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ON GENERALISED TOROIDAL-POLOIDAL SOLUTIONS
OF VECTOR FIELD EQUATIONS
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Abstract

The orthogonal coordinate systems £'(i = 1,2,3) are determined, in which the
generalised toroidal and poloidal fields, defined respectively by T{T} = V x
{TV£*} and S{S} = V x T{S}, have the following three properties:

GP1 Decoupling of the vector Helmholtz equation: There exist linear
differential operators L\ and Li such that Hu = 0, where H
is the vector Helmholtz operator [see equation (1)] and u =
T{T} + S{S}, if and only if LiT = 0 and L2S = 0.

GP2 Orthogonality

GP3 Closure: V x S{S} is a T field.

Two choices of T and S fields are considered: type I fields with potentials T and
S, which may depend on f 1 , ? 2 and f3, and type II fields with ^-independent
potentials. It is shown that properties GP1-GP3 only hold for type I fields in
spherical and cylindrical coordinate systems, and for type II fields in azimuthal
and cylindrical coordinate systems with axisymmetric and two-dimensional poten-
tials, respectively. Analogues of GPl for the vector wave and diffusion equations,
and the Navier equation of linear elasticity, are also only true in the same four
cases. Generalisations of type I and II T and S fields to arbitrary coordinate
systems are indicated.

1. Introduction

The vector Helmholtz equation

Hu = (V2 + Jfc2)u = 0, (1)
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[2] Vector field equations 437

where V2 = V(V-) - V x (Vx) is the vector Laplacian and k is a constant,
possesses solutions of the form (Lamb [9])

u = Vtf + T{T} + S{S}, (2)

where
T{T} = V x {Tr}, S{5} = V x T{5}, (3)

r being the radius vector from the origin O. Indeed, u satisfies the vector
Helmholtz equation (1) if and only if U, T and S are solutions of the system

HT = (V2 + k2)T = 0, (4a)

rdrHU - L2S = 0, HU + dTrHS = 0. (4b,c)

The notation V2 is used for both the scalar and vector Laplacians; r = |r|,
dr = d/dr; and L2 = L • L, where L = — r x V is related to the quantum
mechanical angular momentum operator.

The three terms on the right hand side of (2) are usually referred to respec-
tively as the scaloidal, toroidal and poloidal parts of u; U, T and 5 are the
corresponding potentials. In a spherical shell V concentric with O, the fields
satisfy the following extensive list of properties, collected here for reference; /
and g denote arbitrary functions.

PI Linearity

P2 Solenoidal property. V • T{T} =0 , V • S{5} = 0.

P3 Spherical geometry, (i) r • T{T} = 0;
(ii) r • S{5} = 0 <*• S{5} = 0.

P4 Closure: V x S{5} = T{-V 2 S}.

P5 Commutativity.

0)
(ii)

(iii)
(iv)

ifc
dt
V2

H

P6 Orthogonality. fv T{T} VUdV = O Jv T{T} • S{S} dV = 0.

P7 Toroidal and poloidal gauge invariances: T{T + f(r)} = T{T},

P8 Scaloidal-poloidal guage invariance: If U' = U + $ and 5 ' =
S + *, where rdr$ - L2^l = 0 and $ = drr* = /(r), then
VU + S{S} = Vf/' + S{5'}.
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438 D. J. Ivers [3]

P9 Completeness: Representation (2) is complete for C1 vector
fields; for solenoidal fields the scaloidal term is omitted.

P10 Uniqueness: The potentials of u, which are determined from the
equations

L2T = - r • V x u, (5a)

V2t/ = V u, L2S - rdrU = - r • u, (5b,c)

are only partially unique, for

u = 0 o T = f(r), L2S - rdrU = 0, drrS + U = g(r).

Consequently, the toroidal part of u is unique, but the scaloidal
and poloidal parts of u are only unique up to the gauge of prop-
erty P8.

