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On a Theorem of Hermite and Joubert
Zinovy Reichstein

Abstract. A classical theorem of Hermite and Joubert asserts that any field extension of degree n = 5 or 6
is generated by an element whose minimal polynomial is of the form λn + c1λ

n−1 + · · · + cn−1λ + cn with
c1 = c3 = 0. We show that this theorem fails for n = 3m or 3m + 3l (and more generally, for n = pm or
pm + pl, if 3 is replaced by another prime p), where m > l ≥ 0. We also prove a similar result for division
algebras and use it to study the structure of the universal division algebra UD(n).

We also prove a similar result for division algebras and use it to study the structure of the universal division
algebra UD(n).

1 Introduction

Let E/F be a field extension of degree n. For x ∈ E, define σ(i)(x) ∈ F by

det(λ1F − x) = λn + σ(1)(x)λn−1 + · · · + σ(n−1)(x)λ + σ(n)(x),(1)

In other words, (1) is the characteristic polynomial of the F-linear transformation E → E
given by y → xy. Note that, in particular, σ(1)(x) = − tr(x) and σ(n)(x) = (−1)n det(x). In
those cases where the reference to the extension E/F is not clear from the context, we will
write σ(i)

E/F(x) in place of σ(i)(x).
The starting point for this paper is the following theorem.

Theorem 1.1 (Hermite [He], 1861 and Joubert [J], 1867) Let E/F be a field extension of
degree 5 or 6. Assume char(F) 6= 3. Then there exists an element x ∈ E such that E = F(x)
and σ(1)(x) = σ(3)(x) = 0.

This classical result, originally proved by explicit computations, still seems quite non-
trivial. Indeed, suppose e1, . . . , en is an F-basis of E. If we write x =

∑n
i=1 xiei with inde-

terminate coefficients x1, . . . , xn ∈ F, then σ(1)(x) is a linear form and σ(3)(x) a cubic form
in x1, . . . , xn. Thus finding a non-zero element x ∈ E with σ(1)(x) = σ(3)(x) = 0 amounts
to finding a non-trivial solution (in F) of a cubic form in n − 1-variables or, equivalently,
finding an F-rational point on a cubic hypersurface in Pn−2

F . The latter is quite difficult
in general; see, e.g., [C1] or [M]. A proof of Theorem 1.1 along these lines was given by
Coray [C2], who also asked about possible generalizations to higher degree extensions. For
simplicity we will temporarily limit our considerations to fields of characteristic zero.

Question 1.2 Let F be a field of characteristic 0 and E be a field extension of F of degree
n ≥ 7. Is there an element x ∈ E∗ such that σ(1)(x) = σ(3)(x) = 0, or, equivalently,
tr(x) = tr(x3) = 0?
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70 Zinovy Reichstein

Observe that we do not require x to be a generator of E over F. Most of the time this
will not be an issue for us, since most of our results are negative. (The only exception is
Theorem 11.1; see Remark 11.2.) We also note that if σ(1)(x) = σ(3)(x) = 0 has a non-zero
solution for every field extension E/F of degree n then x can, indeed, be chosen to be a
generator; see Remark 4.5.

In view of the above discussion, the answer to Question 1.2 is positive in those cases,
where every cubic form over F in n − 1 variables is known to have a non-trivial solution
in F. For example, this occurs if F is a Ci-field with n − 1 > 3i or, by a theorem of
Davenport [D], if F = Q and n ≥ 17; see Remark 9.4. Coray also proved that the answer
to Question 1.2 is positive if n = 7 or 8, and F is a local (or, more generally, a quasi-local)
field; see [C2, Thm 4.2]. In Section 11 we will show that the answer is positive for certain
Galois extensions of degree 3m.

These positive results impose significant restrictions on the extension E/F. To study the
general case we introduce the “general” field extension Ln/Kn of degree n. Let a1, . . . , an be
independent indeterminates over a base field k. Then we define

Kn = k(a1, . . . , an) and Ln = Kn[T]/( f ),(2)

where f (T) = Tn + a1Tn−1 + · · · + an−1T + an ∈ K[T] is the “general” polynomial of
degree n. Note that this construction depends the base field k, which we assume to be fixed
throughout.

In this paper we will prove the following result. (Parts (a), (b), and (c) are respectively,
Theorems 5.1, 6.1, and 7.1 with r = p; see Remark 9.1.)

Theorem 1.3 Let k be a base field of characteristic 0, Ln/Kn be the general field extension
defined in (2), p be a prime integer and q be a positive integer which is not divisible by p.

(a) Suppose n = pm and q ≤ pm−1. Then tr(xp) 6= 0 and σ(pq)(x) 6= 0 for any 0 6= x ∈ Ln.
(b) Suppose n = pm + 1 and q ≤ pm−1. If tr(x) = 0 for some 0 6= x ∈ Ln then tr(xp) 6= 0

and σ(pq)(x) 6= 0.
(c) Suppose n = pm + pl with m > l ≥ 1, and q ≤ pl−1. If tr(x) = 0 for some x ∈ L∗n then

tr(xp) 6= 0 and σ(pq)(x) 6= 0.

Setting p = 3, we see that the answer to Question 1.2 is negative for any n = 3m or
3m + 3l, where m > l ≥ 0. Note that this result is consistent with Theorem 1.1 since n = 5
and n = 6, cannot be written in the form 3m or 3m + 3l with m > l. On the other hand,
since 6 can be written as 31 +31, the condition m > l of Theorem 1.3(c) cannot be dropped.

In Section 10 we will show that Theorem 1.3 remains valid if we replace Ln/Kn by L′/K′,
where K′ is any field extension of Kn of degree prime to p and L′ = Ln ⊗Kn K′; see The-
orem 10.1(b). If p = 3 we conclude that the conjecture of Cassels and Swinnerton-Dyer
holds for certain cubic hypersurfaces; see Remark 10.2.
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In Sections 12 and 13 we prove the following variant of Theorem 1.3(a) in the setting of
division algebras.

Theorem 1.4 Let r ≥ 2 be an integer and let UD(rm) = UD(rm, k) be the universal division
algebra of degree rm.

(a) If char(k) - r then tr(xr) 6= 0 for any 0 6= x ∈ UD(rm).
(b) If char(k) = 0, q is relatively prime to r and q ≤ rm−1, then σ(rq)(x) 6= 0 for any

0 6= x ∈ UD(rm).

In Sections 15 and 16 we will use Theorem 1.4 (and its prime-to-p version) to recover a
weak form of the non-cross product theorems of Amitsur, Rowen and Saltman (see Theo-
rem 15.1) and to show that prime-to-p extensions of UD(n) cannot be defined over fields
of low transcendence degree (see Theorem 16.1).

Most of this paper deals with the question of existence of non-zero solutions to the
systems of equations

tr(x) = tr(xr) = 0 or σ(1)(x) = σ(r)(x) = 0(3)

in the contexts of étale algebras, field extensions, and division algebras. The context is
usually indicated by the section title. Our results are roughly summarized in the following
table. Here we assume that p is a prime, and r ≥ 2 is a (possibly composite) integer. The last
column refers to the existence of solutions of (3) or a closely related system of equations.

Context Degree Section Solutions
Étale algebras n 4 ?
General fld ext. Ln/Kn, see (2) n = rm 5 No
Ln/Kn n = rm + 1 6 No
Ln/Kn n = rm + rl 7 No
L′/K′ with p - [K′ : Kn], L′ = Ln ⊗Kn K′ n = pm, pm + pl 10 No
Galois ext. E/F, Gal(E/F) 6' (Z/pZ)m pm 11 Yes
Universal division algebra UD(n) n = rm 13 No
Prime-to-p ext. of UD(n) n = pm 14 No

The proofs of all the negative results listed in this table follow the same pattern. The
simplest form of this argument is given in Section 5; subsequent proofs go through the
same steps in increasingly complicated settings. In each case the punch line is provided by
Theorem 3.2 (or its prime-to-p variant Proposition 3.4).

Acknowledgements The author would like to thank J. Buhler, D. J. Saltman, and the ref-
eree for helpful comments.
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2 Notation and Preliminaries

The following notational conventions will be used throughout the paper.

Z ring of integers
Q field of rational numbers
0i i-tuple of zeros in Zi

k base field
r integer≥ 2
p prime integer

m, l positive integers
F field containing k
E field extension or étale algebra over F, usually of degree n
D finite-dimensional division algebra with center F

σ(i)(x) the coefficient of λn−i in det(λ1− x); see (1)
Ln/Kn general field extension of degree n; see (2)
UD(n) universal division algebra of degree n; see Section 12
Z(n) center of UD(n)
Dm,r product of m generic symbol algebras of degree r; see (17).

We begin with a simple lemma which will be used in the sequel.

Lemma 2.1 Let F be a field which contains a primitive r-th root of unity and F ⊂ F′ be a
finite field extension. Suppose zr ∈ F for some z ∈ F′ − F. Then

(a) tr(z) = 0.
(b) Suppose char(F) = 0. Then σ(ri)(z) 6= 0 for any 1 ≤ i ≤ [F′ : F]/r.

Proof Let d = [F(z) : F]. By [L, Thm. VIII.6.10] d is the order of z in (F′)∗/F∗. Thus we
may assume without loss of generality that r = d. Denote zr by β ∈ F. Then the minimal
polynomial of z over F is f (λ) = λr − β.

(a) We may assume F′ = F(z). Then [F′ : F] = r, f (λ) is the characteristic polynomial
of z, and − tr(z) is the coefficient of λr−1 in f (λ). Since r ≥ 2 by our assumption, this
coefficient is 0.

(b) The characteristic polynomial of z is det(λ − z) = (λr − β)[F′ :F(z)]. Recall that
σ(ri)(z) is the coefficient of λr j , where ri + r j = [F′ : F] or, equivalently, i + j = [F′ : F(z)].
Since char(F) = 0, the coefficient of λr j is non-zero for every j = 0, . . . , [F′ : F(z)] . Thus
σ(ri)(z) 6= 0 for every i = 1, . . . , [F′ : F(z)] = [F′ : F]/r.

