@ ) ∩
⋂
U∈Δ%

⊕
[a ] ∈-∗ () )/ΛΞU,rU

Fil
ΞU ,aU ,rU
XU

+[a ] .

Proof. Let 3 be the smallest positive integer such that ` is defined over F@3 . We show that

�0 (�-Zip`,pf ,V(dpf)) is given by the subspace of elements 5 ∈ + such that there exists = ≥ 1 with

5 ∈ �0 (�-Zip`,V(d (@
=3) )). Indeed, such a section is given by a map 5 : �

pf

:
→ + satisfying an �pf-

equivariance condition with respect to dpf . Because + is a scheme of finite type, such a map is given by

a map 5= : �: → + at a finite level of the system (· · ·
i3

−−→ �:
i3

−−→ �: ). We have

Fil
ΞU ,aU ,rU
XU

+
(@=3)

[@=3a ]
= Fil

ΞU ,aU ,rU
XU

+[a ] .

Hence, changing d to d (@
=) only affects +!i . The result follows. �

3.6. !-semisimplification

If d : % → GL(+) is an arbitrary representation, we can attach a %-representation (+, d!-ss) that is

trivial on 'u(%). The representation d!-ss is defined as the composition

d!-ss : %
\%
!
−−→ !

d
−→ GL(+),

where \%
!

: %→ ! is the natural projection map whose kernel is 'u(%), as defined in Subsection 2.2.1.

We call d!-ss the !-semisimplification of d. We sometimes write +!-ss to denote this representation

(even though the underlying vector space is the same as +).

One obvious property of+!-ss is (+!-ss)!i = +!i because !i ⊂ ! by Lemma 3.2.1(1). In particular,

by Corollary 3.2.3, we have for all (+, d) ∈ Rep(%) the equality

�0 (U`,V(d
!-ss)) = �0 (U`,V(d)). (3.6.1)

Note that this identification is somewhat indirect: It is not induced by a morphism between the sheaves

V(d) and V(d!-ss). For 5 ∈ �0(U`,V(d)), we will write 5 !-ss for its image under the identification

(3.6.1) and call it the !-semisimplification of 5 . As an element of+ , 5 !-ss is the same as 5 , but we want

to emphasise the fact that the representation has changed.

We now give another interpretation of !-semisimplification when % is defined over F@ . Write again

*` ⊂ �: for the unique open �-orbit and recall that 1 ∈ *` (see Subsection 3.2).
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Lemma 3.6.1. Assume that % is defined over F@ . There exists a unique regular map Θ : *` → ! such
that for any (0, 1) ∈ � , one has

Θ(01−1) = \%! (0)\
&

!
(1)−1. (3.6.2)

Furthermore, we have ! ⊂ *` and the inclusion ! ⊂ *` is a section of Θ.

Proof. First, note that because % is defined over F@ , one has ! = "; hence, the formula (3.6.2)

makes sense. The unicity of Θ is obvious. For the existence, consider the map Θ̃ : � → !; (0, 1) ↦→

\%
!
(0)\

&

!
(1)−1. Because % is defined over F@ , one has !i = !(F@) (Lemma 3.2.13). For all (0, 1) ∈ �

and all G ∈ !(F@), one has Θ̃(0G, 1G) = Θ̃(0, 1). Hence, Θ̃ factors to a map Θ : �/!(F@) ≃ *` → !.

This proves the first result. Now, if G ∈ !, we can write G = 0i(0)−1 with 0 ∈ ! by Lang’s theorem.

Hence, G ∈ *` and Θ(G) = 0i(0)−1 = G, so the second statement is proved. �

Example 3.6.2. Consider the case � = Sp(2=)F@ for = ≥ 1. We write an element of �: as

(
� �

� �

)

with �, �, �, � square matrices of size = × =. Let % ⊂ �: be the parabolic subgroup defined by the

condition � = 0 and& ⊂ �: the parabolic subgroup defined by the condition� = 0. We put ! = %∩&.

This gives a zip datum (�, %, !, &, !, i). The Zariski open subset *` ⊂ �: is the set of matrices in

�: for which � is invertible. The map Θ : *` → ! is given by

Θ :

(
� �

� �

)
↦→

(
� 0

0 � − ��−1�

)
.

Proposition 3.6.3. Assume that % is defined over F@ . Let (+, d) ∈ Rep(%) and let 5 ∈ +! (F@ ) . Let

5̃ be the corresponding function *` → + defined in (3.2.3). Then the function �5 !-ss : *` → + that
corresponds to the !-semisimplification 5 !-ss is the composition

*`
Θ
−→ ! ↩→ *`

5̃
−→ +.

Proof. Put 5 ′ = 5̃ ◦ Θ. For (0, 1) ∈ � and 6 ∈ *` such that 6 = 01−1, we have

5 ′(6) = 5 ′(01−1) = 5̃ (Θ(01−1))

= 5̃ (\%! (0)\
&

!
(1)−1) = d(\%! (0)) 5 = d

!-ss (0) 5 = �5 !-ss (6).

Hence, 5 ′ = �5 !-ss. �

Let 5 ∈ �0 (�-Zip`,V(d)) be a global section. We may view its restriction 5 |U` as a section of

V(d!-ss) over U` by the identification (3.6.1). It is thus natural to ask whether ( 5 |U` )
!-ss extends to

a global section over �-Zip`. We prove that this holds when % is defined over F@ in the following

proposition.

