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Abstract

We propose, calibrate, and validate a crowdsourced approach for estimating power spectral density (PSD) of road
roughness based on an inverse analysis of vertical acceleration measured by a smartphone mounted in an unknown
position in a vehicle. Built upon random vibration analysis of a half-car mechanistic model of roughness-induced
pavement–vehicle interaction, the inverse analysis employs an L2 norm regularization to estimate ride quality
metrics, such as the widely used International Roughness Index, from the acceleration PSD. Evoking the fluctuation–
dissipation theorem of statistical physics, the inverse framework estimates the half-car dynamic vehicle properties and
related excess fuel consumption. The method is validated against (a) laser-measured road roughness data for both
inner city and highway road conditions and (b) road roughness data for the state of California. We also show that the
phone position in the vehicle only marginally affects road roughness predictions, an important condition for
crowdsourced capabilities of the proposed approach.

Impact Statement

One of the key drivers of safety, ride comfort, and environmental footprint of our road network is road roughness.
Ever since the World Bank formalized the use of road roughness measurements in 1986, increasingly sophisticated
measurement systems have been devised to measure road roughness from profile measurements with laser
techniques. Herein, we propose an alternative based on crowdsourced measurements of accelerations by means of
smartphonesmounted in a vehicle. Through data analytics and based upon a combination of randomvibration theory
and the fluctuation–dissipation theorem, the proposed approach lends itself to rigorous quantification of road
roughness, vehicle properties, and roughness-induced energy dissipation. Widespread implementation of this
approach provides needed aggregate data for cities, counties, and states for not only road quality assessment purposes
but also evaluation of roughness induced excess fuel consumption and related environmental impact at large scales.
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1. Introduction

Ever since the introduction of mobile devices equipped with accelerometers, gyroscopes, and GPS
in the late 2000s, engineers recognized the potential for identifying road conditions; for a recent
extensive review of existing approaches see Sattar et al. (2018). To summarize, early approaches
employed smartphone acceleration measurements for pothole detection and road roughness evalua-
tion by either using acceleration threshold values (e.g., see Mednis et al. (2011)) or integrating
accelerations to obtain road profile data (Islam et al., 2014), while using machine learning techniques
with extensive training sets for specific road types, vehicle types and for specific areas to enhance
predictive capabilities (Eriksson et al., 2008). Extension of these early approaches sought correlations
between acceleration measurements (e.g., root-mean-square acceleration) and road roughness met-
rics, such as the International Roughness Index (IRI) (e.g., Douangphachanh and Oneyama, 2014;
Hanson et al., 2014; Zeng et al., 2018). While the approach quickly gained some traction with
city managers (see e.g., Boston’s STREET BUMP APP), these ad-hoc engineering approaches
intrinsically suffer because of the disconnect between smartphone acceleration measurements and
road conditions via vehicle dynamics models. This disconnect may well explain some of the intrinsic
limitations of said approaches, such as difficulty in distinguishing potholes from other vertical
discontinuities along the road, and dependence on the type of vehicle, vehicle speed, and phone
position. These limitations make it difficult to employ these approaches for generalized crowdsourced
applications. A first remedy to overcome these early shortcomings came from the signal processing
community through the use of random vibration theory to analyze acceleration measurements of
smartphones (Alessandroni et al., 2017). In contrast to the ad-hoc engineering approaches, the proposed
approach recognizes that the accelerations measured by a smartphone result from the excitation of a
vehicle by the road roughness filtered through the vehicle properties. This recognition is achieved by
identifying the sought power spectral density (PSD) of road roughness (considered as a white noise
passed through a low-pass filter) using the PSD of the measured accelerations and a reference quarter
car model, the so-called Golden Car (GC) (Sayers, 1995; Sayers and Karamihas, 1998) as input. The
development of crowdsourced capabilities to determine road roughness is a milestone. However, the
approach faces some limitations related to its transfer capabilities for crowdsourced applications for
different classes of vehicles, vehicle speeds, and smartphone positions. This paper contributes to these
developments by proposing a refined vehicle dynamics-inverse analysis approach for crowdsourced
applications. The proposed approach provides not only a reliable means to determine road roughness
conditions for any vehicle but also a means to determine the energy dissipated in the vehicle’s
suspension system using the fluctuation–dissipation theorem of statistical physics (Kubo, 1966; Thorne
and Blandford, 2017).