3 Pfister Polynomials

In this section we shall assume that k is an arbitrary base field, m is a positive integer,
t1, . . . , tm are independent indeterminates over k, and I = (i1, . . . , im) is an element of
Zm. In order to avoid multiple subscripts, we will usually denote k(t1, . . . , tm) by k(t) and
t i1
1 · · · t

im
m by tI .
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Recall that the m-fold Pfister form Q(x) = 〈〈t1, . . . , tm〉〉 is the quadratic form over k(t)
given by

Q(x) =
∑

i1,...,im=0,1

t i1
1 · · · t

im
m x2

i1···im
∈ k(t)[xi1 ,...,im ].

It is well-known that this form is anisotropic, i.e., has no non-trivial solutions over k(t).
The proof of this assertion is quite easy: we assume that there is a non-trivial solution
and obtain a contradiction by keeping track of the highest degree terms in t1, . . . , tm; see,
e.g., [Pf, p. 111]. The purpose of this section is to extend this result to a wider class of
homogeneous polynomials (by a similar method).

We shall consider polynomials P(x) in the rm variables x = (xI), where I ranges over
{0, 1, . . . , r − 1}m. We define an (r,m)-Pfister polynomial of degree d to be a k-linear com-
bination of monomials of the form

tIxI1 · · · xId with rI = I1 + · · · + Id ∈ Zm.(4)

In particular, we require that I1 + · · · + Id should be divisible by r, i.e., contained in rZm.
We record the following observation for future reference.

Lemma 3.1 The (r,m)-Pfister polynomials form a k-subalgebra of k[t][xI ].

Proof Monomials (4) form a semi-group.

We now proceed to the main theorem of this section.

Theorem 3.2 Let r ≥ 2 and q ≥ 1 be relatively prime positive integers and let

P(x) =
∑

I1+···+Id=rI

cI1,...,Id t IxI1 · · · xId ∈ k(t)[xI ](5)

be a homogeneous (r,m)-Pfister polynomial of degree d = rq with cI,...,I 6= 0 for any I ∈
{0, . . . , r − 1}m. Then P(x) is anisotropic over k(t).

Proof For z = z(t) ∈ k[t], let deg j(z) be the degree of z in t j . We now want to define the
valuation

deg: k[t] −→ Zm ∪ {(−∞, . . . ,−∞)},

where Zm is viewed as an ordered group with respect to the lexicographic order. We shall
refer to the lexicographic order on Zm ∪ {(−∞, . . . ,−∞)} by using the terms “minimal”
and “maximal” and the symbols≥, >,≤, and <.

If z = z(t) ∈ k[t] is a monomial in t1, . . . , tm, set deg(z) =
(
deg1(z), . . . , degm(z)

)
. In

general, set deg(z) = max{deg(z0)}, as z0 ranges over the monomials of z. In particular, if
z = 0, then deg(z) = (−∞, . . . ,−∞).

Assume, to the contrary, that P(y) = 0 for y = (yI) with yI ∈ k(t) for every I and yI 6= 0
for some I. Multiplying through by a common denominator, we may assume without loss
of generality that y J ∈ k[t] for every J. Let MI1,...,Id = cI1,...,Id t I yI1 · · · yId ∈ k[t] be obtained
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by substituting yI for xI into one of the monomials of P(x). That is, I1 + · · · + Id = rI and
cI1,...,Id ∈ k. Let

e(I1, . . . , Id)
def
= deg(MI1,...,Id ).

Choose Imax so that e(Imax, . . . , Imax) is maximal among all e(I, . . . , I) with respect to the
lexicographic order. We will obtain a contradiction by showing that

e(Imax, . . . , Imax) > e(I1, . . . , Id)(6)

for any (I1, . . . , Id) 6= (Imax, . . . , Imax). Clearly yImax 6= 0; hence, e(Imax, . . . , Imax) 6=
(−∞, . . . ,−∞). Consequently, (6) implies

deg
(
P(yI)

)
= e(Imax, . . . , Imax) 6= (−∞, . . . ,−∞)

i.e., P(yI) 6= 0, contradicting our assumption.
We will prove (6) in two stages. First assume I1 = · · · = Id = I 6= Imax. By our choice of

Imax, we have e(I, . . . , I) ≤ e(Imax, . . . , Imax). Thus we only need to prove that the inequality
is strict. Since yImax 6= 0, we may therefore assume without loss of generality that yI 6= 0.
Since cI,...,I 6= 0, we have

e(I, . . . , I) = deg(tqI yd
I ) ≡ qI + deg(yrq

I ) ≡ qI (mod r).

Similarly e(Imax, . . . , Imax) ≡ qImax modulo r. Thus e(I, . . . , I) = e(Imax, . . . , Imax) implies
qI ≡ qImax (mod r). Since I, Imax ∈ {0, . . . , r−1}m and q is relatively prime to r, this is only
possible if I = Imax, contradicting our choice of I. Thus e(Imax, . . . , Imax) 6= e(I, . . . , I), i.e.,

e(Imax, . . . , Imax) > e(I, . . . , I),(7)

as claimed.
We are now ready to finish the proof of the inequality (6) for an arbitrary choice of

(I1, . . . , Id) 6= (Imax, . . . , Imax). Indeed, if e(I1, . . . , Id) = (−∞, . . . ,−∞) then there is
nothing to prove. Otherwise since cI,...,I 6= 0 for any I, we have

Md
I1,...,Id

= cMI1,...,I1 · · ·MId ,...,Id ,

where c ∈ k∗. (More precisely, c =
cd

I1 ,...,Id
cI1 ,...,I1 ···cId ,...,Id

.) Taking deg on both sides and dividing by

d, we obtain e(I1, . . . , Id) = d−1
(
e(I1, . . . , I1) + · · · + e(Id, . . . , Id)

)
. The right hand side is,

in fact, ≤ e(Imax, . . . , Imax) because

e(I j , . . . , I j) ≤ e(Imax, . . . , Imax)(8)

for each j = 1, . . . , d by the definition of Imax. Moreover, since we are assuming I j 6= Imax

for some j = 1, . . . , d, (7) tells us that at least one of the d inequalities in (8) is strict.
Consequently, e(I1, . . . , Id) < e(Imax, . . . , Imax) for any (I1, . . . , Id) 6= (Imax, . . . , Imax), as
claimed. This completes the proof of Theorem 3.2.
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Remark 3.3 Note that if k is an algebraically closed field then by the Tsen-Lang Theorem
any polynomial of degree r in ≥ rm + 1 variables defined over k(t) = k(t1, . . . , tm) is
isotropic; see [Pf, Sect. 5.1]. Thus the Pfister polynomials we considered in Theorem 3.2
(with q = 1) are “optimal” among all anisotropic polynomials over k(t) in the sense that
they have degree r and depend on rm variables.

If r = p is a prime, we can further strengthen Theorem 3.2. Recall that a a finite field
extension F ⊂ F′ is called prime-to-p if its degree is not divisible by p.

Proposition 3.4 Let r = p be a prime number. Then under the assumptions of Theorem 3.2

(a) the Pfister polynomial P(x) is anisotropic over any prime-to-p extension K′ of k(t) =
k(t1, . . . , tm). Moreover,

(b) suppose α1, . . . , αN are algebraically independent variables over k(t). Then P(x) is aniso-
tropic over any prime-to-p extension K′′ of k(t1, . . . , tm, α1, . . . , αN).

Proof (a) By [L, Cor. XII.6.2], every discrete valuation µ : k(t)∗ → Z extends to a valua-
tion ν : (K′)∗ → Z[1/e], where the ramification index e = e(ν | µ) is not divisible by p. In
particular, let µ = deg j be the degree in t j , as in the proof of Theorem 3.2. Then deg j can
be extended to a valuation ν j : K′ → Z[1/e j], where e j is not divisible by p.

Now the proof of Theorem 3.2 goes through unchanged if we replace k(t) by K′ and
deg j : k(t)∗ → Z by e jν j : (K′)∗ → Z for j = 1, . . . ,m.

(b) We absorb the new variables into the base field. That is, we set k′ = k(α1, . . . , αN ),
view K′′ as an extension of k′(t) and apply part (a).

4 Étale Algebras

Let F be a field. An F-algebra E is called étale if E = E1 ⊕ · · · ⊕ Em, where each Ei is
a finite separable field extension of F. If α = (α1, . . . , αn) is an n-tuple of algebraically
independent indeterminates over F then we define the F(α)-algebra E(α) by

E(α) = E ⊗F F(α) = E1(α)⊕ · · · ⊕ Em(α).

As in the case of fields, we shall write tr(x) = trE/F(x) for the trace of multiplication by
x; similarly for det(x) and σ(i)(x). The latter is defined as the coefficient of λn−i in the
expansion of det(λ1E − x), as in (1).

Throughout this section Ln/Kn will be the general field extension of degree n defined
in (2). Note that our discussion in the beginning of Section 1 remains valid if E/F is an étale
algebra and not necessarily a field extension. In this section we shall prove, in particular,
that the answer to Question 1.2 is positive for every n-dimensional étale algebra E/F with
k ⊂ F if and only if it is positive for F = Kn and E = Ln; see Corollary 4.4. Considering
all étale algebras, as opposed to just field extensions, provides a greater pool of potential
counterexamples. We will take advantage of this phenomenon in proving Theorems 6.1
and 7.1.

We begin with the following lemma.
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Lemma 4.1 Let F be a field containing k, and let E be an étale F-algebra of dimension n.
Then the following conditions are equivalent:

(a) There exists an embedding of fields Kn ↪→ F such that E ' Ln ⊗Kn F (as F-algebras).
(b) There exists an element y ∈ E such that σ(1)(y), σ(2)(y), . . . , σ(n)(y) are algebraically

independent over k.