Proposition 3.6.4. Assume that % is defined over F@ . The identification (3.6.1) extends to a commutative
diagram

�0(�-Zip`,V(d)) �
�

//

� _

��

�0(�-Zip`,V(d!-ss))
� _

��

�0(U`,V(d))
=

// �0(U`,V(d
!-ss)).
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Proof. Let 5 ∈ �0(�-Zip`,V(d)). Because % is defined over F@ , we can apply Corollary 3.4.2 to

the representation (+, d). Furthermore, because 'u(%) acts trivially on (+!-ss, d!-ss), we can apply

Corollary 3.4.3 to (+!-ss, d!-ss). Therefore, it suffices to show that for each a ∈ -∗ ()),

+! (F@ ) ∩
⊕

a∈-∗ () )

Fil%
℘∗−1 (a)

+a ⊂ +! (F@ ) ∩+Δ%

≥0 .

By (3.4.3), it suffices to show the following: For any fixed a ∈ -∗ ()), if Fil%
℘∗−1 (a)

+a ≠ 0, then

〈℘∗−1 (a), U∨〉 ≥ 0 for all U ∈ Δ% . More generally, using (3.4.2), it suffices to show that for any U ∈ Δ%

and any integer 2 ∈ Z such that Fil−U2 +a ≠ 0, one has 2 ≥ 0. This is trivial by (3.3.1) because �
(0)
−U is the

identity map. �

Remark 3.6.5. Proposition 3.6.4 does not hold in general without the assumption that % is defined over

F@ , as an example in Subsection 6.2 shows.

4. The case of � = SL2,F@

4.1. Notation for SL2

Let �2 and �+
2

be the lower-triangular and upper-triangular Borel subgroup of SL2,: . Let )2 be the

diagonal torus of SL2,: . We put

D2 =

(
1 0

1 1

)
∈ �2 (:).

For A ∈ Z, let jA be the character of �2 defined by

(
G 0

I G−1

)
↦→ GA .

Let Std : SL2,: → GL2,: be the standard representation. Restrictions of jA and Std to subgroups are

denoted by the same notations.

4.2. Zip datum

Let � = SL2,F@ and ` : Gm,: → �: ; G ↦→ diag(G, G−1). Let Z` = (�, %, !, &, ", i) be the associated

zip datum. We have % = �2, & = �+
2

and ! = " = )2. We take (�,)) = (�2, )2) as a Borel pair and

take a frame as in Lemma 2.2.3. Denote by U the unique element of Δ . In our convention of positivity,

U = j2. Note that � = ∅ and Δ% = {U}. Identify -∗()) = Z such that A ∈ Z corresponds to the character

jA . The zip group � is equal to

{((
0 0

2 0−1

)
,

(
0@ 1

0 0−@

))
∈ �2 × �

+
2

}
.

The unique open �-orbit*` ⊂ �: is given by

*` =

{(
G H

I F

)
∈ SL2,:

���� G ≠ 0

}
.
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4.3. The space �0(�-Zip`,V(d))

Let d : � → GL(+) be a representation. We write the weight decomposition as + =
⊕

8∈Z+8 where )

acts on +8 by the character j8 for all 8 ∈ Z. We have

�0 (U`,V(d)) = +
! (F@ ) =

⊕
8∈(@−1)Z

+8

by Corollary 3.2.3. Because in this case the parabolic % = � is defined over F@ , we can apply Corollary

3.4.2 to compute the space of global section

�0(�-Zip`,V(d)).

Also, because) is split over F@ , the map ℘∗ is given by a ↦→ −(@−1)a; hence, ℘∗−1 (a) = −a
@−1

. We obtain

�0 (�-Zip`,V(d)) = +! (F@ ) ∩
⊕
8∈Z

Fil%−j8
@−1

+8 =
⊕

8∈−(@−1)N

Fil−U−8
@−1

+8 ,

where we used that Fil−U−8
@−1

+8 = 0 for 8 > 0. In particular, �0(�-Zip`,V(d)) is stable by ) and is

entirely determined by its weight spaces Fil−U−8
@−1

+8 ⊂ +8 for 8 ∈ −(@ − 1)N. Let (+, d) ∈ Rep(�) and set

= = dim(+). Set +≤8 =
⊕

9≤8 + 9 and +≥8 =
⊕

9≥8 + 9 . Then using Lemma 3.3.1, we have a �-stable

filtration

· · · ⊂ +≤8−1 ⊂ +≤8 ⊂ +≤8+1 ⊂ · · · .

For all 8 ∈ −(@ − 1)N, we have

�0 (�-Zip`,V(d))8 =

{
5 ∈ +8

���� d(D2) 5 ∈ +≥ (@+1)8
@−1

}
(4.3.1)

by the definition of Fil−U−8
@−1

+8 .

Lemma 4.3.1. Let (+, d) ∈ Rep(�) and < ∈ Z be the smallest weight of d. Then one has an inclusion⊕
8∈−(@−1)N,
(@+1)8≤(@−1)<

+8 ⊂ �
0(�-Zip`,V(d)). (4.3.2)

Proof. Let 5 ∈ +8 with 8 ∈ −(@ − 1)N and (@ + 1)8 ≤ (@ − 1)<. Then we have +
≥
(@+1)8
@−1

= + , so we have

5 ∈ �0 (�-Zip`,V(d))8 . �

The following example shows that �0(�-Zip`,V(d)) is not a sum of weight spaces of + in general.