Most of the above properties are obvious. The closure property P4 follows from
curling the expression S{5} = -(V2S)r + Vdr(rS). The commutativity prop-
erties P5(iii) and (iv) are easy consequences of P4. The vanishing of a poloidal
field without a radial component, P3(ii), follows from the identity

r-S{S} = -L2S (6)

and the property of the operator L2,

L2S = 0 o T{S} = 0<*S = /(r) , (7)

which is established by integrating the identity SL2S = V • ( S r x T{5}) -
(T{5})2 over V and applying the divergence theorem. The difficult completeness
property P9 is shown in [1] and [4]. Equation (5a) of P10 is r • V x (2), (5b) is
V • (2) and (5c) is the radial component of (2). Two applications of (7) to (5)
when u = 0 completes P10.

The proof of (4) is easy: property P5(iv) implies, assuming Hn = 0,

V{HU) + T{HT} + S{HS} = 0, (8)

from which (4) follow by P10, and the use of P7 to remove the arbitrary functions
/ and g arising from P10. If fc ^ 0, (4b) and (4c) can be simplified using
the second gauge invariance property P8 to introduce the new potentials U' =
U - k~2HU and 5 ' = 5 - k~2HS. U' and S' give the same solution u as U
and S, but HU' = 0 and HS' = 0, since by (4b,c) V2HU = 0 = V2HS. This
establishes a fundamental property of scaloidal, toroidal and poloidal fields:

P l l Decoupling of the vector Helmholtz equation: If k ^ 0, then
Hu = 0 <* HU = 0, HT = 0, HS = 0.

If k = 0 the decoupling property P l l is no longer true: r = V(r2/2) satisfies
V2r = 0, but V2(r2/2) = 3 ^ 0 ; usually additional conditions must be satisfied.
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For solenoidal fields the scaloidal potential can be taken as zero and then P l l
does hold with U — 0. If the vector Helmholtz equation contains a source term
f, so that Hu = f, there exist u, t and s such that f = Vu + T{t} + S{s}. Then
HU, etc., in (8), and hence in (4) must be replaced by HU - u, etc.

There are analogues of the decoupling property P l l for vector field equations
other than the Helmholtz equation, such as the wave and diffusion equations,

d2u = c2V2u, dtu = r?V2u (9)

and the Navier equation of linear elasticity,

dt
2u = a2V(V • u ) - / ) 2 V x V x u , (10)

in which the dominant term is the vector Laplacian or either of the related
operators, V x Vx or V(V). Equations (9) reduce to (1) if the time dependence
is separated out. Alternatively, the commutativity of dt and H, property P5(ii),
can be used to decouple (9) into scalar wave and diffusion equations for U, T
and S. Of course, decoupling will only be effective if the boundary conditions
decouple. Even if complete decoupling of the potential equations cannot be
achieved due to the presence of operators which do not commute with V, T
or S, a scaloidal-toroidal-poloidal decomposition can still be useful, particularly
numerically. For example, the equation

dtB = T?V2B + V x (v x B), (11)

for the solenoidal magnetic induction B in an electrically conducting fluid moving
with velocity v, can be decomposed into an infinite coupled set of differential
equations in t and r with the aid of a toroidal-poloidal decomposition of B and
spherical harmonic expansions of the potentials [3]. For freely-decaying magnetic
fields, that is, when v = 0, the induction equation (11) reduces to (9b).

In generalising the representation (2) and (3) to nonspherical geometries, only
solenoidal fields need be considered, since scaloidal fields are defined indepen-
dently of the geometry, unlike toroidal and poloidal fields, which satisfy property
P3. Accordingly,

Vu = 0. (12)

A natural generalisation of (2) and (3) to other geometries is

= Vx{Te 1 } , S{5} = V x T { 5 } , (13)

where e1 = Vf1 = ei/if1, e* and hi being the unit vectors and scale factors
of an orthogonal coordinate system f*(i = 1,2,3). For example, V x {Tz} and
V x V x {Tz}, where z is a cartesian coordinate, are commonly used in plane
geometries. The fields defined by (13) will be referred to as T and S fields. Some
of the properties P l -P l l of toroidal and poloidal fields generalise immediately,
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such as the geometrical property P3(i): T fields are orthogonal to £x -surfaces,
that is,

ex • T{T} = 0, (14)

which follows from V x e1 = 0. The other properties are not quite as easily or
obviously generalised. One generalisation of the decoupling property P l l is:

GPO T and S decoupling of the vector Helmholtz equation: There
exists a function w(^) such that HT{T} = 0 o H{wT) = 0
and HS{5} = 0 <* H{wS} = 0.