Proof Recall that Kn = k(a1, . . . , an), where a1, . . . , an are algebraically independent over
k and that Ln = Kn[T]/( f ), where f (T) = Tn + a1Tn−1 + · · · + an−1T + an; see (2).

To prove that (a) implies (b), take y = T ⊗ 1F.
Conversely, suppose (b) holds. Then we have an embedding of fields φ : Kn ↪→ F given

by φ(ai) = σ(i)(y). We want to show that this embedding has the property claimed in part
(a). Indeed, the tensor product Ln ⊗Kn F formed via φ is isomorphic (as an F-algebra) to
F[s]/

(
g(s)
)

, where

g(s) = sn − σ(n−1)(y)sn−1 + · · · + (−1)nσ(n)(y).

Let ψ : F[s]/
(

g(s)
)
→ E be the homomorphism of F-algebras given by ψ(s) = y. We claim

that ψ is an isomorphism. Since both F[s]/(g) and E are n-dimensional F-algebras, it is
enough to show that ψ is injective, or, equivalently, 1, y, . . . , yn−1 are linearly independent
over F. Assume, to the contrary, that y satisfies a polynomial of degree≤ n−1 over F. Then
the F-linear operator E→ E given by multiplication by y, has multiple eigenvalues. On the
other hand, the characteristic polynomial g(s) of this operator (or, equivalently, of y) has a
non-zero discriminant because its coefficients are assumed to be algebraically independent
over k. Thus g(s) has distinct roots, a contradiction. This shows that 1, y, . . . , yn−1 are
F-linearly independent and thus ψ is an isomorphism, as claimed.

Theorem 4.2 Let F be a field, E be an étale algebra of dimension n and α = (α1, . . . , αn) be
an n-tuple of algebraically independent indeterminates over F. Then there exists an inclusion
of fields Kn ↪→ F(α) which induces an isomorphism E(α) ' Ln ⊗Kn F(α) of F(α)-algebras.

Proof By Lemma 4.1 it is sufficient to construct an element y ∈ E(α) such that σ(1)(y), . . . ,
σ(n)(y) are algebraically independent over k. Let {v1, . . . , vn} be an F-basis of E. We claim
that y = α1v1 + · · · + αnvn has the desired property.

Indeed, let F be the separable closure of F. Then E ⊗F F ' (F)⊕n. Write

vi = vi1 ⊕ · · · ⊕ vin,

where vi j ∈ F. Since {v1, . . . , vn} is an F-basis of E, it is also an F-basis of E⊗F F; hence, the
n× n-matrix (vi j) is non-singular. The element y ∈ E(α) ⊂ F(α)⊕n can now be written as

y = l1(α)⊕ · · · ⊕ ln(α),

where l j(α) = α1v1 j + · · ·+αnvn j ∈ F(α). Since the matrix (vi j) is non-singular, l1(α), . . . ,
ln(α) are linearly independent over F. Hence,

trdegF F
(
l1(α), . . . , ln(α)

)
= trdegF F(α1, . . . , αn) = n.
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Note that l1(α), . . . , ln(α) are the eigenvalues of y and thus, up to sign, σ(i)(y) is the i-th
elementary symmetric polynomial in l1(α), . . . , ln(α). Consequently,

trdegF F
(
σ(1)(y), . . . , σ(n)(y)

)
= trdegF F

(
l1(α), . . . , ln(α)

)
= n.

In other words, σ(1)(y), . . . , σ(n)(y) are algebraically independent over F, and, hence over
k, as claimed.

Remark 4.3 Theorem 4.2 may be viewed as a commutative analogue of [RV, Lemma 3.1]
or of Theorem 12.1.

Corollary 4.4 Let F be an infinite field containing k, E be an n-dimensional étale F-algebra,
a1, . . . , ad ∈ {1, . . . , n}, and e1, . . . , ed be positive integers. Suppose σ(a1)

Ln/Kn
(xe1 ) = · · · =

σ(ad)
Ln/Kn

(xed ) = 0 for some 0 6= x ∈ Ln. Then there exists an element 0 6= y ∈ E such that

σ(a1)
E/F (ye1 ) = · · · = σ(ad)

E/F (yed ) = 0.

Proof Let α = (α1, . . . , αn) be an n-tuple of algebraically independent indeterminates
over F. Write E(α) = Ln ⊗Kn F(α), as in Theorem 4.2 and let z = x ⊗ 1 ∈ E(α). Then
σ(a1)

E(α)/F(α)(ze1 ) = · · · = σ(ad)
E(α)/F(α)(zed ) = 0.

We shall now construct y ∈ E with σ(a1)
E/F (ye1 ) = · · · = σ(ad)

E/F (yed ) = 0 by specializing
α = (α1, . . . , αn) to an n-tuple of elements of F. Choose an F-basis v1, . . . , vn for E over F
and write

z = r1(α)v1 + · · · + rn(α)vn,

where r1(α), . . . , rn(α) ∈ F(α). Since z 6= 0, we may assume without loss of generality
that r1(α) 6= 0. Since F is an infinite field, we can choose c = (c1, . . . , cn) ∈ Fn so that
(i) r1(α), . . . , rn(α) are well defined at α = c (i.e., their denominators don’t vanish) and
(ii) r1(c) 6= 0. Now set

y = r1(c)v1 + · · · + rn(c)vn ∈ E.(9)

Then, y 6= 0 and σ(a1)
E/F (ye1 ) = · · · = σ(ad)

E/F (yed ) = 0, as desired.

Remark 4.5 If char(k) does not divide
(n

ai

)
for some i = 1, . . . , d then the element y in

Corollary 4.4 can be chosen so that E = F[y].

To prove this assertion, note that Kn(x) = Ln. Indeed, assume the contrary. Since
the general extension Ln/Kn has no intermediate subfields, this means x ∈ Kn. But then
σ(ai )(x) =

(n
ai

)
xai , which is non-zero for some i by our assumption on char(k). This con-

tradiction proves that Kn(x) = Ln. Now let z be as in the proof of Corollary 4.4. Since
Kn(x) = Ln, the elements 1Ln , x, . . . , x

n−1 are linearly independent over Kn and, hence,
1E(α), z, . . . , zn−1 are linearly independent over F(α). In other words, if zi = ri1(α)v1 +
· · · + rin(α)vn with ri j(α) ∈ F(α) (and, in particular, r1 j(α) = r j(α) for j = 1, . . . , n)
then det

(
ri j(α)

)
6= 0 in F(α). Now choose c ∈ Fn so that every ri j(c) is well-defined and

det
(
ri j(c)

)
6= 0 in F. Then for y as in (9) we have

σ(a1)
E/F (ye1 ) = · · · = σ(ad)

E/F (yed ) = 0

and 1E, y, . . . , yn−1 are linearly independent over F, i.e., F[y] = E, as claimed.
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Remark 4.6 If E is a separable field extension of F then Corollary 4.4 can be proved by
specializing Ln/Kn to E/F, as in [K, Thm 1]; see also [S, Thm. 5.1] or [BR, Thm 7.4]. This
specialization argument can be generalized to the case where E/F is an étale algebra. We feel
that the alternative approach we took, based on immersing Ln/Kn in a rational extension of
E/F, is more transparent. Along the way we also proved Theorem 4.2, which will be used
again in Sections 10 and 13.

5 Field Extensions of Degree rm

In this section we prove the following theorem.

Theorem 5.1 Let k be a base field, Ln/Kn be the general field extension of degree n defined
in (2), n = rm, m ≥ 1, and r ≥ 2.

(a) If char(k) - r then tr(xr) 6= 0 for any 0 6= x ∈ Ln.
(b) Suppose q ∈ [1, rm−1] is relatively prime to r. If char(k) = 0 then σ(rq)(x) 6= 0 for any

0 6= x ∈ Ln.

In order to prove Theorem 5.1 it is sufficient to construct an infinite field F containing k
and a field extension E/F of degree n = rm such that for any 0 6= x ∈ E (a) trE/F(xr) 6= 0,

and (b) σ(rq)
E/F(x) 6= 0; see Corollary 4.4 with (a) d = 1, a1 = 1, and e1 = r and (b) d = 1,

a1 = rq, and e1 = 1. (Recall that σ(1) = − tr.) We now proceed to construct a field exten-
sion E/F with the desired properties. Theorem 5.1 will then follow from Proposition 5.3.

Let E = k(z1, . . . , zm) and F = k(t1, . . . , tm), where z1, . . . , zm are algebraically indepen-
dent indeterminates over k and ti = zr

i for i = 1, . . . ,m. Given

I = (i1, . . . , im) ∈ {0, 1, . . . , r − 1}m,

we shall write zI for zi1
1 · · · z

im
m and tI for t i1

1 · · · t
im
m . The elements zI form a basis for E as an

F-vector space, as I ranges over {0, 1, . . . , r − 1}m.

Lemma 5.2 Let x =
∑

I xIzI , where I ranges over {0, . . . , r − 1}m and each xI is a variable
taking values in F. Suppose i be a positive integer. Then

(a) tr(xi) is a homogeneous (r,m)-Pfister polynomial of degree i in the variables xI .
(b) Assume char(k) = 0 and i ≤ rm. Then σ(i)(x) is a homogeneous (r,m)-Pfister polynomial

of degree i in the variables xI .

Proof (a) Expand xi and use the fact that tr(zI) = 0 for any I /∈ rZm; see Lemma 2.1(a).
(b) Recall that Newton’s formulas express σ(i)(x) as a polynomial with rational coeffi-

cients in tr(x), . . . , tr(xi). The desired conclusion now follows from part (a) and
Lemma 3.1.

Proposition 5.3 Let E and F be as above and let q ≤ rm−1 be an integer which is relatively
prime to r.