Example 4.3.2. For 8 ∈ {1,−1}, let 48 be a nonzero vector of weight 8 of Std. Consider d := Std ⊗ Std

with basis 48 ⊗ 4 9 for 8, 9 ∈ {1,−1}. The weights of d are {2, 0,−2}, and dim(+2) = dim(+−2) = 1,

dim(+0) = 2. Then we have

�0(�-Zip`,V(d))0 = Span(41 ⊗ 4−1 − 4−1 ⊗ 41).

4.4. Property (P)

Proposition 4.4.1. Let d : �→ GL(+) be an algebraic representation. Let <1, . . . , <= be the weights
of + ordered so that <1 > <2 > · · · > <=. The following properties are equivalent:
(i) The subspace +'u (�) is one-dimensional (and hence is equal to +<= ).
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(ii) The intersection of all nonzero �-subrepresentations in + is nonzero.
(iii) For all 1 ≤ 8 ≤ =, we have dim(+<8 ) = 1 and for any E ∈ +<8 \ {0}, the projection of d(D2)E onto

+<= is nonzero.

Proof. We show (i)⇒ (ii). If, ⊂ + is a nonzero �-subrepresentation, then,'u (�) ⊂ +'u (�) . Because

,'u (�) ≠ 0, we have,'u (�) = +'u (�) and hence +'u (�) ⊂ , .

We show (ii) ⇒ (iii). We show that for any nonzero E ∈ +<8 the projection of d(D2)E onto +<=
is nonzero. For a contradiction, assume that it is zero. Because � = 'u(�)) , the �-subrepresentation

generated by E is generated by E as an 'u(�)-representation. Hence, this representation does not have

a nontrivial intersection with +<= by Lemma 3.3.1. This contradicts (ii). Hence, the claim follows. We

note that dim+<= = 1 by (ii). Assume that dim+<8 ≥ 2 for some 8. Then there is a nonzero E ∈ +<8
such that the projection to +<= of d(D2)E is zero. This is a contradiction.

We show (iii) ⇒ (i). Assume dim+'u (�) ≥ 2. Then +'u (�) contains +<8 for some 8 ≠ =. For any

nonzero E ∈ +<8 ⊂ +
'u (�) , the projection of d(D2)E onto +<= is zero. This is a contradiction. �

We say that (+, d) ∈ Rep(�) satisfies the property (P) if the equivalent conditions of Proposition

4.4.1 are satisfied.

Example 4.4.2. For _ ∈ -∗+ ()), the restriction to � of Ind
�:
�
(_) satisfies the property (P) by the last

sentence of Subsection 2.3.

Proposition 4.4.3. Assume that (+, d) ∈ Rep(�) satisfies the property (P). Then the inclusion (4.3.2)

is an equality; that is,

�0(�-Zip`,V(d)) =
⊕

8∈−(@−1)N,
(@+1)8≤(@−1)<

+8 .

Proof. In this case, the element d(D2) 5 in equation (4.3.1) has a nonzero projection onto +< by

Proposition 4.4.1(iii). Thus, if 5 ∈ �0(�-Zip`,V(d))8 , then we must have < ≥
(@+1)8
@−1

. This shows that

(4.3.2) is an equality. �

5. Category of automorphic vector bundles on �-Zip`

5.1. The category VB% (�-Zip`)

Recall the functor Rep(%) → VB% (�-Zip`) (Subsection 2.4.2). This functor is not fully faithful even

after restricting to the full subcategory Rep(!) ⊂ Rep(%) (see Subsection 2.4.3). Indeed, consider the

following example.

Example 5.1.1. Assume that % is defined over F@ . Let 1 ∈ Rep(!) be the trivial !-representation and

(+, d) ∈ Rep(!). Then HomRep(!) (1, +) = +
! , whereas we have

HomVB(�-Zip`) (V(1),V(d)) = �
0(�-Zip`,V(d)) = +! (F@ ) ∩+Δ%

≥0

by Corollary 3.4.3.

To overcome the problem, we introduce !i-modules with additional structures.

Definition 5.1.2. An !i-module with Δ%-monodromy is a pair ((g,+),N) where g : !i → GL: (+) is

a finite-dimensional representation of !i with a decomposition + =
⊕

a∈-∗ () ) +a as :-vector spaces

and N = {#
( 9)

U′
}U∈Δ% , U′∈ΞU , 9∈Z is a set of :-linear endmorphisms of + such that #

( 9)

U′
(+a) ⊂ +a+ 9 U′ ,

#
(0)
U′

= Id and #
( 9)
U′

= 0 for 9 < 0.

Morphisms are given as follows: Let ((g,+),N) and ((g′, + ′),N′) be two !i-modules with Δ%-

monodromy. Then a morphism ((g,+),N) → ((g′, + ′),N′) is a :-linear map 5 : + → + ′ that satisfies

the following:
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(1) 5 is an !i-equivariant morphism.

(2) For U ∈ Δ% , [j] ∈ Z<U/(Z<U )AU and j ∈ -∗ ()) such that [j] · rU > XU (j), we have∑
j∈[j]

∑
j′∈Z<U

(−1)
∑<U
8=1

9′
8 prj

(
#
′( 9′

1
)

U1
· · · #

′( 9′<U )
U<U

5 #
( 9<U− 9

′
<U
)

U<U
· · · #

( 91− 9
′
1
)

U1

)
= 0,

where prj denotes the projection

prj : Hom(+,+ ′) ≃
⊕

a,a′∈-∗ () )

Hom(+a , +
′
a′) →

⊕
a∈-∗ () )

Hom(+a , +
′
a+j).

