
JFP 18 (1): 1–13, 2008. c© 2007 Cambridge University Press

doi:10.1017/S0956796807006326 First published online 16 May 2007 Printed in the United Kingdom

1

FUNCTIONAL PEARL

Applicative programming with effects

CONOR MCBRIDE1

University of Nottingham

ROSS PATERSON

City University, London

Abstract

In this article, we introduce Applicative functors – an abstract characterisation of an

applicative style of effectful programming, weaker than Monads and hence more widespread.

Indeed, it is the ubiquity of this programming pattern that drew us to the abstraction. We

retrace our steps in this article, introducing the applicative pattern by diverse examples, then

abstracting it to define the Applicative type class and introducing a bracket notation that

interprets the normal application syntax in the idiom of an Applicative functor. Furthermore,

we develop the properties of applicative functors and the generic operations they support.

We close by identifying the categorical structure of applicative functors and examining their

relationship both with Monads and with Arrows.

1 Introduction

This is the story of a pattern that popped up time and again in our daily work,

programming in Haskell (Peyton Jones, 2003), until the temptation to abstract it

became irresistable. Let us illustrate with some examples.

1.1 Sequencing commands

One often wants to execute a sequence of commands and collect the sequence of

their responses, and indeed there is such a function in the Haskell Prelude (here

specialised to the IO monad):

sequence :: [IO a]→ IO [a]

sequence [] = return []

sequence (c : cs) = do

x ← c

xs ← sequence cs

return (x : xs)

1 McBride is funded by EPSRC grant EP/C512022/1.

https://doi.org/10.1017/S0956796807006326 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006326

2 C. McBride and R. Paterson

In the (c : cs) case, we collect the values of some effectful computations, which we

then use as the arguments to a pure function (:). We could avoid the need for names

to wire these values through to their point of usage if we had a kind of ‘effectful

application’. Fortunately, exactly such a thing lives in the standard Monad library:

ap :: Monad m ⇒ m (a → b)→ m a → m b

ap mf mx = do

f ← mf

x ← mx

return (f x)

Using this function, we could rewrite sequence as follows:

sequence :: [IO a]→ IO [a]

sequence [] = return []

sequence (c : cs) = return (:) ‘ap‘ c ‘ap‘ sequence cs

where the return operation, which every Monad must provide, lifts pure values to

the effectful world, whilst ap provides ‘application’ within it.

Except for the noise of the returns and aps, this definition is in a fairly standard

applicative style, even though effects are present.

1.2 Transposing ‘matrices’

Suppose that we represent matrices (somewhat approximately) by lists of lists. A

common operation on matrices is transposition:2

transpose :: [[a]]→ [[a]]

transpose [] = repeat []

transpose (xs : xss) = zipWith (:) xs (transpose xss)

Now, the binary zipWith is one of a family of operations that ‘vectorise’ pure

functions. As Fridlender and Indrika (2000) point out, the entire family can be

generated from repeat, which generates an infinite stream from its argument, and

zapp, a kind of ‘zippy’ application:

repeat :: a → [a]

repeat x = x : repeat x

zapp :: [a → b]→ [a]→ [b]

zapp (f : fs) (x : xs) = f x : zapp fs xs

zapp = []

The general scheme is as follows:

zipWithn :: (a1 → · · · → an → b)→ [a1]→ · · · → [an]→ [b]

zipWithn f xs1 . . . xsn = repeat f ‘zapp‘ xs1 ‘zapp‘ . . . ‘zapp‘ xsn

In particular, transposition becomes

transpose :: [[a]]→ [[a]]

transpose [] = repeat []

transpose (xs : xss) = repeat (:) ‘zapp‘ xs ‘zapp‘ transpose xss

2 This function differs from the one in the standard library in its treatment of ragged lists.

https://doi.org/10.1017/S0956796807006326 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006326

Functional pearl 3

Except for the noise of the repeats and zapps, this definition is in a fairly standard

applicative style, even though we are working with vectors.