(a) Assume char(k) - r. Then tr(xr) 6= 0 for any 0 6= x ∈ E,
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(b) Assume char(k) = 0. Then σ(rq)(x) 6= 0 for any 0 6= x ∈ E.

Proof Write

x =
∑

I

xIz
I(10)

with each xI ∈ F.
(a) By Lemma 5.2(a), tr(xr) is a homogeneous (m, r)-Pfister polynomial of degree d = r,

i.e., is of the form
∑

I1+···+Ir=rI cI1,...,Ir t
IxI1 · · · xIr with cI1,...,Ir ∈ k. We want to show that this

polynomial is anisotropic. By Theorem 3.2 it is sufficient to check that cI,...,I 6= 0 for every
I ∈ {0, . . . , r − 1}m. To verify that cI,...,I 6= 0, we substitute xI = 1 and xI′ = 0 for every
I′ 6= I. We then obtain

cI,...,It
I = tr(zrI) = tr(tI) = rmtI ,

and thus cI = rm 6= 0, as claimed.
(b) By Lemma 3.1, σ(rq)(x) is a homogeneous (m, r)-Pfister polynomial of degree d = rq

in the variables xI , i.e., a polynomial of the form (5). We want to show that this polynomial
is anisotropic. By Theorem 3.2 it is sufficient to check that cI,...,I 6= 0. (Note that our
assumption about r and q being relatively prime is used here; otherwise Theorem 3.2 does
not apply.) Since cI,...,ItqI = σrq(zI), the desired inequality follows from Lemma 2.1(b).

This completes the proof of Proposition 5.3 and thus of Theorem 5.1.

6 Field Extensions of Degree rm + 1

In this section we will prove the following theorem.

Theorem 6.1 Let k be a base field, Ln/Kn be the general field extension of degree n defined
in (2), n = rm + 1, m ≥ 1, and r ≥ 2. Suppose tr(x) = 0 for some 0 6= x ∈ Ln.

(a) If char(k) - r
(
rm(r−1) + (−1)r

)
then tr(xr) 6= 0.

(b) If char(k) = 0 then σ(rq)(x) 6= 0 for any q ∈ [1, rm−1] which is relatively prime to r.

In order to prove Theorem 6.1 it is sufficient to construct an infinite field F containing
k and an n = rm + 1-dimensional étale F-algebra E such that (a) no x ∈ E∗ satisfies
tr(x) = tr(xr) = 0 and (b) no x ∈ E∗ satisfies tr(x) = σ(rq)(x) = 0. (Indeed, apply
Corollary 4.4 with d = 2, a1 = e1 = 1, and (a) a2 = 1, e2 = r and (b) a2 = rq, e2 = 1.)
We now proceed to construct an étale algebra with these properties. Theorem 5.1 will then
follow from Proposition 6.5.

Let z1, . . . , zm be algebraically independent indeterminates over k and let ti = zr
i for

i = 1, . . . ,m. Set F = k(t1, . . . , tm) and E0 = k(z1, . . . , zm). (Note that F is the same as in
the previous section, and E0 is the field we previously called E.) For the rest of this section
E will denote the étale algebra E0 ⊕ F. Observe that the dimension of E over F is, indeed,
rm + 1.

We will write the elements of E as e⊕ f , where e ∈ E0 and f ∈ F. Given

I = (i1, . . . , im) ∈ {0, 1, . . . , r − 1}m,
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we shall write zI for zi1
1 · · · z

im
m ∈ E0 and tI for t i1

1 · · · t
im
m ∈ F, as we did in the previous

section. Let
v = −1E0 ⊕ rm1F.

In the sequel we shall denote the m-tuple of zeros in Zm by 0m.

Lemma 6.2 tr(vi) = (−1)i rm + rmi for any positive integer i.

Proof trE/F(vi) = trE0/F(−1E0 )i + trF/F(rmi1F) = (−1)i rm + rmi , as claimed.

Lemma 6.3

(a) Let W be the subset of E consisting of elements x with tr(x) = 0. Then W is an F-vector
subspace of E of dimension rm.

(b) B = {v, zI ⊕ 0F | 0m 6= I ∈ {0, 1, . . . , r − 1}m} is a basis of W .

Proof (a) W is the kernel of the non-zero F-linear form tr : E→ F.
(b) First of all, every element of B lies in W . Indeed, tr(v) = 0 by Lemma 6.2 and

trE/F(zI ⊕ 0F) = trE0/F(zI) = 0 for every I /∈ rZm by Lemma 2.1(a).
Since B has rm elements, it is enough to show that they are linearly independent. This

follows from the fact that the elements zI ⊕ 0F are F-linearly independent and v does not
lie in their span.

Lemma 6.4 Let x = x0m v +
∑

I 6=0m
xI(zI ⊕ 0F), where the sum is evaluated over all I ∈

{0, . . . , r − 1}m − {0m} and each xI is a variable taking values in F. Suppose i is a positive
integer. Then

(a) tr(xi) is a homogeneous (r,m)-Pfister polynomial of degree i in the variables xI .
(b) Assume char(k) = 0 and i ≤ rm + 1. Then σ(i)(x) is a homogeneous (r,m)-Pfister

polynomial of degree i in the variables xI .

Proof Same as the proof of Lemma 5.2.

Proposition 6.5 Let E and F be as above and let q ∈ [1, rm−1] be an integer which is relatively
prime to r. Assume 0 6= x ∈ E and tr(x) = 0.

(a) If char(k) - r then tr(xr) 6= 0.
(b) If char(k) = 0 then σ(rq)(x) 6= 0.

Proof We argue as in the proof of Proposition 5.3. By Lemma 6.3, we can write x as

x = x0m v +
∑
I 6=0m

xI(zI ⊕ 0F),

where I ranges over {0, . . . , r − 1}m − {0m} and each xI ∈ F.
(a) By Lemma 6.4, tr(xr) is a homogeneous (m, r)-Pfister polynomial of degree d = r,

i.e., is of the form (5) with cI1,...,Id ∈ k. We want to show that this polynomial is anisotropic.
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By Theorem 3.2 it is sufficient to check that cI,...,I 6= 0 for every I ∈ {0, . . . , r − 1}m. For
I 6= 0m

cI,...,It
I = trE/F(zrI ⊕ 0F) = trE0/F(zrI) = rmtI 6= 0.

On the other hand, c0m,...,0m = tr(vr) is non-zero by Lemma 6.2 and our assumption on
char(k).

(b) By Lemma 6.4 σ(rq)(x) is a homogeneous (m, r)-Pfister polynomial of degree d = rq
in the variables xI , i.e., a polynomial of the form (5). We want to show that this polynomial
is anisotropic. By Theorem 3.2 we only need to check that cI,...,I 6= 0. Equivalently, we need
to show

(i) σ(rq)(zI ⊕ 0F) 6= 0 for every I ∈ {0, . . . , r − 1}m − {0m} and
(ii) σrq(v) 6= 0.

(i) holds because σ(rq)
E/F(zI ⊕ 0F) = σ(rq)

E0/F(zI) 6= 0, by Lemma 2.1(b). To prove (ii), note that
the characteristic polynomial of v equals

λrm+1 +
rm∑

i=0

σ(rm+1−i)(v)λi = det(λ1E − v) = (λ− rm)(λ + 1)rm

.

Expanding (λ − rm)(λ + 1)rm

, we see that the coefficient of λrm

equals zero, and all other
coefficients are non-zero. This means that σ(1)(v) = 0 (or, equivalently, tr(v) = 0, which
we already know from Lemma 6.2) and σ( j)(v) 6= 0 for every j = 2, . . . , rm. In particular,
σ(rq)(v) 6= 0, as claimed.

This completes the proof of Proposition 6.5 and thus of Theorem 6.1.

7 Field Extensions of Degree rm + rl with m > l ≥ 1

In this section we will prove the following theorem.

Theorem 7.1 Let k be a base field and Ln/Kn be the generic field extension defined in (2) with
n = rm + rl and r ≥ 1. Assume m ≥ l ≥ 1 if r is even and m > l ≥ 1 if r is odd. Suppose
tr(x) = 0 for some 0 6= x ∈ Ln.

(a) If char(k) - r
(
r(m−l)(r−1) + (−1)r

)
then tr(xr) 6= 0.

(b) If char(k) = 0 then σ(rq)(x) 6= 0, provided that q is relatively prime to r, q ≤ rl−1, and
one of the following conditions is satisfied :

(i)
∑rq

i=1(−1)i
( rm

rq−i

)(rl

i

)
r(m−l)i 6= 0,

(ii) there exists a prime p such that pe | r and q ≤ pme

r ,

(iii) q ≤ r
m
g −1, where g is the number of prime divisors of r.

In order to prove Theorem 7.1 is sufficient to construct an infinite field F containing k
and étale algebra E of dimension rm + rl over F such that no x ∈ E∗ satisfies (a) tr(x) =
tr(xrq) = 0 or (b) tr(x) = σ(rq)(x) = 0. (This follows from Corollary 4.4 with d = 2,
a1 = e1 = 1 and (a) a2 = 1, e2 = r and (b) a2 = rq and e2 = 1.) We now proceed

https://doi.org/10.4153/CJM-1999-005-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-005-x


82 Zinovy Reichstein

to construct an étale algebra with these properties. Theorem 7.1(a) will then follow from
Proposition 7.5(a); Theorem 7.1(b) will follow from Propositions 7.5(b) and 8.2.

Let z1, . . . , zm,w1, . . . ,wl be m + l independent variables over k. Denote zr
i by ti and

wr
j by s j for all i = 1, . . . ,m and j = 1, . . . , l. For the rest of this section we set F =

k(t1, . . . , tm, s1, . . . , sl) and E = E1⊕E2, where E1 = F(z1, . . . , zm) and E2 = F(w1, . . . ,wl).
Unless otherwise specified, I, I1, I2, etc., will be assumed to be elements of {0, . . . ,

r−1}m, J, J1, J2, etc., will be elements of {0, . . . , r−1}l, and (I, J), (I1, J1), (I2, J2), etc., will
be elements of {0, . . . , r− 1}m+l. We will denote the m-tuple of zeros by 0m = (0, . . . , 0) ∈
Zm; similarly for 0l ∈ Zl and 0m+l ∈ Zm+l.