We denote by !i-MNΔ% the category of !i-modules with Δ%-monodromy.

Remark 5.1.3. The condition (2) in Definition 5.1.2 means that 5 is compatible with N and N′ in some

sense. Assume that % is defined over F@ . Then the condition (2) in Definition 5.1.2 is simplified as

follows: For U ∈ Δ% , j ∈ -∗()) and 9 ∈ N such that 9AU,1 > XU (j), we have

prj
©­«

∑
0≤ 9′≤ 9

(−1) 9
′

#
′( 9′)
−U 5 #

( 9− 9′)
−U

ª®¬
= 0.

The morphism #
( 9)
−U is an analogue of # 9/ 9! for a monodromy operator # in characteristic zero. In this

sense,

5 ↦→
∑

0≤ 9′≤ 9

(−1) 9
′

#
′( 9′)
−U 5 #

( 9− 9′)
−U

is an analogue of 9 th iterate of

5 ↦→ 5 # − # ′ 5

divided by 9! for monodromy operators # and # ′ in characteristic zero.

We have the functor

�MN : Rep(%) → !i-MNΔ% ; (+, d) ↦→
(
(+, d |!i ), {�

( 9)
U′
}U∈Δ% , U′∈ΞU , 9∈Z

)

where we equip + with the natural )-weight decomposition + =
⊕

a +a .

Definition 5.1.4. An !i-module with Δ%-monodromy is called admissible if it is in the essential image

of �MN. We denote by !i-MNadm
Δ%

the category of admissible !i-modules with Δ%-monodromy.

Theorem 5.1.5. The functorV : Rep(%) → VB(�-Zip`) factors through the functor�MN : Rep(%) →

!i-MNadm
Δ%

and induces an equivalence of categories

!i-MNadm
Δ%
−→ VB% (�-Zip`).

Proof. For two %-representations (+, d) and (+ ′, d′), one has

HomVB(�-Zip`) (V(d),V(d
′)) = HomVB(�-Zip`) (V(1),V(d)

∨ ⊗ V(d′))

= HomVB(�-Zip`) (V(1),V(d
∨ ⊗ d′))

= �0 (�-Zip`,V(d∨ ⊗ d′))

= (+∨ ⊗ + ′)!i ∩
⋂
U∈Δ%

⊕
[a ] ∈-∗ () )/ΛΞU,rU

Fil
ΞU ,aU ,rU
XU

(+∨ ⊗ + ′)[a ] ,
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where we used Theorem 3.4.1 in the last line. We can see from the definition that this space coincides

with the space of homomorphisms �MN (+, d) → �MN (+
′, d′) using that the action of DU′ (G) on+∨⊗+ ′

is given by 5 ↦→ d′(DU′ (G)) ◦ 5 ◦ d(DU′ (−G)) for U′ ∈ ΞU. �

Let ( denote the good reduction special fibre of a Hodge-type Shimura variety, with the same

notations and assumptions as in Subsection 2.5. Recall that there is a functor V : Rep(%) → VB(( )

(see (2.5.1)), which induces functors

Rep(%)
V

//VB% (�-Zip`)
Z ∗

//VB% (( ) ,

where VB% (( ) also denotes the essential image of Rep(%) in VB(( ). We obtain the following

corollary in the context of Shimura varieties.

Corollary 5.1.6. The functor V : Rep(%) → VB% (( ) factors as

Rep(%)
�MN

// !i-MNadm
Δ%

Z ∗
// VB% (( ).

5.2. The category VB! (�-Zip`)

We assume that % is defined over F@ . Hence, in what follows, we have !i = !(F@).

Definition 5.2.1. Let VB! (�-Zip`) denote the full subcategory of VB(�-Zip`), which is equal to

the essential image of the functor Rep(!) → VB(�-Zip`). We call it the category of !-vector bundles

on �-Zip`.

For example, the automorphic vector bundles (V(_))_∈-∗ () ) (see Subsection 2.4.3) lie in the subcat-

egory of !-vector bundles on �-Zip`.

Definition 5.2.2. A Δ%-filtered !i-module is a pair ((g,+),F) where g : !i → GL: (+) is a finite-

dimensional representation of !i and F = {+ U≥•}U∈Δ% is a set of filtrations on + . Here, + U≥• denotes a

descending filtration (+ U≥A )A ∈R.

Morphisms are given as follows. Let ((g,+),F) and ((g′, + ′),F′) be two Δ%-filtered !i-modules.

Then a morphism ((g,+),F) → ((g′, + ′),F′) is a :-linear map 5 : + → + ′ that satisfies the following:

(1) 5 is an !i-equivariant morphism.

(2) For each U ∈ Δ% , the map 5 is compatible with the filtrations + U≥• and + ′U≥• in the sense that

5 (+ U≥A ) ⊂ +
′U
≥A for any A ∈ R.

We denote by !i-MFadm
Δ%

the category of Δ%-filtered !i-modules.