It is shown in [12] that GPO holds if the scale factors /i, and w satisfy

d1d1w = 0, hi = l, d1(h2/h3)=0, (15)

where &i = d/8%1, etc. The separable coordinate systems of the scalar Helmholtz
equation ([11], [12]) which satisfy conditions (15) are listed in [12]. The Navier
equation (see [10]) analogue of GPO is also true for general fields, if conditions
(15) are satisfied; similar results hold for axisymmetric fields ([6]).

An alternative generalisation of toroidal and poloidal fields,

U , = e 1 x V T , Up = e i S + V*7, (16)

has been given by Radler [13], based on a nonstandard definition of a poloidal
field, Up = rS + V[/, which combines the more usual definitions (2) and (3) of
scaloidal and poloidal fields. Unlike T fields, Ut fields are not solenoidal in a
coordinate system unless

h^htf1), (17a)

in which case Ut = T{hiT}. Radler did not consider any generalised decoupling
property for the fields Ut and Up, but did show that if

di(h2/h3) = 0 (17b)

and (17a) are satisfied, then the closure property

V x Ut is a Up field, V x Up is a Ut field, (18)

holds. Property (18a) is not generally true, unlike the corresponding property
(13b) for T and S fields. Condition (17a) can be reduced to (15b) by transform-
ing to the new coordinate system f * given by

since Ut and Up are unchanged by the transformation. From the vanishing of
the Riemann curvature tensor of the orthogonal metric satisfying (17), Radler
showed that the Gaussian curvature of the f * -surfaces must either be zero or a
positive constant. It follows from Minding's Theorem [15] that the surfaces are
either planes or spheres. Radler concluded that the coordinate system must be
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[6] Vector field equations 441

either cylindrical with 61 = z, or spherical with ei = r, but omitted detailed jus-
tification. Some care is needed for there are other coordinate systems possessing
plane coordinate surfaces, e.g. the surfaces of the azimuthal angle about an axis.

The purpose of this paper is to determine those T and S fields for which the
following generalised decoupling property holds:

T and S decoupling of the vector Helmholtz equation: There are GP1
linear scalar differential operators L\ and Lv such that if u is
given by the representation (2) and (13),

Hu = 0 «• L{T = 0, L2S = 0. (19)

Property GP1 generalises P l l but unlike GPO it does not require that T and
S satisfy the same equation. Furthermore, all orthogonal coordinate systems
are examined, not just separable systems of the scalar Helmholtz equation as in
[12]. The results are applicable to analogues of the decoupling property GP1 for
several related field equations, which will therefore not receive separate treatment
(but see Section 5 for a discussion).

In Section 2, necessary conditions on e, and hi for the decoupling property
GP1 to hold are derived for two types of T and S fields:
Type I: T and S may depend on £ \ f2 and f3;
Type II: the ^-components of T and S fields are independent of f *.
Type II fields generalise axisymmetric solenoidal fields. The conditions necessary
for GP1 are also shown to be necessary for

GP2 Orthogonality. fv T{T} • S{S} dV = 0;

GP3 Closure: V x S is a T field.

The type I conditions are precisely (17).
In Section 3, ei and /i, are explicitly determined for type I fields by using

conditions (17) to integrate the structural equations (33) for the unit vectors
e, and their integrability conditions (34) and (35), which are equivalent to the
vanishing of the Riemann curvature tensor. The approach is more direct and
complete than in [13]. The same method is used for type II fields in Section 4.
Section 5 summarises the results of Sections 3 and 4, discusses analogues of GP1
for several other field equations and indicates possible generalisations of T and
S fields.