If I = (i1, . . . , im), we will write zI for zi1
1 · · · z

im
m and tI for t i1

1 · · · t
im
m ; similarly for w J and

s J . The elements zI form a basis of E1, and the elements z J form a basis of E2, as I ranges
over {0, 1, . . . , r − 1}m and J ranges over {0, 1, . . . , r − 1}l.

Lemma 7.2 Let v = −1E1 ⊕ rm−l1E2 ∈ E. Then tr(vi) = rm
(
(−1)i + r(m−l)(i−1)

)
.

Proof Write trE/F(vi) = trE1/F(−1E1 )i + trE2/F(r(m−l)i1E2 ). The first term equals (−1)i rm,
the second term is r(m−l)i+l, and the desired equality follows.

Lemma 7.3

(a) Let W be the subset of E consisting of elements x with tr(x) = 0. Then W is an F-vector
subspace of E of dimension rm + rl − 1.

(b) Let v be as in Lemma 7.2. Then B = {v, zI ⊕ 0E2 , 0E1 ⊕w J} is a basis of W . Here I ranges
{0, 1, . . . , r − 1}m − {0m} and J ranges over {0, 1, . . . , r − 1}l − {0l}.

Proof Same as the proof of Lemma 6.3.

Lemma 7.4 Let x = x(0m,0l)v +
∑

I 6=0m
x(I,0l)(zI ⊕ 0) +

∑
J 6=0l

x(0m, J)(0 ⊕ w J), where each
x(I, J) is a variable taking values in F. Suppose i is a positive integer. Then

(a) tr(xi) is a homogeneous (r,m + l)-Pfister polynomial of degree i in the rm+l variables x(I, J).
(b) Assume char(k) = 0 and i ≤ rm + rl. Then σ(i)(x) is a homogeneous (r,m + l)-Pfister

polynomial of degree i in the variables x(I, J).

Note that here we are viewing tr(xi) and σ(i)(x) as polynomials is the rm+l variables x(I, J).
It is clear from the definition that, in fact, these polynomials depend only on the rl + rm− 1
variables x(I, J) with I = 0m or J = 0l. We need the “extra” variables in order to interpret
tr(xi) and σ(i)(x) as Pfister polynomials.

Proof (a) Write x = y1 ⊕ y2, where

y1 = −x(0m,0l)1E1 +
∑
I 6=0m

x(I,0l)z
I

and
y2 = rm−lx(0m,0l)1E2 +

∑
J 6=0l

x(0m, J)w
J.
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Since trE/F(xi) = trE1/F(yi
1) + trE2/F(yi

2), it is sufficient to show that both trE1/F(yi
1) and

trE2/F(yi
2) are homogeneous (r,m + l)-Pfister polynomials of degree i. To see this, expand

yi
1 and yi

2 and use the fact that trE1/F(zI) = trE2/F(w J) = 0 for every I ∈ Zm − rZm and
every J ∈ Zl − rZl; see Lemma 2.1(a).

(b) Recall that Newton’s formulas express σ(i)
E/F(x) as a polynomial with rational coef-

ficients in tr(x), tr(x2), . . . , tr(xi). The desired conclusion now follows from part (a) and
Lemma 3.1.

Proposition 7.5 Let E and F be as above, with m ≥ l ≥ 1 if r is even and m > l ≥ 1 if r is
odd. Assume 0 6= x ∈ E and tr(x) = 0.

(a) If char(k) - r
(
r(m−l)(r−1) + (−1)r

)
then tr(xr) 6= 0.

(b) Assume char(k) = 0, q is relatively prime to r, q ≤ rl−1, and σ(rq)(v) 6= 0, where
v = −1E1 ⊕ rm−l1E2 ∈ E. Then σ(rq)(x) 6= 0.

Note that σ(rq)(v) 6= 0 is a numerical condition on q; we shall investigate it more closely
in the next section.

Proof By Lemma 7.3 we can write

x = x(0m,0l)v +
∑
I 6=0m

x(I,0l)(zI ⊕ 0) +
∑
J 6=0l

x(0m, J)(0⊕ w J)(11)

with x(I,0l), x(0m, J) ∈ F for every I and J.
(a) Let

P(x(I, J)) = tr(xr) +
∑

I 6=0m, J 6=0l

t I s Jxr
(I, J).(12)

Note that a non-zero solution of tr(xr) = 0 with x as in (11) gives rise to a non-zero solution
of P(x(I, J)) = 0, if we set x(I, J) = 0 whenever I 6= 0m and J 6= 0l. Thus we only need to
prove that the polynomial P(x(I, J)) defined by (12) is anisotropic.

By Lemma 7.4, tr(xr) is a homogeneous (r,m + l)-Pfister polynomial of degree r in x(I, J).
Since the second term in (12) is clearly a homogeneous (r,m + l)-Pfister polynomial of
degree r, so is P(x(I, J)); see Lemma 3.1.

We now want to apply Theorem 3.2 to conclude that P(x(I, J)) is anisotropic. To do so,
we need to verify that P(x(I, J)) contains the monomial

c(I, J),...,(I, J)t
Is Jxr

(I, J)

with 0 6= c(I, J),...,(I, J) ∈ k. If I 6= 0m and J 6= 0l then by the definition (12) of P(x(I, J)),
we have c(I, J),...,(I, J) = 1. (Indeed, the first term only depends on the variables x(I, J) with
I = 0m or J = 0l.) Now consider c(I, J),...,(I, J) with J = 0l but I 6= 0m. Setting x(I,0l) = 1 and
x(I′,0l) = x(0m, J) = 0 for all J and all I′ 6= I, we obtain

c(I,0l),...,(I,0l)t
I = trE1/F(zrI) = rmtI 6= 0.
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Similarly for any J 6= 0l, we have

c(0m, J),...,(0m, J) = rm 6= 0.

Finally, c(0m,0l),...,(0m,0l) = tr(vr) = rm
(
(−1)r +r(m−l)(r−1)

)
by Lemma 7.2. This expression

is non-zero under our assumption on char(k).
(b) Set d = rq and

Q(x(I, J)) = σ
(rq)(x) +

∑
I 6=0m, J 6=0l

tqIsq Jxd
(I, J)(13)

Note that a non-zero solution of σ(rq)(x) = 0 with x as in (11) gives rise to a non-zero
solution of Q(x(I, J)) = 0, if we set x(I, J) = 0 whenever I 6= 0m and J 6= 0l. Thus we only
need to prove that the polynomial Q(x(I, J)) defined by (13) is anisotropic.

We claim that Q(x(I, J)) is a Pfister polynomial in x(I, J). By Lemma 7.4, σ(rq)(x) is an
(r,m + l)-Pfister polynomial of degree d = rq. The same is true of the second term in (13),
and, hence, of their sum; see Lemma 3.1. This proves our claim.

We now want to apply Theorem 3.2 to conclude that Q(x(I, J)) is anisotropic. To do so,
we only need to check that Q(x(I, J)) contains every monomial of the form

c(I, J),...,(I, J)t
qIsq Jxd

(I, J)

with 0 6= c(I, J),...,(I, J) ∈ k. If I 6= 0m and J 6= 0l then this monomial can only come from
the second term in (13); hence, in this case c(I, J),...,(I, J) = 1. If I 6= 0m and J = 0l then

c(I,0l),...,(I,0l)t
qI = σ(rq)(zI ⊕ 0E2 ) = σ(rq)

E1/F(zI) 6= 0

by Lemma 2.1(b). Similarly,

c(0m, J),...,(0m, J)s
q J = σ(rq)(0E1 ⊕ w J) = σ(rq)

E2/F(w J) 6= 0.

Note that our argument here relies on the assumption that q ≤ rl−1; otherwise
Lemma 2.1(b) does not apply and we, indeed, have σ(rq)(0E1 ⊕ w J) = 0. Finally,

c(0m+l,...,0m+l) = σ
(rq)(v) 6= 0

by our assumption. This completes the proof of Proposition 7.5.

8 The Condition σ(rq)(v) 6= 0

In this section we complete the proof of Theorem 7.1(b) by investigating the condition
σ(rq)(v) 6= 0, which appears in the statement of Proposition 7.5(b). Throughout this section
we shall assume that F is a field of characteristic 0, r ≥ 2, E1 and E2 are field extensions of
F of degree, respectively, rm and rl, E = E1 ⊕ E2, and

v = −1E1 ⊕ rm−l1E2 ∈ E.
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Lemma 8.1

(a) tr(vi) = rm
(

(−1)i + r(m−l)(i−1)
)

.
(b) Let p be a prime and let pe be the largest power of p dividing r. If m > l then σ(i)(v) 6= 0

for any integer i ∈ [2, . . . , pme]. If m = l then σ(i)(v) 6= 0 for any even integer i ∈
[2, . . . , pme].

Proof (a) Same as in Lemma 7.2.
(b) Set ti = tr(vi). If a 6= 0 is an integer, denote the highest power of p dividing a by

νp(a). In particular, νp(r) = e. Since t1 = 0, we can write

(−1)i i!σ(i)(v) = det




0 1 0 0 . . . 0 0
t2 0 2 0 . . . 0 0
t3 t2 0 3 . . . 0 0
t4 t3 t2 0 . . . 0 0
...

...
...

...
...