Let ((g,+),N) ∈ !i-MNΔ% . For U ∈ Δ% , define the U-filtration (+ U≥•) of + as follows: Let + =⊕
a +a be the weight decomposition of+ . For all A ∈ R, let+ U≥A be the direct sum of+a for all a satisfying

〈a, XU〉 ≥ A . We call+ U≥• the U-filtration of+ . Thus, we have a functor !i-MNΔ% → !i-MFΔ% . Taking

composition, we obtain

�MF : Rep(!) → Rep(%)
�MN
−−−→ !i-MNΔ% → !i-MFΔ% . (5.2.1)

Definition 5.2.3. A Δ%-filtered !i-module is called admissible if it is in the essential image of �MF.

We denote by !i-MFadm
Δ%

the category of admissible Δ%-filtered !i-modules.

Theorem 5.2.4. The functorV : Rep(!) → VB(�-Zip`) factors through the functor �MF : Rep(!) →

!i-MFadm
Δ%

and induces an equivalence of categories

!i-MFadm
Δ%
−→ VB! (�-Zip`).
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Proof. By Theorem 5.1.5, it suffices to show

Hom!i -MN
Δ%
(�MN (d), �MN (d

′)) = Hom!i -MF
Δ%
(�MF (d), �MF (d

′))

for (+, d), (+ ′, d′) ∈ Rep(!). This follows from Remark 5.1.3 and the definitions of morphisms in

!i-MNΔ% and !i-MFΔ% . �

6. Examples

6.1. The algebras '� and 'Δ

Fix a connected reductive group � over F@ , a cocharacter ` : Gm,: → �: and a frame (�,), I) for Z`

(Subsection 2.2.3). For _ ∈ -∗+ ()), denote by +Δ (_) the �-representation Ind�� (_). We add a subscript

Δ to avoid confusion with +� (_) = Ind!�! (_) for _ ∈ -∗
+,�
()) (see §2.4.3). Let VΔ (_) be the vector

bundle on �-Zip` attached to +Δ (_). We put

'� =
⊕

_∈-∗
+,�
() )

�0(�-Zip`,V� (_)) and 'Δ =

⊕
_∈-∗+ () )

�0(�-Zip`,VΔ (_)).

By (2.3.3), the :-vector spaces '� and 'Δ have a natural structure of :-algebra. They capture information

about all V� (_) and VΔ (_) at once.

Remark 6.1.1. In general, we do not know whether '� and 'Δ are finite-type algebras, but we conjecture

that this is the case. The algebra '� was studied in [Kos19]. In the case of � = Sp(4) with a cocharacter

` whose centraliser Levi subgroup is isomorphic to GL2, we showed that '� is a polynomial algebra in

three indeterminates [Kos19, Theorem 5.4.1].

In this first example, we examine 'Δ in the case of � = SL2,F@ with the zip datum explained in

Subsection 4.2. In this case, the algebra '� is very simple: It is a polynomial algebra in one indeterminate,

generated by the classical Hasse invariant. Let = ∈ N. The representation +Δ (j=) identifies with

Sym= (Std). The weights of +Δ (j=) are {−= + 28 | 0 ≤ 8 ≤ =}. By Example 4.4.2 and Proposition 4.4.3,

we have

�0 (�-Zip`,VΔ (j=)) =
⊕

8∈−(@−1)N,
(@+1)8≤−(@−1)=

+Δ (j=)8 (6.1.1)

for all = ≥ 0. Let G, H be indeterminates. Let SL2 act on : [G, H] by(
0 1

2 3

)
· % = %(0G + 2H, 1G + 3H).

Then +Δ (j=) = Sym= (Std) is the subrepresentation of : [G, H] spanned by homogeneous polynomials

in G, H of degree =. The highest weight vector is G=. By (6.1.1), we have

�0 (�-Zip`,VΔ (j=)) = Span:
(
G 9 H=− 9

�� 9 ≥ 0, @ − 1|= − 2 9 , (@ + 1) 9 ≤ =
)
.

Similarly, 'Δ is the subalgebra of : [G, H] generated by G 9 H=− 9 for all 0 ≤ 9 ≤ = with @ − 1|= − 2 9 and

(@ + 1) 9 ≤ =.

Proposition 6.1.2. The algebra 'Δ is generated by H@−1 and GH@ . In particular, it is a polynomial
algebra in two indeterminates.

Proof. It is clear that H@−1 and GH@ are elements of 'Δ . Let = ≥ 0 and 0 ≤ 9 ≤ = such that G 9 H=− 9 ∈ 'Δ .

We can write G 9 H=− 9 = (GH@) 9 H=−(@+1) 9 . Note that = ≥ (@ + 1) 9 and @ − 1 divides = − (@ + 1) 9 =

=− 2 9 − (@ − 1) 9 . It follows that G 9 H=− 9 lies in the subalgebra of : [G, H] generated by H@−1 and GH@ . �
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We give an interpretation of these sections. In the case of � = SL2,F@ , recall that for an F@-scheme

(, the groupoid �-Zip` (() consists of tuples H = (H, l, �,+) where

(1) H is a locally free O(-module of rank 2 with a trivialisation det(H) ≃ O( ,

(2) l ⊂ H is a locally free O(-submodule of rank 1 such that H/l is locally free and

(3) � : H(@) → H and+ : H→ H(@) are O(-linear maps satisfying the conditions Ker(�) = Im(+) =

l (@) and Ker(+) = Im(�).