2. The conditions determining ei and fx

If T and S are the solutions of the decoupled system of homogeneous partial
differential equations (19), then T{T} and S{5} must individually satisfy the
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vector Helmholtz equation (1). It suffices o posteriori to examine T{T} alone,
and to assume that all functions which occur are sufficiently diflFerentiable. The
following three expressions are needed:

T{T} = e2H2d3T - e3H3d2T, (20)

S{5} = -elhlL2S + e2H2diHzd2S + e3H3dxH2d3S (21)

and

VxS{5} = T{-h2
1L

2S}-e2H2d1H3d1H2d3S+e3H3d1H2d1H3d2S-e1H1AS,
(22)

where Hi = h.2/(hih2h3), L2 = L L with L = - e 1 x V and

AS = d3H2diH3d2S-d2H3diH2d3S. (23)

If T{T} is substituted into the vector Helmholtz equation (1), and (22) is used,
there results

T{{h\L2 + k2)T) + e2H2d1H3d1H2d3T - e3H3d!H2diH3d2T + e1/^ AT = 0.
(24)

The ei-component of (24) is AT = 0, or

= 0 (25)

expanding the operator A denned by (23). Comparing (20) and (24) it is clear
that the second and third terms on the left-hand side of (24) constitute a T field
if and only if there exists a potential f such that

d2f = diH2diH3d2T, d3f = dxH^H^T. (26)

T exists if and only if (26) are integrable, which is true if and only if d\ AT = 0;
by (25) f does exist. Equation (24) can be written as T{f+ {h\L2 + k2)T} = 0.
Hence

T + {h2L2 + k2)T = /(e1), (27)

where / is an arbitrary function.
If T is to be determined by a single scalar equation, either (25) or (27) must

be satisfied identically in T through constraints on the scale factors hi. This is
impossible for (27), as an examination of the coefficients of the highest deriva-
tives of T will reveal. Thus (25) must be the identity in T: for type I fields the
coefficient of each derivative of T in (25) must vanish. Some simple manipula-
tions reduce the resulting equations to (17), the type I necessary conditions for
property GP1.

The derivatives of type II T potentials are not all arbitrary for the e,-compo-
nents of T{T} are independent of fx if and only if

(28)
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and
di(hih2) = 0, di{hih3) = 0. (29a,b)

Since an additive function of £* in the potentials T and S can be dropped by
the obvious generalisation of property P7 to T and S fields, (28) imply type II
fields have fJ -independent potentials. Thus the second and third terms in (25)
drop out; and (25) is an identity in T only if the coefficients of the remaining
derivatives of T vanish, that is,

d2d1hX2 = 0, dsdxhi2 = 0, (29c,d)

noting (29a,b). Thus type II fields exist only in coordinate systems which satisfy
(29a,b), and they have the generalised decoupling property GPl only if condi-
tions (29) are satisfied.

T and S fields also have the orthogonality property GP2 only if (25) is sat-
isfied. For, if V is the domain of interest some standard vector manipulations
yield

f T{T} • S{S}dV = f Te1 x S{5} • dS - f Te1 • V x S{S}dV,
JV JdV JV

which vanishes only if
e1 • V x S{5} = 0, (30)

since T is arbitrary or f1 -independent in V, and if Te1 x S{5} • n = 0 on dV
where n is the outward normal to dV. By (22), (30) is equivalent to (25). The
second condition is satisfied without the need for any boundary conditions on T
or 5 if n = ei, i.e. if dV consists of ^-surfaces; otherwise boundary conditions
must be imposed on T and S. Condition (30), and hence (25), is also necessary,
and even sufficient, for T and S fields to possess the closure property GP3.
For, if V x S{5} is a T field, (30) follows from the geometric property (14) of
T fields. Conversely, if (30) holds then AS = 0, so there exists S such that
V x S{S} = T{-S - hlL2S}. Thus type I [type II] fields have the orthogonality
property GP2 or the closure property GP3 only if the conditions (17) [(29)] are
satisfied.