...
ti−1 ti−2 ti−3 ti−4 . . . 0 i − 1

ti ti−1 ti−2 ti−3 . . . t2 0




;

see [MD, p. 20]. Denote the above determinant by ∆. One of the terms in the expansion
of∆ is T0 = (−1)i(i − 1)!ti ; other non-zero terms are of the form

T = ±
(i − 1)!

i1 · · · is
t j1 · · · t js+1 ,

where 1 ≤ s, i1, . . . , is ≤ i − 1, and 2 ≤ j1, . . . , js+1 ≤ i − 1. We will prove that ∆ 6= 0
(and thus σ(i)(v) 6= 0) by showing that νp(T) > νp(T0) for every T of the above form. In
other words,∆ ≡ T0 6≡ 0 (mod pνp(T0)+1).

Roughly speaking, the inequality νp(T) > νp(T0) holds because each t j is divisible by
(the same) high power of p. Since T has ≥ 2 factors of t j , and T0 has only one such factor
(namely, ti), T will be divisible by a higher power of p then T0.

We now complete the proof of part (b) by making this argument precise. Since 1 ≤
i1, . . . , is ≤ i − 1 < pme, we have νp(i1), . . . , νp(is) < me. On the other hand, by part (a)

νp(t j ) =

{
me + 1 if m = l and p = 2

me in all other cases

for any j ≥ 2. (Note that if m = l then j1, . . . , js+1 are necessarily even, since otherwise
T = 0.) In particular, νp(t j ) = νp(ti) ≥ me for any j = 2, . . . , i − 1 and thus νp(T) =
νp

(
(i−1)!

)
−νp(i1)−· · ·−νp(is)+νp(t j1 )+· · ·+νp(t js+1 ) > νp

(
(i−1)!

)
−sem+(s+1)νp(ti) ≥

νp

(
(i − 1)!

)
− sem + sem + νp(ti) = νp(T0), as claimed.

Proposition 8.2 Let F, E, and v be as above. Then

(i) σ
(rq)
E/F(v) =

∑rq
i=1(−1)i

( rm

rq−i

)(rl

i

)
r(m−l)i
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Moreover, σ(rq)
E/F(v) 6= 0 if one of the following conditions holds:

(ii) there exists a prime p such that pe | r and q ≤ pme

r ,

(iii) q ≤ r
m
g −1, where g is the number of prime divisors of r.

Proof (i) The characteristic polynomial of v over F is (λ + 1)rm

(λ − rm−l)rl

. Reading off
the coefficient of λn−rq (where n = rm + rl), we obtain the desired formula.

(ii) We may assume without loss of generality that pe is largest power of p which divides
r. Now apply Lemma 8.1 with i = rq.

(iii) In view of (ii), it is enough to show that r
m
g ≤ pme for some prime p such that pe

divides r. Indeed, assume the contrary: r = pe1
1 . . . p

eg
g and r

m
g > pmei

i for every i = 1, . . . , g.
Multiplying these g inequalities together, we obtain rm > rm, a contradiction.

9 Remarks

Having proved Theorems 5.1, 6.1 and 7.1, we now pause to make a few observations about
these results.

Remark 9.1 If r = p is a prime and char(k) = 0, then Theorems 5.1, 6.1, and 7.1 become,
respectively, parts (a), (b), and (c) of Theorem 1.3. Note that in this case condition (iii)
of Theorem 7.1(b) is automatically satisfied because g = 1 and q ≤ rm−1 follows from
q ≤ rl−1.

Remark 9.2 It is quite possible that conditions (ii) and (iii) of Theorem 7.1(b) can be
relaxed. In fact, we do not know a single example where condition (i) fails. Note, however,
the assumption q ≤ rl−1 in Proposition 7.5(b) is essential, since any element of the form
x = 0E1 ⊕ y with trE2/F(y) = 0 satisfies tr(x) = σ(i)(x) = 0 for any i > rl. Similarly,
condition m > l is necessary if r is odd; otherwise tr(x) = tr(xr) = σ(r)(x) = 0 for x = v.

Remark 9.3 Lemmas 5.2(b), 6.4(b), and 7.4(b) remain true even if k is a field of finite
characteristic. Our proofs go through if char(k) > i; for general k these results can be
established by expanding σ(i)(x) as in [A, Theorem A], instead of appealing to Newton’s
formulas.

A closer examination of the proof of Theorem 5.1(b) shows that it goes through if
char(k) - (rm)! . Similarly Theorems 6.1(b) and 7.1(b) are true are char(k) - n! (where
n = rm + 1 and rm + rl, respectively) and σ(rq)(v) 6= 0 in k.

Remark 9.4 A theorem of Davenport [D] says that every cubic form in ≥ 16 variables
over the field Q of rational numbers has a non-trivial rational solution (see also [HB] for a
related result of Heath-Browns). As we explained in the Introduction, Davenport’s theorem
implies that the answer to Question 1.2 is positive for F = Q and n ≥ 17. That is, given an
irreducible polynomial f (t) = tn + r1tn−1 + · · · + rn−1t + rn ∈ Q[t] of degree n ≥ 17 there
exist s0, . . . , sn−1 ∈ Q, not all zero, such that

x = s0 + s1t + · · · + sn−1t n−1 ∈ E = Q[t]/( f )
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satisfies σ(1)(x) = σ(3)(x) = 0. In this context Theorems 1.3 says that if n = 3m or 3m + 3l

with m > l then there is no formula which expresses s0, . . . , sn−1 as rational functions in
r1, . . . , rn. This somewhat surprising conclusion is consistent with the fact that Davenport’s
theorem is proved by the circle method, which is intrinsically non-algebraic.

10 Prime-to-p Extensions

Throughout this section p will be a prime number. Recall that a finite field extension F ⊂ F′

is called prime-to-p if its degree is not divisible by p.

Theorem 10.1 Assume r = p is a prime.

(a) Propositions 5.3, 6.5 and 7.5 remain valid if (in each case) we replace F by a prime-to-p
extension F′ of F(α1, . . . , αN) and E by E′ = E⊗F F′. Here α1, . . . , αN are algebraically
independent indeterminates over F and N ≥ 0.

(b) Theorems 5.1, 6.1 and 7.1 remain valid if we replace Kn by a prime-to-p extension K′ and
Ln by L′ = Ln ⊗K K′.

Proof (a) The proofs presented in Sections 5-7 go through unchanged, if we use Proposi-
tion 3.4(b) in place of Theorem 3.2.

(b) We will only show that Theorem 5.1(a) remains valid; the other assertions are
proved in the same way.

!!!!!!!!

!!!!!!!!

((((((((((((((

!!!!!!!!((((((((((((((

((((((((((((((

!!!!!!!!((((((((((((((

Kn

Ln

K′

F′

L′

E′

F(α)

E(α)

n

n
n

n

Let E and F be as in Section 5. Denote F(α1, . . . , αn) by F(α) and E(α1, . . . , αn) by
E(α). By Theorem 4.2 there is an inclusion of fields Kn ↪→ F(α) such that

E(α) ' Ln ⊗Kn F(α).

We shall thus view Kn as a subfield of F(α) and Ln as a subfield of E(α). Let F′ = K′F(α) be
a composite of K′ and F(α) in the algebraic closure of F(α). Then [F′ : F(α)] | [K′ : Kn];
thus F′ is a prime-to-p extension of F(α). To sum up, we have the diagram given above.
By part (a), trE′/F′(y p) 6= 0 for any y ∈ (E′)∗. Thus trL′/K′(xp) = trE′/F′(xp) 6= 0 for any
x ∈ L′, as claimed.
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Remark 10.2 Coray’s proof of Theorem 1.1, which we mentioned in the Introduction, is
based on verifying the following conjecture in two special cases.

Conjecture (Cassels and Swinnerton-Dyer) Let X ⊂ Pn
K be a hypersurface given by f = 0,

where f is a cubic form with coefficients in a field K. If X(K′) 6= ∅ for some prime-to-3
extension K′ of K then X(K) 6= ∅.

In our situation K = Kn, as in (2), and the hypersurface X = Xn ⊂ Pn−1
K is given by

σ(1)(x) = σ(3)(x) = 0.

For n = 5, 6 Coray first showed that (i) Xn(K′) 6= ∅ for a particular prime-to-3 extension
K′ of Kn, then (ii) verified the above conjecture for Xn; see [C2]. If n = 3m or 3m + 3l

with m > l then Theorem 1.3 (with p = 3) says that Xn has no Kn-points. It is, therefore,
natural to ask if, perhaps, Xn provides a counterexample to the above conjecture, that is, if
step (i) of Coray’s argument can still be reproduced for these values of n. Theorem 10.1(b)
shows that this cannot be done. In other words, if n = 3m or 3m + 3l with m > l then
the conjecture of Cassels and Swinnerton-Dyer holds for the hypersurface Xn “by default”,
i.e., because Xn(K′) = ∅ for every prime-to-3 extension K′ of Kn. For the same reason
the conjecture is valid for any hypersurface X ⊂ P3m−1

K which is cut out by a cubic Pfister
polynomial of the form (5) with K = k(t1, . . . , tm), r = d = 3, q = 1, and cI,I,I 6= 0 for any
I = {0, 1, 2}m; see Proposition 3.4(a).

11 Galois Extensions of Degree pm

In this section we prove the following theorem.

Theorem 11.1 Let p be a prime number and let E/F be a Galois extension of degree pm with
Galois group G. Assume F contains a primitive p2-th root of unity and G 6' (Z/pZ)m. Then
there exists an element 0 6= x ∈ E such that tr(xp) = 0 and tr(xi) = 0 for every i ≥ 1 which
is not divisible by p.

Proof First note that we may assume without loss of generality that G has exponent p.
Indeed, otherwise, there exists an element g ∈ G of order p2. Diagonalizing the action of
g on E, we construct an element x ∈ E∗ such that g(x) = ζx, where ζ is a primitive p2-th
root of unity. Then g(xi) = ζ ixi ; taking the trace on both sides, we see that tr(xi) = 0 for
every i which is not divisible by p2.