Consider the flag space F� over �-Zip` parametrising pairs (H,L) with L ⊂ H a locally free O(-

submodule of rank 1 such that H/L is locally free. The natural projection map c� : F� → �-Zip`

is a P1-fibration. For = ∈ Z, the push-forward c�,∗ (L
−=) coincides with the vector bundle VΔ (j=).

Consider the map

L ⊂ H
+
−→ H

(@) → (H/L) (@) ≃ L
−@ ,

where we used that H/L ≃ L−1 by the trivialisation det(H) ≃ O( . We obtain a section of L−(@+1) . It

corresponds to the element GH@ in Proposition 6.1.2. On the other hand, the classical Hasse invariant

Ha ∈ �0((, l@−1) is given by the map + : l→ l (@) ≃ l@ . By sending Ha under the morphism

l ⊂ H→ H/L ≃ L
−1,

we obtain a section of L−(@−1) . This section corresponds to H@−1 in Proposition 6.1.2.

6.2. Example on !-semisimplification

We give an example that shows that Proposition 3.6.4 does not hold in general without the assumption

that % is defined over F@ . Let � = ResF
@2/F@ SL2,F

@2
and

` : Gm,: → �: ≃ SL2,: ×SL2,: ; I ↦→

((
I 0

0 I−1

)
,

(
1 0

0 1

))
.

Let Z` = (�, %, !, &, ", i) be the associated zip datum. We have % = �2 × SL2,: , ! = )2 × SL2,: ,

& = SL2,: ×�
+
2

and " = SL2,: ×)2. We take (�,)) = (�2 × �2, )2 × )2) as a Borel pair and take a

frame as in Lemma 2.2.3. Then Δ% consists of one root U = j2 ⊠ j0. We have

!i =

{((
G 0

0 G−1

)
,

(
G@ H

0 G−@

))
∈ !

���� G ∈ F×@2 , H
@
= 0

}
.

We have

XU =
−U∨ − @f(U∨)

@2 − 1
, rU =

(
@2 + 1

@2 − 1
,
−(@2 + 1)

@(@2 − 1)

)
,

(Z2)rU = {(=1, =2) ∈ Z
2 | @=1 = =2}.

We define d : %→ GL(+) by

(
Sym@2−1 (Std) ⊗ j@2−1

)
⊠ Sym@2−1(Std(@) ).

We write (+ ′, d′) for (+!-ss, d!-ss). Then we have +!i = + and + ′!i = + ′. We put a = j0 ⊠ j−@ (@2−3) .

We have

+[a ] = +a ⊕ +a+U−@f (U) .
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We parametrise elements [j] ∈ Z2/(Z2)rU by classes [(0, 9)] with 9 ∈ Z. Using this notation, we have

Fil
ΞU ,aU ,rU
XU

+[a ] =
⋂
9∈Z

⋂
j∈[a+ 9 f (U) ],
9AU,2>XU (j)

Ker

(∑
91∈Z

prj ◦�
( 91)
−U ◦ �

( 9+@ 91)

f (U)
: +[a ] → +j

)

because (−1) 91 (−1) 9+@ 91 = (−1) 9 ∈ : . We have +j ≠ 0 if and only if j = a + 81U + @82f(U) for

0 ≤ 81 ≤ @
2 − 1 and −1 ≤ 82 ≤ @

2 − 2. For j = a + 81U + @82f(U), the conditions j ∈ [a + 9f(U)] and

9AU,2 > XU (j) hold if and only if 9 = @(81 + 82) and 82 − 81 > @
2 − 2 − 2/(@2 − 1). Hence,

j ∈ [a + 9f(U)], 9AU,2 > XU (j), +j ≠ 0⇐⇒ j = a + @(@2 − 2)f(U), 9 = @(@2 − 2).

We put j0 = a + @(@2 − 2)f(U) and 90 = @(@2 − 2). Then we have

Fil
ΞU ,aU ,rU
XU

+[a ] = Ker
(
prj0
◦
(
�
( 90)

f (U)
+ �

(1)
−U ◦ �

( 90+@)

f (U)

)
: +[a ] → +j0

)
=

{
(E1, E2) ∈ +a ⊕ +a+U−@f (U)

��� � ( 90)
f (U)
(E1) + (�

(1)
−U ◦ �

( 90+@)

f (U)
) (E2) = 0

}
.

We note that

�
( 90)

f (U)
: +a → +j0

, �
(1)
−U ◦ �

( 90+@)

f (U)
: +a+U−@f (U) → +j0

are isomorphisms. In the same way, we have

Fil
ΞU ,aU ,rU
XU

+ ′[a ] = Ker
(
prj0
◦�
( 90)

f (U)
: + ′[a ] → + ′j0

)
= + ′

a+U−@f (U)

using �
(1)
−U = 0 for (+ ′, d′). Hence, Fil

ΞU ,aU ,rU
XU

+[a ] ⊄ Fil
ΞU ,aU ,rU
XU

+ ′
[a ]

. Therefore, we have

�0 (�-Zip`,V(d)) ⊄ �0 (�-Zip`,V(d′)).

6.3. The case of the unitary group* (2, 1) with ? inert

In this subsection, we examine an example that arises in the study of Picard surfaces. These are Shimura

varieties of PEL type (in particular, of Hodge type) attached to unitary groups G over Q with respect to

some totally imaginary quadratic extension E/Q. We impose that GR ≃ GU(2, 1). We choose a rational

prime ? that is inert in E and consider the attached zip datum (�, %, &, !, ", i). Because ? is inert, the

parabolic % is not defined over F? . We study the space �0 (�-Zip`,V� (_)). To simplify, we will work

with a unitary group*, instead of a group of unitary similitudes GU. The case of GU is very similar.