3. Type I T and S fields

From the conditions on the hi necessary for type I fields to have property
GPl, namely (17), both ei and f1, and hence T{T} and S{5}, are determined.
For this purpose are needed (i,j, k = 1,2,3): the equations defining e, and /i,

diT = hi*; (31)

the orthogonality condition
e,- • e,- = 6if, (32)
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the structural equations
3

dft = (djhi/hjfa - Sij £ (dmhj/KJem-, (33)
m=l

and the integrability conditions [7] on (33), namely

diidihj/hi) + djidjhi/hj) + (dkhi)(dkhj)/hl = 0 (34)

and
didjhk - {djh^dih^/hi - (dihj^djh^/hj = o. (35)

Sij denotes the Kronecker delta and i ̂  j ' ^ k ̂  i in (34) and (35). Integrating
(35) for A; = 2,3 using (17b) gives

dMhihi = G{?) = dihs/hihz, (36)

where G is arbitrary. The cases G ̂  0 and G = 0 must be treated separately.
(a) G ̂  0. Equations (17a), (34) for i = l,j = 2 and (36a) give &iG~l = hi.

Thus equation (36) becomes

dih2/(hih2) = 1/h = dih3/{hihz), (37)

where

f e e (38)
The determination of ei and Z1 is now easy. By (31) for i = 1, (33) for i = j = 1
and (38), di(r - hei) = 0. Further, by (31) for i = 1, (33) for i = 2, j = 1
and (37), #2(r — hei) = 0. Similarly, ^ ( r - hei) = 0. Thus r — hei is a
constant vector, which may be taken as zero by a shift of the origin 0. Hence the
coordinate system is spherical, i.e. r = hei, &i = r, /i(fJ) = r. The coordinate
f1 is determined up to the unknown function h, which remains arbitrary. T{T}
and S{5} are the usual toroidal and poloidal fields.

(b) G = 0. From (36), dih2 = 0 = difc3- Together with (33) for i = 1,2,3,
j = l and (17a), this implies that ei is a constant vector. Then di(r - hei) = 0
using (31) for i = 1 and (38). Further, by (31) for i = 2 and (32),

#2[ei ' ( r ~ hei)} = «i • #2(r — hei) = ei • h2e2 = 0.

Similarly, ^ [ e j • (r — hei)] = 0. Thus ei • (r — hei) is a constant which may be
set to zero by adjusting the constant of integration in h. Then r = hei + fj_,
where f i l e i and fj_ depends only on £2 and f3. The coordinate system must
be cylindrical and we can take ei = z and h{£}) = z.

4. Type II T and S Fields

Now consider type II fields. By the conditions (29a,b) on the hi for type II
fields, di(h2/h3) = 0, so that (36) holds for type II fields. [The derivation of (36)
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[10] Vector field equations 445

depended only on (17b) and (34).] Hence from (36) and (29a,b), d ^ 1

Integrating, /if1 = /G(^1)d^1 + #(£2f3) , where H is arbitrary. Substituting
this expression for h^1 into (29c,d) yields Gd2H = 0 = Gd3H. Thus without
loss of generality G = 0 or H = 0. The latter condition gives h\ = J»i(f *), which
along with d\(h2/h3) = 0 has already been considered in Section 3. Spherical
coordinate systems do not satisfy conditions (29a,b), but cylindrical coordinates
do. The new case to consider is G = 0, which with (29a,b) implies

hi = h,(e,Z3), i = 1,2,3. (39)

We now find ei and f1 under conditions (39). By (33) for i = 2,3, j = 1 ei
is a function only of fx. Differentiate (33) for i — j = 1 with respect to f1 and
substitute for d\e2 and d\e$ from (33) for i = 1, j = 2,3. This gives

<9idiei+w2ei = 0, (40)

where w2 = (d2h1/h2)
2 + {d3hi/h3)

2. Equations (34) for i - 2, j = 3 and (39)
imply d2(d2hi/h2) = —{dzhi/hz^dzhi/hs), and (35) for * = 2, j = 3 can be
written as d2{d3hi/h3) = (d3h2/h3)(d2h1/h2). Thus

92w2/2 = {d2h1/h2)d2{d2hi/h3) + ( d a f c i / W a ^ V ^ ) = 0.

Similarly, 53W2 = 0. Thus w is a constant. The cases w ̂  0 and u = 0 must be
treated separately.