We can therefore assume that G has exponent p. Our assumption that G 6' (Z/pZ)m is
now equivalent to saying that G is not abelian. Note that if p = 2 this completes the proof,
since every group of exponent 2 is abelian. Thus from now on we shall assume p ≥ 3.

If H is a normal subgroup of G such that G/H is not abelian, then it is enough to prove
the theorem for the extension EH/F, since

trE/F(y) = |H| · trEH/F(y)

for any y ∈ EH . In other words, we can replace E by EH and G by G/H. Thus we may
assume without loss of generality that G/H is an abelian group for every normal subgroup
H of G. In particular, G/Z(G) is an abelian group, where Z(G) is the center of G.
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We now proceed to construct an element x ∈ E∗ whose existence is asserted by the
theorem. Let a and b be elements of G such that b−1a−1ba = c 6= 1G. Since G/Z(G)
is abelian, c is a central element of G. Since we are assuming that G has exponent p, the
abelian subgroup 〈a, c〉 of G is isomorphic to (Z/pZ)2. Diagonalizing the action of this
subgroup on E, we construct an element y ∈ E∗ such that a(y) = y and c(y) = ωy, where
ω is a primitive p-th root of unity. Denote b(y) by z. Then

a(z) = ab(y) = ω−1abc(y) = ω−1ba(y) = ω−1b(y) = ω−1z.

To summarize, we have chosen 0 6= y, z ∈ E so that

z = b(y), a(y) = y, a(z) = ω−1z, c(y) = ωy, and c(z) = ωz.(14)

We claim that

tr(yiz j ) = 0,(15)

unless both i and j are divisible by p. Indeed, by (14), we have

a(yiz j ) = ω− j yiz j and c(yiz j) = ωi+ j zi y j .

Taking the trace on both sides, we see that tr(yiz j) = 0 unless ω− j = ωi+ j = 0, which can
only happen if both i and j are divisible by p, as claimed.

We will now complete the proof by showing that x = y − z has the properties claimed
in the theorem. Expanding xi = (y − z)i , taking the trace of each term, and applying (15),
we see that tr(xi) = 0 if i is not divisible by p. Moreover, if i = p, we obtain

tr(xp) = tr(y p − zp) = tr(y p)− tr
(
b(y p)

)
= 0.

(Note that the first equality uses the assumption that p is odd. This assumption allows us
to write (−z)p as −zp in the binomial expansion of (y − z)p.)

It remains to show x 6= 0. Indeed, assume the contrary. Then y = z. Since a(y) = y
and a(z) = ωz, we conclude that y = 0, which contradicts our choice of y. This completes
the proof of Theorem 11.1.

Remark 11.2 Note that the element x constructed in the above proof will not usually be a
generator for E over F.

12 Division Algebras: Preliminaries

Let D be a finite-dimensional division algebra. Denote its center by F. Recall that dimF D =
n2, where n is a positive integer, called the degree of D. Every maximal subfield of D is of
dimension n over F. Moreover D has a maximal subfield F′ which is separable over F and

D ⊂ D⊗F F′ ' Mn(F′).
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Thus D inherits the functions tr, det, and more generally σ(i) from Mn(F′); these functions
are independent of the choice of F′ and take values in F. If the reference to D is not clear
from the context, we shall write σ(i)

D/F(x) in place of σ(i)(x). Moreover, for any x ∈ F′,

σ(i)(x) = σ(i)
F′/F(x).

For proofs of these facts and a detailed exposition of the structure theory of finite-dimen-
sional division algebras, we refer the reader to [Ro1] and [Ro3].

Given a division algebra D, we can ask if there exists an element 0 6= x ∈ D such that
σ(1)(x) = σ(r)(x) = 0, as we did in the case of fields. Generally speaking, there is more
“room to maneuver” in a division algebra than in a field, so that such systems of equations
are “easier” to solve. To illustrate this point, suppose D is a division algebra of degree 3,
whose center F contains a primitive cube root of unity. By a theorem of Wedderburn, D is
cyclic; see [Ro1, Thm 3.2.21]. Hence, there exists a non-central element x ∈ D such that
x3 ∈ F; this element satisfies

σ(1)(x) = σ(2)(x) = 0.(16)

On the other hand, if a E/F is field extension, F contains a primitive cube root of unity and
0 6= x ∈ E satisfies (16), then E is necessarily cyclic over F. In particular, the system (16)
has no non-trivial solutions for the general field extension L3/K3 because this extension is
not cyclic. (Alternatively, (16) has no non-trivial solutions in L3/K3 by Theorem 6.1, with
r = 2 and m = 1.)

In view of the above example it is somewhat surprising that Theorem 5.1 remains true
in the setting of finite-dimensional division algebras. We will prove this fact in the next
section. Theorems 6.1 and 7.1 will fail in general; see Remarks 14.3 and 14.4.

The role of the general extension Ln/Kn in the setting of division algebras is played by
the the universal division algebra UD(n). Recall that UD(n) = UD(n, k) is defined as
follows. Let X = (xi j ) and Y = (yi j ) be generic n× n-matrices; here the 2n2 entries xi j and
yi j are assumed to be algebraically independent commuting variables over the base field k.
Let Gn be the k-subalgebra of Mn(k[xi j , yi j]) generated by X and Y . Then Gn is a domain
and UD(n) is the division algebra (of degree n) obtained from Gn by inverting all non-zero
central elements. We shall denote the center of UD(n) by Z(n). For a more detailed account
of the construction and properties of UD(n) we refer the reader to [Ro1, 3.2–3.3].

The role of Theorem 4.2 in the setting of division algebras is played by the following
result.

Theorem 12.1 ([RV, Thm. 1]) Let D be a division algebra of degree n with center F. Suppose
k ⊂ F and trdegk F ≥ trdegk Z(n) = n2 + 1. Then there exists there exists an inclusion of
fields Z(n) ↪→ F (defined over k) such that D ' UD(n)⊗Z(n) F.

Using this theorem we can derive the division algebra analogue of Corollary 4.4.

Corollary 12.2 Let D be a division algebra of degree n whose center F contains k.

(a) If tr(xr) = 0 for some 0 6= x ∈ UD(n) then tr(yr) = 0 for some 0 6= y ∈ D.
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(b) If σ(rq)(x) = 0 for some 0 6= x ∈ UD(n) then tr(yr) = 0 for some 0 6= y ∈ D.

Proof Let α = (α1, . . . , αn2+1) be a collection of n2 + 1 algebraically independent (com-
muting) variables over F. By Theorem 12.1 UD(n) is a subalgebra of D(α). Thus there
exists 0 6= z ∈ D(α) such that (a) tr(zr) = 0 and (b) σ(rq)(z) = 0. We can now construct
y by specializing α1, . . . , αn in F, as in the proof of Corollary 4.4. (Note that since D is a
division algebra, F is an infinite field by a theorem of Wedderburn.)

Remark 12.3 An alternative proof of Corollary 12.2(a) proceeds as follows. After multi-
plying x by a non-zero central element, we may assume x ∈ Gn, where Gn = k{X,Y} is
the algebra of generic n × n-matrices defined above. Given a, b ∈ D, we can define a ring
homomorphism φ : Gn → D by φ(X) = a and φ(X) = b. Set y = φ(x). Choose a and
b so that they generate D as an F-algebra and y 6= 0. (Both conditions are open; the lat-
ter is non-empty because D satisfies the same polynomial identities as Gn; see [Ro3, Cor.
6.1.46′].) Then y has the desired properties. Part (b) can be proved in the same way.

Either proof of Corollary 12.2 can be extended to show that if there exists an 0 6= x ∈
UD(n) such that σ(a1)(xe1 ) = · · · = σ(ad)(xed ) = 0 for some 0 6= x ∈ Ln then there exists
a 0 6= y ∈ E such that σ(a1)

E/F (ye1 ) = · · · = σ(ad)
E/F (yed ) = 0, as in Corollary 4.4. This

generalization of Corollary 12.2 will not be used in the sequel.

13 Division Algebras of Degree rm

In this section we prove Theorem 1.4. First of all, note that we may assume without loss of
generality that k is contains a primitive r-th root of unity. Secondly, by Corollary 12.2 it is
enough to construct a division algebra D of degree n (whose center contains k) such that
(a) tr(xr) 6= 0 and (b) σ(rq)(x) 6= 0 for any x ∈ D∗. We now proceed to construct such an
algebra. Theorem 1.4 will then follow from Proposition 13.3.

Let ζ ∈ k be a primitive r-th root of unity, let t1, . . . , t2m be independent variables
over k, and let (t2i−1, t2i)r be the symbol algebra given by zr

2i−1 = t2i−1, zr
2i = t2i and

z2i−1z2i = ζz2i z2i−1. (For more on symbol algebras see [Ro3, pp. 194–197].) For the rest of
this section we set D = Dm,r where

Dm,r = (t1, t2)r ⊗F · · · ⊗F (t2m−1, t2m)r(17)

is the product of m generic symbol algebras of degree m. By construction D is a division
algebra of degree rm over its center F. If I = (i1, . . . , i2m) ∈ Z2m, we will write zI for
zi1

1 · · · z
i2m
2m .

Lemma 13.1

(a) tr(zI) = 0 for any I /∈ rZ.
(b) σ(ri)(zI) 6= 0 for any i = 1, . . . , rm−1.
(c) The elements zI form an F-basis of D, as I ranges over {0, 1, . . . , r − 1}2m.

Proof Parts (a) and (b) follow from Lemma 2.1 with F′ =maximal subfield of D contain-
ing zI . To prove part (c) it is enough to show that the elements zI are linearly independent.
Indeed, assume

∑
I xIzI = 0 for some xI ∈ F. To prove xJ = 0 multiply both sides by z− J ,

then take the trace and apply part (a).
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Lemma 13.2 Let x =
∑

I∈{0,1,...,r−1}2m xIzI , where each xI ∈ F. Then

(a) tr(xi) is an (r, 2m)-Pfister polynomial of degree i for any i ≥ 1.
(b) σ(i)(x) is an (r, 2m)-Pfister polynomial of degree i for any i = 1, 2, . . . , rm.