1.3 Evaluating expressions

When implementing an evaluator for a language of expressions, it is customary

to pass around an environment, giving values to the free variables. Here is a very

simple example:

data Exp v = Var v

| Val Int

| Add (Exp v) (Exp v)

eval :: Exp v → Env v → Int

eval (Var x) γ = fetch x γ

eval (Val i) γ = i

eval (Add p q) γ = eval p γ + eval q γ

where Env v is some notion of environment and fetch x projects the value for the

variable x .

We can eliminate the clutter of the explicitly threaded environment with a little

help from some very old friends, designed for this purpose:

eval :: Exp v → Env v → Int

eval (Var x) = fetch x

eval (Val i) = � i

eval (Add p q) = � (+) ‘�‘ eval p ‘�‘ eval q

where
� :: a → env → a

� x γ = x

� :: (env → a → b)→ (env → a)→ (env → b)

� ef es γ = (ef γ) (es γ)

Except for the noise of the � and � combinators,3 this definition of eval is in a

fairly standard applicative style, even though we are abstracting an environment.

2 The Applicative class

We have seen three examples of this ‘pure function applied to funny arguments’

pattern in apparently quite diverse fields – let us now abstract out what they have

in common. In each example, there is a type constructor f that embeds the usual

notion of value, but supports its own peculiar way of giving meaning to the usual

applicative language – its idiom. We correspondingly introduce the Applicative class:

infixl 4�

class Applicative f where

pure :: a → f a

(�) :: f (a → b)→ f a → f b

3 Also known as the return and ap of the environment Monad.

https://doi.org/10.1017/S0956796807006326 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006326

4 C. McBride and R. Paterson

This class generalises � and � from threading an environment to threading an

effect. (As we shall see later, these effects include, but are not limited to, monadic

effects.)

We shall require the following laws for applicative functors:

identity pure id� u = u

composition pure (·)� u � v � w = u � (v � w)

homomorphism pure f � pure x = pure (f x)

interchange u � pure x = pure (λf → f x)� u

The idea is that pure embeds pure computations into the pure fragment of an

effectful world – the resulting computations may thus be shunted around freely, as

long as the order of the genuinely effectful computations is preserved.

One can easily check that applicative functors are indeed functors, with the

following action on functions:

fmap :: Applicative f ⇒ (a → b)→ f a → f b

fmap f u = pure f � u

Moreover, any expression built from the Applicative combinators can be transformed

to a canonical form in which a single pure function is ‘applied’ to the effectful parts

in depth-first order:

pure f � u1 � . . .� un

This canonical form captures the essence of Applicative programming: computations

have a fixed structure, given by the pure function, and a sequence of subcompu-

tations, given by the effectful arguments. We therefore find it convenient, at least

within this article, to write this form using a special bracket notation:

� f u1 . . . un �

This signals a shift into the idiom of an Applicative functor, where a pure function is

applied to a sequence of effectful arguments using the appropriate �. Our intention

is to give an indication that effects are present, whilst retaining readability of code.

Given Haskell extended with multi-parameter type classes, enthusiasts for over-

loading may replace ‘�’ and ‘�’ by appropriately defined identifiers iI and Ii4 with

appropriate parentheses.

The IO monad, and indeed any Monad, can be made Applicative by taking

pure = return and (�) = ap. (We could alternatively use the variant of ap that

performs the computations in the opposite order, but we shall keep to the left-to-

right order in this article.) Here is a direct implementation of the instance derived

from the (→) env monad:

instance Applicative ((→) env) where

pure x = λγ → x -- �
ef � ex = λγ → (ef γ) (ex γ) -- �

With these instances, sequence and eval become

4 Hint: Define an overloaded function apply u v1 . . . vn Ii = u � v1 � . . .� vn .

https://doi.org/10.1017/S0956796807006326 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006326