Let (+, k) be a 3-dimensional vector space over F@2 endowed with a nondegenerate Hermitian form

k : + × + → F@2 (in the context of Shimura varieties, take @ = ?). Write Gal(F@2/F@) = {Id, f}. We

take a basis B = (E1, E2, E3) of + where k is given by the matrix

� =
©­«

1

1

1

ª®¬
.

We define a reductive group � by

� (') = { 5 ∈ GLF
@2
(+ ⊗F@ ') | k' ( 5 (G), 5 (H)) = k' (G, H), ∀G, H ∈ + ⊗F@ '}

for any F@-alegebra '. One has an identification �F
@2
≃ GL(+), given as follows: For any F@2 -algebra

', we have an F@2 -algebra isomorphism F@2 ⊗F@ ' → ' × ', 0 ⊗ G ↦→ (0G, f(0)G). By tensoring

with + , we obtain an isomorphism + ⊗F@ ' → (+ ⊗F@2
') ⊕ (+ ⊗F

@2
'). Then any element of � (')
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stabilises this decomposition and is entirely determined by its restriction to the first summand. This

yields an isomorphism as claimed. Using the basis B, we identify �F
@2

with GL3,F
@2

. The action of f

on the set GL3 (:) is given as follows: f · � = �f(C�)−1�. Let ) denote the maximal diagonal torus

and � the lower-triangular Borel subgroup of �: . Note that by our choice of the basis B, the groups �

and ) are defined over F@ . Identify -∗ ()) = Z3 such that (:1, :2, :3) ∈ Z
3 corresponds to the character

diag(G1, G2, G3) ↦→
∏3
8=1 G

:8
8

. The simple roots are Δ = {41 − 42, 42 − 43}, where (41, 42, 43) is the

canonical basis of Z3.

Define a cocharacter ` : Gm,: → �: such that ` is given by G ↦→ diag(G, G, 1) via the identification

�: ≃ GL3,: . Let Z` = (�, %, !, &, ", i) be the associated zip datum. Note that % is not defined over

F@ . One has � = {41 − 42} and Δ% = {U} with U = 42 − 43.

Lemma 6.3.1. Let � be the function on �: defined by

�
(
(G8, 9 )1≤8, 9≤3

)
= G

@

1,1
Δ1 − G

@

2,1
Δ2 with

{
Δ1 = G1,1G2,2 − G1,2G2,1,

Δ2 = G1,1G2,3 − G2,1G1,3.

The `-ordinary stratum*` ⊂ �: is equal to the complement of the vanishing locus of �.

Proof. In this case, there is a unique �-orbit of codimension 1 by the first part of Theorem 2.2.4.

Furthermore, this �-orbit is dense in �: \*` by the closure relation. Hence, it suffices to show that �

does not vanish on*`. The group � consists of pairs (G, H) ∈ % ×& with

G =
©­«
0 1 0

2 3 0

4 5 6

ª®¬
and H =

©­«
6@ ℎ 8

0 3@ 1@

0 2@ 0@

ª®¬
−1

.

Because 1 ∈ *`, the open*` consists of elements of the form GH−1. We find

� (GH−1) = (06@)@6@3@ (03 − 12) − (26@)@6@1@ (03 − 12) = 6@
2+@ (03 − 12)@+1.

This expression is nonzero, so the result is proved. �

We have

!i =



©­«
0 1

3

0−@

ª®¬
∈ !

������ 0, 3 ∈ F×@2 , 3
@+1

= 1, 1@ = 0



.

The endomorphism ℘∗ : -∗ ())R → -∗())R is given by the matrix

℘∗ =
©­«
1 @

1 + @

@ 1

ª®¬
.

Hence, it follows that XU = ℘−1
∗ (U

∨) = 1
@2−1
(−@, @ − 1, 1). We have <U = 2, aU = (−1,−1), ΞU =

(−U, f(U)) and

rU =

(
@2 − @ + 1

@2 − 1
,
−@2 + @ − 1

@(@2 − 1)

)
, (Z2)rU = {(=1, =2) ∈ Z

2 | @=1 = =2}.

The group ΛΞU ,rU is

ΛΞU ,rU = Z(@,−(@ + 1), 1).
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Let _ = (_1, _2, _3) be an !-dominant character (i.e., _1 ≥ _2) and consider the !-representation

+� (_). We simply write + for +� (_) sometimes. Under the isomorphism

GL2 ×Gm → !; (�, I) ↦→

(
�

I

)
,

the representation + corresponds to the representation

det
_2

GL2
⊗ Sym_1−_2 (StdGL2

) ⊗ b_3
,

where bA is the character of GL2 ×Gm given by (�, I) ↦→ IA . Hence, + is a representation of dimension

_1 − _2 + 1 and it has weights

a8 := (_1 − 8, _2 + 8, _3), 0 ≤ 8 ≤ _1 − _2.

Note that the difference a8 − a8′ of two weights is never in ΛΞU ,rU unless 8 = 8′. Therefore, +[a ] = +a for

all a ∈ Z3. One deduces

+!i =

⊕
@ |8, @+1 |_2+8,

@2−1 |_1−8−@_3

+a8 .