2. Vehicle Dynamics Model

2.1. Smartphone location consideration

Consider measurement of acceleration by smartphone attached somewhere to the vehicle body
(sprung mass). The vehicle body is assumed to be rigid, and is supported by K suspension systems.
We denote sprung mass displacement by zS,k the kth. Assuming in a first approach the sprung mass as
rigid, the vertical displacement of a point x,yð Þ is obtained by linear interpolation of the suspension
displacements:

zS x,yð Þ¼
XK
k¼1

Nk x,yð Þ zS,k , (1)

where Nk are linear interpolation functions that satisfy Nk xk,ykð Þ¼ 1, and Nk xl,ylð Þ¼ 0 for any other
suspension system position l 6¼ k. Similarly, the vertical acceleration at point x,yð Þ is:
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€zS x,yð Þ¼
XK
k¼1

Nk x,yð Þ €zS,k: (2)

We are interested in determining the acceleration PSD, that is,

S€zS x,yð Þ¼ lim
T→∞

2π
T
E d€zS x,yð Þ
��� ���2� �

¼ω4SzS x,yð Þ, (3)

where b:ð Þ and E :½ � denote the Fourier transform and expectation value operators, respectively; SzS x,yð Þ is
the body’s PSD of the vertical displacement:

SzS x,yð Þ¼ lim
T→∞

2π
T
E dzS x,yð Þ
��� ���2� �

, (4)

or equivalently using Equation (1):

SzS x,yð Þ¼ lim
T→∞

2π
T
E

XK
k¼1

Nk x,yð Þ czS,k
�����

�����
2

24 35: (5)

We also note that the Fourier transform of the sprung mass displacement of each suspension system,czS,k, relates to the Fourier transform of the road roughness, bξk, by the frequency response function (FRF),
HzS,k : czS,k ¼HzS,k ωð Þ bξk: (6)

Whence,

SzS x,yð Þ¼ lim
T→∞

2π
T
E

XK
k¼1

Nk x,yð Þ HzS,k ωð Þ bξk
�����

�����
2

24 35: (7)

Finally, if we assume that all tire-suspension systems are subject to the same road roughness excitation
(i.e., ∀k, bξk ¼bξ), Equation (7) simplifies to:

SzS x,yð Þ¼ HzS x,yð Þj j2Sξ ωð Þ, (8)

where we made use of the linearity of the expectation operator (i.e., E cXð Þ¼ cE Xð Þ) while letting
HzS x,yð Þ be the FRF of the vertical displacement of point x,yð Þ:

HzS x,yð Þ¼
XK
k¼1

Nk x,yð ÞHzS,k ωð Þ, (9)

whereas Sξ ωð Þ is the roughness PSD and reads:

Sξ ωð Þ¼ lim
T→∞

2π
T
E bξ��� ���2� �

: (10)

The assumption of identical road roughness excitation of all tires of a vehicle is justified as long as the time
window of data recording (say τw) is much larger than the time lag between tires k and l, that is,

τw ≫ Lkl=V0 e!y � e!k,l
� �

, (11)

where V0 is the speed in the driving direction e
!
y, and e

!
k,l is the unit vector defining the direction between

tires k and l of distance Lkl.
By way of illustration, consider the half-car model K ¼ 2ð Þ (Figure 1), with interpolation functions

defined by:
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N1 ¼ 1
2
1þ rð Þ; N2 ¼ 1

2
1� rð Þ, (12)

with r¼ y= L=2ð Þ∈ �1,1½ � the dimensionless coordinate along the car axis (i.e., between axles of distance
L), where r¼ 1, �1 represent front and back, respectively. In this case, Equation (9) becomes:

HzS rð Þ¼ 1
2

1þ rð ÞHzS,1 ωð Þþ 1� rð Þ HzS,2 ωð Þ� �
, (13)

where HzS,1 and HzS,2 are the FRFs of the front and back axles, respectively.
The unknowns of the inverse problem are thus the characteristics of road roughness PSD, Sξ ωð Þ, the

vehicle properties of the front- and back-suspension systems, tires (parametrizing the FRFs, HzS,1 and
HzS,2), and the dimensionless phone position, r. Their expressions are developed below.