Functional pearl 5

sequence :: [IO a]→ IO [a]

sequence [] = � []�

sequence (c : cs) = � (:) c (sequence cs)�

eval :: Exp v → Env v → Int

eval (Var x) = fetch x

eval (Val i) = � i �

eval (Add p q) = � (+) (eval p) (eval q)�

If we want to do the same for our transpose example, we shall have to avoid

the library’s ‘list of successes’ (Wadler, 1985) monad and take instead an instance

Applicative [] that supports ‘vectorisation’, where pure = repeat and (�) = zapp,

yielding

transpose :: [[a]]→ [[a]]

transpose [] = � []�

transpose (xs : xss) = � (:) xs (transpose xss)�

While there is a Monad of infinite lists for which repeat and zapp are return and

ap, there is no such Monad on finite lists: the associativity law necessarily fails.

3 Traversing data structures

Have you noticed that sequence and transpose now look rather alike? The details

that distinguish the two programs are inferred by the compiler from their types.

Both are instances of the applicative distributor for lists:

dist :: Applicative f ⇒ [f a]→ f [a]

dist [] = � []�

dist (v : vs) = � (:) v (dist vs)�

Distribution is often used together with ‘map’. For example, given the monadic

‘failure-propagation’ applicative functor for Maybe, we can map some failure-prone

operation (a function in a → Maybe b) across a list of inputs in such a way that

any individual failure causes failure overall.

flakyMap :: (a → Maybe b)→ [a]→ Maybe [b]

flakyMap f ss = dist (fmap f ss)

As you can see, flakyMap traverses ss twice – once to apply f , and again to collect the

results. More generally, it is preferable to define this applicative mapping operation

directly, with a single traversal:

traverse :: Applicative f ⇒ (a → f b)→ [a]→ f [b]

traverse f [] = � []�

traverse f (x : xs) = � (:) (f x) (traverse f xs)�

This is just the way you would implement the ordinary fmap for lists, but with

the right-hand sides wrapped in �· · ·�, shifting them into the idiom. Just like fmap,

traverse is a useful gadget to have for many data structures, hence we introduce

https://doi.org/10.1017/S0956796807006326 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006326

6 C. McBride and R. Paterson

the type class Traversable, capturing functorial data structures through which we

can thread an applicative computation:

class Traversable t where

traverse :: Applicative f ⇒ (a → f b)→ t a → f (t b)

dist :: Applicative f ⇒ t (f a)→ f (t a)

dist = traverse id

Of course, we can recover an ordinary ‘map’ operator by taking f to be the identity –

the simple applicative functor (corresponding to the identity monad) in which all

computations are pure:

newtype Id a = An{an :: a }

Haskell’s newtype declarations allow us to shunt the syntax of types around without

changing the run-time notion of value or incurring any run-time cost. The ‘labelled

field’ notation defines the projection an::Id a → a at the same time as the constructor

An :: a → Id a . The usual applicative functor has the usual application:

instance Applicative Id where

pure = An

An f � An x = An (f x)

So, with the newtype signalling which Applicative functor to thread, we have

fmap f = an · traverse (An · f)

Meertens (1998) defined generic dist-like operators, families of functions of type

t (f a) → f (t a) for every regular functor t (i.e. ‘ordinary’ uniform datatype

constructors with one parameter, constructed by recursive sums of products). His

conditions on f are satisfied by applicative functors, so the regular type constructors

can all be made instances of Traversable. The rule-of-thumb for traverse is ‘like

fmap but with �· · ·� on the right’. For example, here is the definition for trees:

data Tree a = Leaf | Node (Tree a) a (Tree a)

instance Traversable Tree where

traverse f Leaf = �Leaf �

traverse f (Node l x r) = �Node (traverse f l) (f x) (traverse f r)�

This construction even works for non-regular types. However, not every Functor is

Traversable. For example, the functor (→) env cannot, in general, be Traversable.