It remains to determine Fil
ΞU ,aU ,rU
XU

+a , which is either 0 or+a . We parametrise elements [j] ∈ Z2/(Z2)rU
by classes [(0, 9)] with 9 ∈ Z. Then, an element j ∈ [j] can be written as (0, 9) + 91(1, @) with 91 ∈ Z.

Using this notation, we obtain

Fil
Ξ,a,r
X

+a =
⋂
9∈Z

⋂
j∈[a+ 9 f (U) ],
9AU,2>XU (j)

Ker

(∑
91∈Z

prj ◦�
( 91)
−U ◦ �

( 9+@ 91)

f (U)
: +a → +j

)

because (−1) 91 (−1) 9+@ 91 = (−1) 9 ∈ : . We have �
( 91)
−U = 0 unless 91 = 0 because U ∈ Δ% and + is

trivial on 'u (%). Hence, in the sum appearing in the above formula, only the case 91 = 0 contributes.

Furthermore, �
( 9)

f (U)
(+a) ⊂ +a+ 9 f (U) . Hence, we have

Fil
Ξ,a,r
X

+a =
⋂

9>@ 〈a, XU 〉

Ker
(
�
( 9)
41−42

: +a → +a+ 9 (41−42)

)
.

Take a = a8 for some 0 ≤ 8 ≤ _1 − _2. We deduce Fil
ΞU ,aU ,rU
XU

+a8 = +a8 if and only if for all 9 ≥ 0 such

that 9 > @〈a8 , XU〉, one has �
( 9)
41−42
(+a8 ) = 0. Computing explicitly the representation + , one sees that

this space is zero if and only if the binomial coefficient
( 8
9

)
is divisible by ?. In particular, it is never

zero for 9 = 8. We deduce that

Fil
ΞU ,aU ,rU
XU

+a8 = +a8 ⇐⇒ 8 ≤ @〈a8 , XU〉.

Furthermore, we find

〈a8 , XU〉 =
8(2@ − 1)

@2 − 1
+

1

@2 − 1
(−@_1 + (@ − 1)_2 + _3).

For _ = (_1, _2, _3) ∈ -
∗
+,�
()), we put

� (_) =
@

@2 − @ + 1
(@_1 − (@ − 1)_2 − _3).

We deduce the following.
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Proposition 6.3.2. We have

�0 (�-Zip`,V� (_)) =
⊕

@ |8, @+1 |_2+8,

@2−1 |_1−8−@_3 , 8≥� (_)

+� (_)a8 . (6.3.1)

(1) For example, take _ = (1+ @, 1, @). Then one sees that+� (_)
!i = +� (_)a@ , where a@ = (1, 1+ @, @).

One finds � (_) = @; hence, �0 (�-Zip`,V� (_)) = +� (_)a@ .

(2) Similarly, take _ = (1, 0, @). Then we find +� (_)
!i = +� (_)a0

, where a0 = _ = (1, 0, @). We have

� (_) = 0; hence, again �0(�-Zip`,V� (_)) = +� (_)a0
.

(3) Take _ = (@ + 1, @ + 1, @2 + @). Then+� (_) is a 1-dimensional representation of ! (i.e., a character),

and +� (_)
!i = +� (_). Because � (_) = −

@ (@2−1)

@2−@+1
< 0, we have �0 (�-Zip`,V� (_)) = +� (_). It is

spanned by the `-ordinary (nonclassical) Hasse invariant � given by Lemma 6.3.1, also constructed

in [GN17] and [KW18].

Recall the cone �zip ⊂ -
∗
+,�
()) studied in [Kos19], [GK18], defined as the set of _ ∈ -∗()) such

that �0(�-Zip`,V� (_)) ≠ 0. In this example, we deduce that it is the set of _ ∈ -∗
+,�
()) such that there

exists 0 ≤ 8 ≤ _1 − _2 satisfying the four conditions listed below the direct sum sign of (6.3.1). For a

cone � ⊂ -∗()), write 〈�〉 for the saturated cone of �; that is, the set of _ ∈ -∗()) such that #_ lies

in � for some positive integer # .

Corollary 6.3.3. We have

〈�zip〉 =
{
(_1, _2, _3) ∈ Z

3 | _1 ≥ _2, (@ − 1)_1 + _2 − @_3 ≤ 0
}
.

Proof. Assume that_ ∈ �zip. Then, in particular,_1−_2 ≥ � (_), which amounts to (@−1)_1+_2−@_3 ≤

0. Conversely, assume that _ ∈ -∗
+,�
()) satisfies _1 − _2 ≥ � (_). Then, after changing _ to @(@2 − 1)_,

we find that 8 = _1 − _2 satisfies the four conditions below the direct sum sign of (6.3.1); hence,

_ ∈ 〈�zip〉. This terminates the proof. �

Remark 6.3.4. The two sections of weight (1 + @, 1, @) and (1, 0, @) given in (1) and (2) are partial

Hasse invariants (viewing them as a section of the stack of zip flags �-ZipFlag`, their vanishing locus

is a single flag stratum; see [Kos19, §1.3] for details). Their weights generate the cone 〈�Sbt〉 defined in

[Kos19, Definition 1.7.1]. The cone 〈�zip〉 is not spanned by these weights because � does not satisfy

the equivalent conditions of [Kos19, Lemma 2.3.1]. We also refer to [GIK21] for a general study of the

cone �zip as well as related results.
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