Proof We argue as in the proof of Lemma 5.2. (a) We expand xi and use Lemma 13.1(a).
(b) Follows from Newton’s formulas, part (a), and Lemma 3.1.

Proposition 13.3 Let k be a base field containing a primitive r-th root of unity and let D =
Dm,r be as in (17). Then

(a) tr(xr) 6= 0 for any x ∈ D∗.
(b) Suppose char(k) = 0 and q ∈ [1, rm−1] is an integer which is relatively prime to r. Then

σ(rq)(x) 6= 0 for any x ∈ D∗.

Proof (a) By Lemma 13.1(c) any x ∈ D can be written as

x =
∑

I∈{0,1,...,r−1}2m

xIz
I ,

where xI ∈ F.
(a) By Lemma 13.2(a), tr(xr) is a homogeneous (r, 2m)-Pfister polynomial of degree r.

We want to conclude that tr(xr) is anisotropic by appealing to Theorem 3.2. In order to do
so, we need to check that tr(xr) contains the monomial cI,...,It IxI with cI,...,I 6= 0 for every
I ∈ {0, 1, . . . , r − 1}2m. Note that cI,...,It I = tr(zrI ) = tr(tI) and thus cI,...,I = rm, which
is non-zero in k. (Indeed, char(k) - r because k is assumed to have a primitive r-th root of
unity.)

(b) By Lemma 13.2(b), σ(rq)(x) is a homogeneous (r, 2m)-Pfister polynomial of degree
rq. Now we apply the same argument as in part (a), using Lemmas 13.1(b) and 13.2(b).

This completes the proof of Proposition 13.3 and thus of Theorem 1.4.

14 Prime-to-p Extensions of Division Algebras

Let D be a finite-dimensional division algebra with center F. We shall say that D′ is a prime-
to-p extension of D if D′ ' D ⊗F F′, where F′ is a prime-to-p field extension of D. Note
that if the degree of D equals pm then D′ is also a division algebra of degree pm; see [Ro1,
Cor. 3.1.19].

Theorem 14.1 Assume r = p is a prime and let α1, . . . , αN be algebraically independent
indeterminates over k.

(a) Let r = p be a prime, Dm,r be as in (17), F = k(t1, . . . , t2p) be the center of Dm,r , and
α1, . . . , αN be algebraically independent indeterminates over F. Then Proposition 13.3
remains valid if we replace D = Dm,r by D = Dm,r ⊗F F′, where F′ is a prime-to-p
extension of F(α1, . . . , αN ).

(b) Theorem 1.4 remains valid if we replace UDn by UDn⊗Z(n)Z′, where Z′ is a prime-to-p
extension of Z(n).
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Proof (a) Our proof of Proposition 13.3 goes through unchanged, if we use Proposi-
tion 3.4(b) in place of Theorem 3.2.

(b) Repeat the argument of Theorem 10.1(b) with Kn, K′, and E replaced by Z(n), Z′,
and Dm,r , respectively.

Remark 14.2 Suppose D is a division algebra of degree n with center F, F′ is a prime-to-p
extension of F and D′ = D ⊗F F′. If n is not a power of p then D′ may not be a division
algebra; however, it will remain a central simple algebra with well-defined functions tr, det,
and, more generally, σ(i) : D′ → F′. It n = pm + 1 or pm + pl with l ≥ 1, one can ask if
prime-to-p versions of (respectively) Theorems 6.1 and 7.1 remain valid in this setting. We
claim that they do not. More precisely,

Let n be an integer which is not a power of p and let D be a division algebra of degree
n with center F. Then there is a prime-to-p extension F′ of F and a non-zero element
x ∈ D′ = D⊗F F′ such that tr(x) = tr(xi) = σ j(x) = 0 for any i ≥ 1 and any j = 1, . . . , n.

Indeed, by [Ro1, Theorem 3.1.21] we can choose F′ so that D′ ' Mn0 (D0) with n0 ≥ 2.
Then D′ contains a non-zero nilpotent element x which has the desired property.

Remark 14.3 If r = 2 then Theorems 6.1 and 7.1 fail in the setting of division algebras.
That is,

Let n be an integer which is not a power of 2 and let D be a division algebra of degree
n with center F. Then there exists a non-zero element x ∈ D such that tr(x) = tr(x2) = 0
(or, equivalently, σ(1)(x) = σ(2)(x) = 0).

This observation was first made by Rowen; see [Ro2, Corollary 5]. For convenience of
the reader we present a short proof under the assumption char(F) 6= 2; cf. [F, Remark 7].

Proof By Remark 14.2 there is an extension F′/F of odd degree such that

tr(x′) = tr
(
(x′)2
)
= 0(18)

for some 0 6= x′ ∈ D′ = D ⊗F F′. Denote the F-vector space of trace-free elements
of D by V . Let q : V → F be the trace form, i.e., q(y) = tr(y2). Then (18) says that
q⊗F′ : V ⊗F′ → F′ is isotropic. Consequently, by a theorem of Springer [Pf, Thm. 6.1.12],
q is isotropic over F. That is, there exists 0 6= x ∈ D such that tr(x) = tr(x2) = 0, as
claimed.

Remark 14.4 If m = 1 then Theorem 6.1(b) fails in the setting of division algebras for
every r. Indeed, by a theorem of Brauer, every division algebra of degree n = r + 1 has a
non-zero element x such that σ(1)(x) = σ(r)(x) = 0; see [Ro3, Prop. 7.1.43].

15 Crossed Products

Let D be a division algebra of degree n with center F and let G be a finite group. Then D
is called a G-crossed product if D has a maximal subfield E which is Galois over F with
Gal(E/F) ' G.

Amitsur’s famous theorem states that the universal division algebra UD(pm) is not a
crossed product for any prime p and any integer m ≥ 3; moreover, UD(pm) does not
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contain any Galois extension of its center of degree ≥ p3; see [Ro1, Thm 3.3.12]. Rowen
and Saltman showed that a prime-to-p extension of UD(pm) cannot be a crossed product
for any m ≥ 3; see [RS, Thm. 2.1].

On the other hand, by a theorem of Albert, UD(p) has a prime-to-p extension which
is a Z/pZ-crossed product. Rowen and Saltman proved that UD(p2) has a prime-to-p
extension which is a (Z/pZ)2-crossed product; see [RS, Sect. 1].

The following theorem is a (weaker) version of the above-mentioned non-crossed prod-
uct results of Amitsur, Rowen and Saltman. Our proof is a variant of Amitsur’s original
argument. This argument assumes a particularly simple form here, in view of the results of
the last four sections.

Theorem 15.1 Let p be a prime which does not divide the characteristic of the base field k,
and let D be a prime-to-p extension of the universal division algebra UD(pm) or of the algebra
Dm,r defined in (17). Denote the center of D by F. Suppose E is a Galois extension of F, which
is contained in D. Then Gal(E, F) ' (Z/pZ)[E:F].

Proof We may assume without loss of generality that k contains a primitive p2th root of
unity (otherwise we can simply extend the scalars).

Suppose, to the contrary, that Gal(E, F) 6' (Z/pZ)[E:F]. Then by Theorem 11.1
trD/F(xp) = 0 for some 0 6= x ∈ E, contradicting Theorem 14.1(b).

16 The Field of Definition of a Division Algebra

We now turn to another application of Theorem 14.1. Let F be a field, A be an F-algebra of
dimension d and F0 be a subfield of F. We will say that A is defined over F0 if there exists
an F0-algebra A0 such that A ' A0 ⊗F0 F (as F-algebras). Equivalently, A is defined over F0

if there exists an F-basis e1, . . . , ed of A such that

eie j =

d∑
h=1

ch
i j eh

and all of the structure constants ch
i j are contained in F0.

We will now prove that a “sufficiently general” division algebra cannot be defined over
a “small” field.

Theorem 16.1 Let p be a prime and let D be a prime-to-p extension of UD(pm) or of the
algebra Dm,r defined in (17). Denote the center of D by F.

(a) Let A be a ps-dimensional F-subalgebra of D. Assume A is defined over F0 ⊂ F such that
F0 contains k. Then trdegk(F0) ≥ s.

(b) Suppose D is defined over a subfield F0 of F such that k ⊂ F0. Then trdegk(F0) ≥ 2m.
(c) Suppose y ∈ D, [F(y) : F] = pt and the minimal polynomial of y over F is

y pt

+ a1 y pt−1 + · · · + apt−1 y + apt .

Then trdegk k(a1, . . . , apt ) ≥ t.
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Proof (a) We may assume without loss of generality that k = k is an algebraically closed
field (otherwise we simply extend the scalars in the definitions of UD(n) and Dm,r).

By our assumption A ' A0⊗F0 F, where A0 is a ps-dimensional F0-algebra. Let e1, . . . , eps

be an F0-basis of A0. Write x =
∑ps

i=1 xiei , with xi ∈ F0.
Assume the contrary: trdegk(F0) ≤ s− 1. Then by the Tsen-Lang Theorem F0 is a Cs−1-

field; see [Pf, Sect. 5.1]. In particular, trD/F(xp) = 0, viewed as a homogeneous polynomial
equation of degree p in x1, . . . , xps , has a non-trivial solution. In other words, there exists
an element 0 6= x ∈ A such that trD/F(xp) = 0. This contradicts Theorem 14.1.

(b) Set A = D and apply part (a).
(c) Set A = F(y). Viewing A as an F-algebra and examining the structure constants in

the basis 1, y, . . . , y pt−1, we see that A is defined over F0 = k(a1, . . . , apt ). Thus part (c)
follows from part (a).
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