(a) w jt 0. The general solution of (40) is

61 = acoswf1 +bsinwf1, (41)

where a and b are constant unit orthogonal vectors, since ei is a unit vector.
Subsituting (41) into (31) for i = 1 and integrating gives

r = fti(^2,e3)(asina;e1-bcoSWe1V-1+g(e2,a. (42)
where g is arbitrary. Now, by (42) and (31) for i = 2,

92{SL • g) = a • h2e2 — (d2hi)u~1 sinwfx.

But substituting (41) into e2 • (33) for i = j = 1 yields

d2h\/h2 = e2 • awsinw^1 — e2 • bwcoswf1.

Moreover, 0 = e2 • ei = e2 • acosw^1 + e2 • bsinwfx. Hence, from the last two
equations, hie2 • a = {d2hi)u~1 sinw^1, so 82(a • g) = 0. Similarly, ^ ( a • g) =
0 = d2(b • g) = ^3(b • g). Thus a • g and b • g are constants, which can be
adjusted to zero by a shift of the origin 0. Introducing cartesian coordinates
(x,y, z) and choosing the appropriate sign for w we obtain r = /ii(£2,f3)w~1

(xcoswf1 +ysinu/f1) + z(£2, £3)z. Accordingly the coordinate system must be
azimuthal: indeed, we can choose ei = <\> and £* = ^w"1, where (s, <t>, z) are
cylindrical polar coordinates. The associated T and S fields are axisymmetric
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and provide a complete representation of axisymmetric solenoidal fields; T is
essentially Stokes' stream function. The S field has the simple form S{5} = sAij>,
where A = —a~2(V2 — 2s~1da)S is independent of <j>.

(b) ijj = 0. Then <92/ii = 0 = #3/11, and this is a special case of I(b) (see
Section 3), where hi is a constant and T is independent of z. The coordinate
system is cylindrical and the T and S fields are two-dimensional. Analogously
to the previous case II(a), S{S} = Az, where A = — V2S is independent of z.

5. Summary and concluding remarks

The following table summarises the results of Sections 3 and 4.

Type Description g1 e t LiT L2S

I(a) spherical r r H{r~lT) H(r~1S)
I(b) cylindrical z z HT HS
II(a) azimuthal/axisymmetric d> a" 1 ^ (H -2s-1de)T (H + 2s~1da)A
II(b) cylindrical/two-dimensional z z HT HA

The simplifications of type II(a) and II(b) fields from Section 4 have been
used, namely

II(a) A = -3"2(V2 - 2s-1ds)S, S{S} =
II(b) A = -V 2 S, S{5} = At.

A type II T field or S field can be expressed respectively as a type I S field or
T field with an appropriate potential, but the type II form with A rather than
S is generally simpler.

The ^-surfaces are concentric spheres in I(a), parallel planes in I(b) and II(b),
and meridional planes in II(a). The spherical or planar nature of ^-surfaces is
a result of (17b), namely c?i(/i2//i3) = 0 (which is not made clear in [13]), and
Minding's Theorem, for the Gaussian curvature [15] of the ^-surfaces in an
orthogonal coordinate system is K = -1/\h2hz)[d2{d2hz/h2) + d3{d3h2/h3)],
which simplifies to a nonnegative constant

K = (c*i/i2/(M2))(di/*3/(/nM) = [GU1)]2

using (34) for i = 2,j = 3 and then (36).
The only T and S fields possessing the orthogonality property GP2 are the

four listed above. Type I(a) spherical T and S fields are orthogonal over a
spherical shell concentric with 0 (see Section 1). Type I(b) cylindrical T and
S fields are orthogonal over an infinite slab, say a < z < b, if the potentials
T and S decay sufficiently rapidly as s -* 00. The two type II fields have
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the stronger algebraic orthogonality property: T{T} • S{S} = 0 for all f1-
independent potentials T and 5. The table also gives the only four T and S
fields, which have the closure property GP3.