To see why, take env = Integer and try to distribute the Maybe functor!

Although Meertens did suggest that threading monads might always work,

his primary motivation was to generalise reduction or ‘crush’ operators, such as

flattening trees and summing lists. We shall turn to these in the next section.

4 Monoids are phantom Applicative functors

The data that one may sensibly accumulate have the structure of a Monoid:

https://doi.org/10.1017/S0956796807006326 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006326

Functional pearl 7

class Monoid o where

∅ :: o

(⊕) :: o → o → o

such that ‘⊕’ is an associative operation with identity ∅. The functional programming

world is full of monoids – numeric types (with respect to zero and plus, or one and

times), lists with respect to [] and ++, and many others – so generic technology for

working with them could well prove to be useful. Fortunately, every monoid induces

an applicative functor, albeit in a slightly peculiar way:

newtype Accy o a = Acc{acc :: o }

Accy o a is a phantom type (Leijen & Meijer, 1999) – its representation is independent

of a – but it does yield the applicative functor of accumulating computations:

instance Monoid o ⇒ Applicative (Accy o) where

pure = Acc ∅
Acc o1 � Acc o2 = Acc (o1 ⊕ o2)

Now reduction or ‘crushing’ is just a special kind of traversal, in the same way as

with any other applicative functor, just as Meertens suggested:

accumulate :: (Traversable t ,Monoid o)⇒ (a → o)→ t a → o

accumulate f = acc · traverse (Acc · f)

reduce :: (Traversable t ,Monoid o)⇒ t o → o

reduce = accumulate id

Operations like flattening and concatenation become straightforward:

flatten :: Tree a → [a]

flatten = accumulate (:[])

concat :: [[a]]→ [a]

concat = reduce

We can extract even more work from instance inference if we use the type system

to distinguish different monoids available for a given datatype. Here, we use the

disjunctive structure of Bool to test for the presence of an element satisfying a given

predicate:

newtype Mighty = Might{might :: Bool}
instance Monoid Mighty where

∅ = Might False

Might x ⊕Might y = Might (x ∨ y)

any :: Traversable t ⇒ (a → Bool)→ t a → Bool

any p = might · accumulate (Might · p)

Now any · (≡) behaves just as the elem function for lists, but it can also tell

whether a variable from v occurs free in an Exp v . Of course, Bool also has a

conjunctive Musty structure, which is just as easy to exploit.

https://doi.org/10.1017/S0956796807006326 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006326

8 C. McBride and R. Paterson

5 Applicative versus Monad?

We have seen that every Monad can be made Applicative via return and ap. Indeed,

two of our three introductory examples of applicative functors involved the IO

monad and the environment monad (→) env . However the Applicative structure we

defined on lists is not monadic, and nor is Accy o (unless o is the trivial 1-point

monoid): return can deliver ∅, but if you try to define

(>>=) :: Accy o a → (a → Accy o b)→ Accy o b

you will find it tricky to extract an a from the first argument to supply to the second –

all you get is an o. The � for Accy o is not the ap of a monad.

So now we know: there are strictly more Applicative functors than Monads.

Should we just throw the Monad class away and use Applicative instead? Of course

not! The reason there are fewer monads is just that the Monad structure is more

powerful. Intuitively, the (>>=) :: m a → (a → m b)→ m b of some Monad m allows

the value returned by one computation to influence the choice of another, whereas �
keeps the structure of a computation fixed, just sequencing the effects. For example,

one may write

miffy :: Monad m ⇒ m Bool→ m a → m a → m a

miffy mb mt me = do

b ← mb

if b then mt else me

so that the value of mb will choose between the computations mt and me, performing

only one, whilst

iffy :: Applicative f ⇒ f Bool→ f a → f a → f a

iffy fb ft fe = �cond fb ft fe � where

cond b t e = if b then t else e

performs the effects of all three computations, using the value of fb to choose only