2.2. PSD of road roughness

Road roughness ξ is a random process over at least two orders of length scales, typically from tens of
centimeters to tens of meters. If a flat road is taken as reference, in the first-order approximation, road
roughness may be viewed as a zero-mean and stationary white-noise signal. The two first moments (mean
and auto-correlation) over some pavement lengths read:

〈ξ〉L ¼ μξ ¼ 0; 〈ξ xð Þξ x� λð Þ〉L ¼Rξξ λð Þ¼ gδ λð Þ, (14)

where λ and g represent the distance lag and the noise strength (of dimension g½ � ¼L3), respectively; the
presence of δ λð Þ function indicates that no correlation exists between any two points on the road profile.
The PSD hence reads as:

S0 Ωð Þ¼
ð∞
�∞

Rξξ λð Þexp �iΩλð Þ dλ¼ g: (15)

For a constant velocity, one can replace distance lag by time lag, λ¼ τV0, and the angular wave
number by the angular frequency ω¼ΩV0. Thus, from Equation (15), the link between S0 Ωð Þ and
S0 ωð Þ reads:

S0 Ωð Þ¼V0S0 ωð Þ¼ g: (16)

Figure 1. Schematic of half-car model.
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Most spatial representations of the road elevations, however, assume that the white Gaussian noise of
strength S0 Ωð Þ¼ g is filtered by some low-pass filter at the tire–pavement interface (Alessandroni et al.,
2017), with a PSD defined by:

Sξ Ωð Þ¼ S0 Ωð Þ H Ωð Þj j2 ¼ g H Ωð Þj j2, (17)

whereH Ωð Þ is the filter’s angular wave number response function (or transfer function). Such a low-pass
filter passes signals with an angular wave number Ω lower than a selected cutoff wave number Ω0, and
attenuates signals with angular wave numbers higher than the cutoff value. For instance, a first-order low-
pass filter, for which H Ωð Þ¼ 1þ i Ω=Ω0ð Þð Þ�1, provides the following road roughness PSD:

Sξ Ωð Þ¼ g
1

1þ i Ω=Ω0ð Þ
���� ����2, (18)

or in terms of the angular frequency using Equation (16):

Sξ ωð Þ¼ Sξ Ω→ω=V0ð Þ
V0

¼ gΩ2
0V0

1
ω0þ iω

���� ����2, (19)

where ω0 ¼V0Ω0 is the cut-off angular frequency. A further refinement of this first-order low-pass filter
takes the form of a power-scaling:

Sξ Ωð Þ¼ g
1

1þ i Ω=Ω0ð Þw=2

�����
�����
2

≃ g
Ω
Ω0

� ��w

, (20)

or in terms of the angular frequency:

Sξ ωð Þ¼ gΩw
0V

w�1
0

1

ωw=2
0 þ iωw=2

�����
�����
2

≃ gΩw
0V

w�1
0 ω�w, (21)

where w—in pavement engineering—goes by the name of waviness index, and gΩw
0 is the unevenness

number. The approximations in Equations (20) and (21), which suppress the pole in the filter expressions
are at the core of realistic description of road surface roughness in pavement engineering (Dodds and
Robson, 1973; Kropáč and Múčka, 2008).

2.3. FRF: half-car model

Vehicle dynamics models for investigation of ride comfort and overall vehicle performance are abundant
in the literature, ranging from quarter-car models to full-car models. Here we focus on the half-car model
(Figure 1), which has specific features of interest for analyzing smartphone measurements. More
specifically, acceleration measurements of a smartphone in a specific position within a car are affected
by both front and back accelerations. A half-car model is thus chosen as it accommodates phone position
(Equations 3–7).