The decoupling of the T and S potential equations is actually a property of
the vector Laplacian V2 or of the operator V x Vx since the fields are solenoidal
and k? commutes with T and S. Analogues of the decoupling property GP1 for
other field equations, whose operators are the vector Laplacian plus operators
which commute with T and S, hold only in the same four cases. In particular,
this is true for the vector wave and diffusion equations, and the Navier equation
of linear elasticity. T and S decoupling of the magnetic induction equation is
restricted to the above four cases at most. Complete decoupling only occurs in
special cases that depend on v through the term Vx(vxB), but they usually lead
to antidynamo theorems such as the axisymmetric theorem (Cowling [5], [8]), in
which the magnetic induction field B cannot be maintained against ohmic losses
by the inductive effects of v; that is, self-exciting dynamo action cannot occur.

There are two ways in which the results of this paper might possibly be
extended: by allowing more general T and S fields and by considering more
general properties of such fields. The definition (13) of T and S fields can be
generalised by prescribing the basis field without any reference to any coordinate
system £'. Under this generalisation the geometrical condition (14), ei T{T} =
0, can be retained if and only if

e1 • V x e1 = 0. (43)

This apparent relaxation of the condition Vxe 1 = 0 , which any coordinate basis
field satisfies, is illusory, for (43) implies e1 = aV/3 for some a and /?, and V/3
clearly generates the same T and S fields as e1. Thus the most general choice
for e1, if the geometrical condition (14) is retained, is essentially e1 = V£J for
some function f1 = ^(x, y, z). A curvilinear coordinate system f* containing
£l can always be constructed if Vf * ^ 0; but it can be orthogonal if and only if
f * is a solution of a particular third order partial differential equation [7]. Now
a coordinate system f, unless it is orthogonal, possesses two distinct canonical
sets of basic vectors: the tangent vectors along the coordinate curves, ê  = d,r,
and the normals to the coordinate surfaces, e* = Vf*. The two sets e' and e,
are reciprocal, that is, e* • e, = 6*-, e' = J~1ey x e/t, e* = Je3 x efc, where (i,j, k)
is a cyclic permutation of (1,2,3) and J = ei • e2 x e3 = (e1 • e2 x e3)"1 is the
Jacobian, \dxl/d£3\, of the transformation from the cartesian coordinates x* to
£'. Beside the T and S fields defined by (13) using the basis field e1 another
class of T and S fields can be naturally associated with a coordinate system £*
using the basis field ei,

T{T} = J - 1 ^ x VT, S{5} = J^dS, (44)
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where T and S are ^-independent. [Definition (13) is not appropriate for ei
since V x ei is not necessarily zero.] The T field (44a) is solenoidal if and only if
(Vx J - x e i ) V T = 0 for all ^-independent T, i.e. if and only if ei x Vx J - 1 e i =
0. The S field (44b) is solenoidal since V • {J~1ei) = 0. [Note that the gradient
operator V = £ie<<9t, so that ex • V = d^] The T and S fields (44) are the
correct generalisation of type II fields to an arbitrary coordinate system. One
could replace (44) by T{T} = w x VT, S{5} = w5, where w VT = 0 = w • VS,
V • w = 0 and w x V x w = 0, so that the fields are solenoidal. However, if
w / O a coordinate system f * can be found [2] such that w = ei and w • V = d\.

The second possible extension is to allow more general properties. For exam-
ple complete decoupling of the potential equations could be relaxed to various
degrees of coupling. The difficulty with this is the greater complexity of coupled
systems of partial differential equations. One successful analytical example is
that of Lortz [10], who has used the type II fields of the coordinate system

e 1 = -ks2<f> + Iz, Z2

where k and I are integers and kl ^ 0, to construct self-exciting helical solutions
of the magnetic induction equation (11) from a coupled system of potential
equations. The properties of the type I T and S fields (13) and the type II fields
(44) in an arbitrary coordinate system will be the subject of future work.

In some circumstances the solenoidal condition (12) can be imposed on so-
lutions of (1) or other field equations as an initial or boundary condition; an
example of the latter for (11) in a cylindrical geometry is given in [14]. This
approach to condition (12) is sometimes preferable to the use of a solenoidal
representation of the solution, particularly when the boundary conditions would
couple the T and S fields.
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