between the values of ft and fe. This can be a bad thing: for example,

iffy �True� � t � Nothing = Nothing

because the ‘else’ computation fails, even though its value is not needed, but

miffy �True� � t � Nothing = � t �

However, if you are working with miffy, it is probably because the condition

is an expression with effectful components, so the idiom syntax provides quite a

convenient extension to the monadic toolkit:

miffy � (�) getSpeed getSpeedLimit � stepOnIt checkMirror

The moral is this: if you have got an Applicative functor, that is good; if you

have also got a Monad, that is even better! And the dual of the moral is this: if

you need a Monad, that is fine; if you need only an Applicative functor, that is even

better!

https://doi.org/10.1017/S0956796807006326 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006326

Functional pearl 9

One situation in which the full power of monads is not always required is parsing,

for which Röjemo (1995) proposed an interface including the equivalents of pure and

‘�’ as an alternative to monadic parsers (Hutton & Meijer, 1998). Several ingenious

non-monadic implementations have been developed by Swierstra and colleagues

(Swierstra & Duponcheel, 1996; Baars et al., 2004). Because the structure of these

parsers is independent of the results of parsing, these implementations are able to

analyse the grammar lazily and generate very efficient parsers.

5.1 Composing applicative functors

The weakness of applicative functors makes them easier to construct from compon-

ents. In particular, although only certain pairs of monads are composable (Barr &

Wells, 1984), the Applicative class is closed under composition,

newtype (f ◦ g) a = Comp{comp :: (f (g a))}

just by lifting the inner Applicative operations to the outer layer:

instance (Applicative f ,Applicative g)⇒ Applicative (f ◦ g) where

pure x = Comp � (pure x)�

Comp fs � Comp xs = Comp � (�) fs xs �

As a consequence, the composition of two monads may not be a monad, but it is

certainly applicative. For example, both Maybe ◦ IO and IO ◦Maybe are applicative:

IO◦Maybe is an applicative functor in which computations have a notion of ‘failure’

and ‘prioritised choice’, even if their ‘real world’ side effects cannot be undone. Note

that IO and Maybe may also be composed as monads (though not vice versa),

but the applicative functor determined by the composed monad differs from the

composed applicative functor: the binding power of the monad allows the second

IO action to be aborted if the first returns a failure.

We began this section by observing that Accy o is not a monad. However, given

Monoid o, it can be defined as the composition of two applicative functors derived

from monads – which two, we leave as an exercise.

5.2 Accumulating exceptions

The following type may be used to model exceptions:

data Except err a = OK a | Failed err

A Monad instance for this type must abort the computation on the first error, as

there is then no value to pass to the second argument of ‘>>=’. However, with the

Applicative interface we can continue in the face of errors:

https://doi.org/10.1017/S0956796807006326 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006326

10 C. McBride and R. Paterson

instance Monoid err ⇒ Applicative (Except err) where

pure = OK

OK f � OK x = OK (f x)

OK f � Failed err = Failed err

Failed err � OK x = Failed err

Failed err1 � Failed err2 = Failed (err1 ⊕ err2)

This could be used to collect errors by using the list monoid (Coutts, 2002), or to

summarise them in some way.

6 Applicative functors and Arrows

To handle situations in which monads were inapplicable, Hughes (2000) defined an

interface that he called arrows, defined by the following class with nine axioms:

class Arrow (�) where

arr :: (a → b)→ (a � b)

(�) :: (a � b)→ (b � c)→ (a � c)

first :: (a � b)→ ((a , c)� (b, c))

Examples include ordinary ‘→’, Kleisli arrows of monads and comonads, and stream

processors. Equivalent structures called Freyd-categories had been independently

developed to structure denotational semantics (Power & Robinson, 1997).

There are similarities to the Applicative interface, with arr generalising pure.

The ‘�’ operation arranges for the result of the first computation to be fed to the

second; as with ‘�’, the plumbing is independent of the data flowing through it.