2.3.1. Mass distribution model
Classical half-car models are four degree-of-freedom models that employ a longitudinally distributed
sprung mass density together with two unsprung masses to describe vehicle dynamics in terms of the
movement of the unsprung masses (front and back), the vertical movement of sprung mass’s center of
gravity and its pitch angle (i.e., the rotary angle of the vehicle body at the center of gravity) (Gao et al.,
2007). As an alternative, we here suggest the following linear sprung mass distribution:

m yð Þ¼mS,1N1 yð ÞþmS,2N2 yð Þ, (22)
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where mS,1 and mS,2 are the front and back sprung masses, respectively. The total sprung mass of the
vehicle is mS ¼mS,1þmS,2. Using the interpolation functions defined by Equation (12), the center of
gravity of the sprung mass of the vehicle is (see also Appendix A):

r0 ¼ 1
mS

ð1
�1
r m rð Þ dr¼ 1

3
mS,1�mS,2

mS,1þmS,2
¼ 1�2ρ0, (23)

where ρ0 is the center of gravity measured from the front axle, which relates to the mass moment of inertia
of the vehicle, Is (around the center of gravity) by:

IS
mSL2

¼ 1
8mS

ð1
�1
m rð Þr2drþ ρ0�1=2ð Þ2 ¼ ρ20�ρ0þ

7
24

≥
1
24

: (24)

In other words, the mass distributionmodel accounts for the impact of pitch angle rotation of the vehicle’s
inertia. For our purpose, the center of gravity of the vehicle, ρ0, is an additional unknown in the inverse
analysis.

2.3.2. Equations of motion
The mass distribution model is taken into account in the derivation of the equations of motion of the half-
car model using the Lagrangian, that is, L¼Ek�Ep where Ek and Ep are the kinetic energy and the
potential energy, respectively. The kinetic energy of the half-car model with front and back unsprung
masses and sprung mass distribution reads:

Ek ¼ 1
2

ðþ1

�1
m rð Þ _z2S rð Þdrþ1

2
mU,1 _z

2
U,1þmU,2 _z

2
U,2

� �
¼ 1
6
mS

1
2
_z2S,1 1þ2

mS,1

mS

� �
þ _zS,1 _zS,2þ1

2
_z2S,2 1þ2

mS,2

mS

� �� �
þ1
2

mU,1 _z
2
U,1þmU,2 _z

2
U,2

� �
,

(25)

where we used expressions (1) and (22). Similarly, the potential energy of the half-car model with front
and back suspension systems reads:

Ep ¼1
2
kS,1 zS,1� zU,1ð Þ2þ1

2
kS,2 zS,2� zU,2ð Þ2

þ1
2
kT ,1 zU,1� ξð Þ2þ1

2
kT ,2 zU,1� ξð Þ2

þFV ,1 zS,1� zU,1ð ÞþFV ,2 zS,2� zU,2ð Þ,

(26)

where kS,1, kT ,1ð Þ and kS,2, kT ,2ð Þ are the front and back sprung and unsprung stiffness constants,
respectively; FV ,1 and FV ,2 are the viscous forces in the suspension system. Owing to their non-
conservative nature, the viscous forces are considered external work in the expression of the Lagrang-
ian. This choice permits remaining in the classical framework of generalized coordinates underlying
Lagrangian mechanics. Therefore, four Euler–Lagrange equations for the four degrees of freedom, z¼
zS,1, zU,1, zS,2, zU,2ð ÞT provide the set of equations of motion:

∂L
∂z

� ∂

∂t
∂L
∂z

¼ 0, (27)

which in matrix form reads:

M � zþC � zþK � z¼F: (28)
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• M is the mass matrix:

M¼mS

2

1
3
1þmS,1ð Þ 0

1
3

0

0 m1 0 0
1
3

0
1
3
1þmS,2ð Þ 0

0 0 0 m2

26666664

37777775, (29)

with the mass invariants defined by:

m1 ¼ mU,1

mS=2
; m2 ¼ mU,2

mS=2
; mS,1 ¼ mS,1

mS=2
; mS,2 ¼ mS,2

mS=2
: (30)

• K is the stiffness matrix:

K¼ kS,1

1 �1 0 0

�1 1þ k1 0 0

0 0 κ �κ

0 0 �κ κ 1þ k2
� �

26664
37775, (31)

where the stiffness invariants read:

k1 ¼ kT ,1
kS,1

; κ¼ kS,2
kS,1

; k2 ¼ kT ,2
kS,2

: (32)

• C is the damping matrix, which is obtained considering the viscous suspension forces,
FV ,i ¼ cS,i _zS,i� _zU,ið Þ, where cS,i is the damping coefficient:

C¼ cS,1

1 �1 0 0

�1 1 0 0

0 0 γ �γ

0 0 �γ γ

26664
37775, (33)

with the damping invariants of the half-car model defined by:

γ¼ cS,2
cS,1

; ζ ¼ cS,1
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mS=2ð ÞkS,1

p ¼ ζ 1
ffiffiffiffiffiffiffiffi
mS,1

p ¼
ffiffiffiffiffiffiffiffiffiffiffi
mS,2κ

p
γ

ζ 2, (34)

where ζ i ¼ cS,i=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mS,ikS,i

p
are front i¼ 1ð Þ and back i¼ 2ð Þ damping ratios.

• F is the force vector due to road roughness excitation:

F¼ ξkS,1 0,k1,0,k2κ
� �T

: (35)

2.3.3. Frequency response function
The FRF is defined, in Fourier domain, as the linear operator that maps the excitation, bξ, to the
displacement, that is,

bz¼Hz
bξ; Hz ¼ HzS,1 ,HzU,1 ,HzS,2 ,HzU,2

� �T
: (36)

The FRF is thus obtained from the Fourier transform of the equations of motion:bK �bz¼ �ω2Mþ iωCþK
� � �bz¼ bF: (37)
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That is, letting Equation (36) in (37):

Hz ¼ 1bξ bK�1 �bF: (38)

For the half-car model, we have:

bK¼ kS,1

1�ω2 1
3
1þmS,1ð Þþ2iωζ � 1þ2iωζð Þ �1

3
ω2 0

� 1þ2iωζð Þ 1þ k1�ω2m1þ2iωζ 0 0

�1
3
ω2 0 κ�ω2 1

3
1þmS,2ð Þþ2iωζγ � κþ2iωζγð Þ

0 0 � κþ2iωζγð Þ κ 1þ k2
� ��ω2m2þ2iωζγ

2666666664

3777777775
,

(39)

and bF¼ kS,1bξ 0,k1,0,κk2
� �T

, (40)

where ω¼ω=ωS is the angular frequency normalized by ωS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kS,1= mS=2ð Þp

, which relates to front
(ωS,1) and back ωS,2ð Þ frequency of the suspension system by:

ω2
S ¼

kS,1
mS=2

¼mS,1; ω2
S,1 ¼

mS,1

κ
ω2
S,2; ω2

S,i ¼
kS,i
mS,i

: (41)

3. Inverse Analysis

3.1. Unknowns

The inverse analysis infers the following 13 unknowns from acceleration measurements of a smartphone,
and vehicle speed determined from GPS measurements:

θ¼ gΩw
0 , w, f S, k1, k2, κ, m1, m2, mS,1, mS,2, ζ 1, ζ 2, rp

� �
: (42)

Namely:

1. Two road roughness PSD parameters of Sξ Ωð Þ; for instance, from Equation (20), the unevenness
index (gΩw

0 ) and the waviness number (w). These two parameters permit the determination of road
roughness quantifiers, such as the IRI. As a reminder, IRI is defined as the accumulated suspension
motion of the GC traveling at a fixed reference speed (VREF ¼ 80 km=h) over a distance (LREF ),
which reads (Sayers, 1995; Sayers and Karamihas, 1998; Louhghalam et al., 2015):