By fixing the first argument of an arrow type, we obtain an applicative functor,

generalising the environment functor we saw earlier:

newtype EnvArrow (�) env a = Env (env � a)

instance Arrow (�)⇒ Applicative (EnvArrow (�) env) where

pure x = Env (arr (const x))

Env u � Env v = Env (u
v � arr (λ(f , x)→ f x))

where u
v = arr dup� first u � arr swap� first v � arr swap

dup a = (a , a)

swap (a , b) = (b, a)

In the other direction, each applicative functor defines an arrow constructor that

adds static information to an existing arrow:

newtype StaticArrow f (�) a b = Static (f (a � b))

instance (Applicative f ,Arrow (�))⇒ Arrow (StaticArrow f (�)) where

arr f = Static � (arr f)�

Static f � Static g = Static � (�) f g �

first (Static f) = Static �first f �

To date, most applications of the extra generality provided by arrows over monads

have been either various forms of process, in which components may consume mul-

tiple inputs, or computing static properties of components. Indeed one of Hughes’s

https://doi.org/10.1017/S0956796807006326 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006326

Functional pearl 11

motivations was the parsers of Swierstra and Duponcheel (1996). It may turn out

that applicative functors are more convenient for applications of the second class.

7 Applicative functors, categorically

The Applicative class features the asymmetrical operation ‘�’, but there is an

equivalent symmetrical definition:

class Functor f ⇒ Monoidal f where

unit :: f ()

(�) :: f a → f b → f (a , b)

These operations are clearly definable for any Applicative functor:

unit :: Applicative f ⇒ f ()

unit = � ()�

(�) :: Applicative f ⇒ f a → f b → f (a , b)

fa � fb = � (,) fa fb �

Moreover, we can recover the Applicative interface from Monoidal as follows:

pure :: Monoidal f ⇒ a → f a

pure x = fmap (λ → x) unit

(�) :: Monoidal f ⇒ f (a → b)→ f a → f b

mf � mx = fmap (λ(f , x)→ f x) (mf � mx)

The laws of Applicative given in Section 2 are equivalent to the usual Functor laws,

plus the following laws of Monoidal:

naturality of � fmap (f × g) (u � v) = fmap f u � fmap g v

left identity fmap snd (unit � v) = v

right identity fmap fst (u � unit) = u

associativity fmap assoc (u � (v � w)) = (u � v) � w

for the functions

(×) :: (a → b)→ (c → d)→ (a , c)→ (b, d)

(f × g) (x , y) = (f x , g y)

assoc :: (a , (b, c))→ ((a , b), c)

assoc (a , (b, c)) = ((a , b), c)

Fans of category theory will recognise the above laws as the properties of a lax

monoidal functor for the monoidal structure given by products. However the functor

composition and naturality equations are actually stronger than their categorical

counterparts. This is because we are working in a higher-order language, in which

function expressions may include variables from the environment, as in the above

definition of pure for Monoidal functors. In the first-order language of category

theory, such data flow must be explicitly plumbed using functors with tensorial

strength, an arrow:

tAB : A× F B −→ F (A× B)

https://doi.org/10.1017/S0956796807006326 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006326

12 C. McBride and R. Paterson

satisfying standard equations. The natural transformation m corresponding to ‘�’

must also respect the strength:

(A× B)× (F C × F D) ∼= (A× F C)× (B × F D)

(A× B)× m

⏐
⏐
⏐
�

⏐
⏐
⏐
�t× t

(A× B)× F (C × D) F (A× C)× F (B × D)

t

⏐
⏐
⏐
�

⏐
⏐
⏐
�
m

F ((A× B)× (C × D)) ∼= F ((A× C)× (B × D))

Note that B and F C swap places in the above diagram: strong naturality implies

commutativity with pure computations.

Thus in categorical terms applicative functors are strong lax monoidal functors.