IRI¼ 1
VREF

E _zj jGC

 �

LREF
¼ χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið∞
0
Ω2 HGC

z

�� ��2 Sξ Ωð Þ dΩ
s

, (43)

whereHGC
z is the FRF of the GCmodel of known properties; χ¼E _zj jGC


 �
LREF

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E _z2GC

 �

LREF

q
is a constant

relating the mean-square of the zero-mean random process _z to the expected value of its absolute value.
A Gaussian roughness profile, for instance, results in a normally distributed suspension motion with
χ¼ ffiffiffiffiffiffiffiffi

2=π
p

(for other marginal probability distributions; see Louhghalam et al., 2015). A convenient
asymptotic solution for Equation (43) has recently been proposed in the function of only the road
roughness PSD parameters, gΩw

0

� �
and w (Louhghalam et al., 2019):

IRI¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gΩw

0

� �
2ζGC

ωGC
S

VREF

� �3�w

1þ k
GC

mGC

 !1�w=2

k
GC�w

2

� 
0@ 1A
vuuut , (44)
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where 2ζGC ¼ cGCS =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kGCS mGC

S

q
¼ 0:75; ωGC

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kGCS =mGC

S

q
¼ 8:0 rad=s; k

GC ¼ kGCT =kGCS ¼ 10:3;mGC ¼
mGC

T =mGC
S ¼ 0:15 are known parameters of the GC model (Sayers, 1995; Sayers and Karamihas,

1998).

2. The vehicle properties of the half-car model; that is, according to Equations (39)–(41).

• The fundamental frequency of the suspension system, f S, from which the front and rear suspension
systems can be derived (Equation (41)).

• Three stiffness invariants: the front and rear stiffness ratios, ki, and the rear-to-front suspension
spring stiffness ratio, κ (Equation (32)).

• Fourmass invariants: the front and rear unsprung-to-sprung halfmass ratio,mi, and the front and rear
sprung mass loading factors, mS,i, which define the sprung mass’s moment of inertia and center of
gravity (Equations (23), (24), and (30)).

• Two damping ratios: the front and rear damping ratios, ζ i (Equation (34)).

3. The phone position along the vehicle axis, rp, which is used to interpolate the front and rear FRF
(Equation (13)).

3.2. From acceleration measurements to acceleration PSD

The input of the inverse analysis is the time series of vertical acceleration measurements of a smartphone.
Since smartphones measure accelerations in three orthogonal directions of a local phone-specific
coordinate system (Figure 2), these measurements need to be orthogonally projected to the road surface.
This is readily achieved by means of the angles measured by the phone’s gyroscope sensors, which link
the phone’s local coordinate system to a North–East–Gravity (NEG) coordinate system; that is:

az rp
� �¼ e!z �a! rp

� �¼�aX sinθ þaY sinϕcosθð ÞþaZ cosϕcosθð Þ, (45)

where e!z is the gravity direction, a! rp
� �¼ aX ,aY ,aZð Þ denotes the accelerations measured in the phone’s

local coordinate system e!X ,e
!
Y ,e

!
Z

� �
, and ϕ,θð Þ are the Euler angles measured by the phone’s gyroscope

which define the position of the phone w.r.t. the NEG—system of coordinates.
Smartphone accelerationmeasurements are carried outwith a sampling frequency ofFs ¼ 100 Hz. The

analysis is then performed with a moving time window, τW . This time window must be sufficiently large

Figure 2. Local right-handed phone-specific coordinate system (adapted from Keller, 2015).
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so as to ensure the stationarity condition required to employ the underlying assumption of the PSD-
analysis, namely theWiener–Khintchine theorem (Khintchine, 1934; Champeney, 1987). Thus, corrected
for themean value, the input signal for the PSD-analysis is€zS tð Þ¼ az rp, t

� ��E az rp, t
� �
 �

τW
, which passes

classical time-series stationarity or trend-stationarity tests (e.g., the Augmented Dickey–Fuller test), with
a mean value close to the earth acceleration g¼ 9:8 m=s2, that is,

��E az rp, t
� �
 �

τW

��¼ g 1þ εð Þwith εj j≪1.