Every strong monad determines two of them, as the definition is symmetrical. The

Monoidal laws and the above definition of pure imply that pure computations

commute past effects:

fmap swap (pure x � u) = u � pure x

The proof (an exercise) makes an essential use of higher-order functions.

8 Conclusions

We have identified Applicative functors, an abstract notion of effectful computation

lying between Arrow and Monad in strength. Every Monad is an Applicative

functor, but significantly, the Applicative class is closed under composition, allowing

computations such as accumulation in a Monoid to be characterised in this way.

Given the wide variety of Applicative functors, it becomes increasingly useful

to abstract Traversable functors – container structures through which Applicative

actions may be threaded. Combining these abstractions yields a small but highly

generic toolkit whose power we have barely begun to explore. We use these tools by

writing types that structure not merely the storage of data, but also the properties

of data that we intend to exploit.

Library modules based on these classes are included in the libraries shared by all

Haskell implementations.

The explosion of categorical structure in functional programming – monads,

comonads, arrows and now applicative functors – should not, we suggest, be a cause

for alarm. Why should we not profit from whatever structure we can sniff out,

abstract and re-use? The challenge is to avoid a chaotic proliferation of peculiar

and incompatible notations. If we want to rationalise the notational impact of all

these structures, perhaps we should try to recycle the notation we already possess.

Our � f u1 . . . un � notation does minimal damage, showing when the existing syntax

for applicative programming should be interpreted with an effectful twist.

Acknowledgements

We thank Thorsten Altenkirch, Duncan Coutts, Jeremy Gibbons, Peter Han-

cock, Simon Peyton Jones, Doaitse Swierstra and Phil Wadler for their help and

encouragement.

https://doi.org/10.1017/S0956796807006326 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006326

Functional pearl 13

References

Baars, A., Löh, A. & Swierstra, S. D. (2004) Parsing permutation phrases. Journal of Functional

Programming, 14(6), 635–646.

Barr, M. & Wells, C. (1984) Toposes, Triples and Theories. Grundlehren der Mathematischen

Wissenschaften, no. 278. New York: Springer, Chap. 9.

Coutts, D. (2002) Arrows for Errors: Extending the Error Monad. Unpublished presentation

at the Summer School on Advanced Functional Programming.

Fridlender, D. & Indrika, M. (2000) Do we need dependent types? Journal of Functional

Programming, 10(4), 409–415.

Hughes, J. (2000) Generalising monads to arrows. Science of Computer Programming, 37(1–3),

67–111.

Hutton, G. & Meijer, E. (1998) Monadic parsing in Haskell. Journal of Functional

Programming, 8(4), 437–444.

Leijen, D. & Meijer, E. (1999) Domain specific embedded compilers. 2nd Conference on

Domain-Specific Languages (DSL). USENIX, Austin, TX, USA.

Meertens, L. (1998) Functor pulling. Workshop on Generic Programming (WGP’98).

Marstrand, Sweden: Chalmers University of Technology.

Peyton Jones, S. (ed). (2003) Haskell 98 Language and Libraries: The Revised Report.

Cambridge University Press.

Power, J. & Robinson, E. (1997) Premonoidal categories and notions of computation.

Mathematical Structures in Computer Science, 7(5), 453–468.

Röjemo, N. (1995) Garbage Collection and Memory Efficiency in Lazy Functional Languages.

Ph.D. thesis, Chalmers University of Technology and Göteborg University.

Swierstra, S. D. & Duponcheel, L. (1996) Deterministic, error-correcting combinator parsers.

Pages 184–207 of: Launchbury, J., Meijer, E. & Sheard, T. (eds), Advanced Functional

Programming. LNCS, vol. 1129. Springer.

Wadler, P. (1985) How to replace failure by a list of successes. Pages 113–128 of: Jouannaud,

J.-P. (ed), Functional Programming Languages and Computer Architecture. LNCS, vol. 201.

Springer.

https://doi.org/10.1017/S0956796807006326 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006326