With a focus on estimating PSD of road roughness and to minimize the effects of speed variations
within the timewindow, the determination of acceleration PSD converts the signal from the length domain
to the angular wave number domain by considering the angular wave numberΩs ¼ 2πFs=V0, whereV0 ¼
E V tð Þ½ �τW is the mean speed in the time window for sampling frequency. This readily achieved by
employing classical tools of signal processing such as the Welch method for spectral density estimation.
The resulting experimental input for the inverse analysis is thus Sexp€zS Ωð Þ¼V0S

exp
€zS ωð Þ.

3.3. Parameter identification

The parameter identification then considers the error between the experimental acceleration PSD,
Sexp€zS ω¼ΩV0ð Þ, and the half-car model PSD, as defined by Equations 3, 8, 13, 21, and 38, which reads:

Smod
€zS ωð Þ¼ω4 HzS rp,ω

� ��� ��2Sξ ωð Þ: (46)

That is, in a logarithmic base:

log
�
Smod
€zS ωð Þ�¼ 4 log ωð Þþ2 log HzS rp,ω

� ��� ��� �þ logSξ ωð Þ: (47)

One can thus define the root mean square error, Δ€zS ωð Þj jj j2, which explicitly accounts for the unknown
PSD parameters of road roughness (Equation (21)) (gΩw

0 and w; see Appendix A), from the logarithmic
difference between experimental and model acceleration PSD as:

Δ€zS ωð Þ¼ logSexp€zS ωð Þ� logSmod
€zS ωð Þ

¼ logSexp€zS ωð Þ� 4�wð Þ log ωð Þ�2 log HzS rp,ω
� ��� ��� �

� log gΩw
0

� �þ 1�wð Þ logV0:

(48)

Hence, as Δ€zSj jj j2→0, exp Δ€zSj jj j2
� �

→1, and Sexp€zS =Smod
€zS →1. The minimization problem, however, is ill-

posed as it admits a large number of possible solutions due to its additive structure (Equation (48)).
Additional constraints are thus required to restore well-posedness; for instance, regularizing the mini-
mization problem by a smooth term such as owing to its convexity, the L2 norm of the difference between
the model parameters and a set of reference values θi,ref via:

min
θ

exp Δ€zS θð Þj jj j2�1
� �

1þα
X
θi∈Θc

θi
θi,ref

�1

� �2
 !

, (49)

with α denoting car regularization parameter; Θc represents a subset of half-car parameters which
contributes to restoring thewell-posedness of theminimization problemwhile ensuring the transferability
of the approach from one vehicle type to another. Furthermore, the regularization function does not
include road roughness metrics to refrain any constraint on road roughness metrics, thus securing
transferability w.r.t. road class. The regularization term in Equation (49) can be enhanced by elements
of statistical learning to update the reference values θi,ref in a continuous time series analysis (e.g., see
Evgeniou et al., 2002).

3.4. Energy dissipation

Themechanistic-based inverse analysis thus provides the means to determine road roughness parameters,
vehicle properties, and phone position from the measured acceleration time series in each time window.
These quantities are key to derive important additional information such as the energy dissipated in the
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(model) vehicle’s suspension system. Evoking the fluctuation–dissipation theorem (Kubo, 1966), the
energy dissipated in the suspension system per distance driven is:

δEi ¼ ci
V0

E _z2i

 �

, (50)

where themean square of suspensionmotionE _z2i

 �

is obtained from the suspensionmotion PSD, S_z ωð Þ, in
the form (Louhghalam et al., 2015):

E _z2i

 �¼ ð∞

0
S_z ωð Þ dω¼

ð∞
0
ω2 HzS,i �HzU,i

�� ��2Sξ ωð Þdω, (51)

whereHzS,i andHzU,i respectively denote the sprungmass and unsprungmass FRFs of the front i¼ 1ð Þ and
rear ði¼ 2Þ suspension system, that is, from the solution of Equation (36). Since the integral expression in
Equation (51) converges rapidly, an estimate of the energy dissipated in the suspension system can be
obtained from an asymptotic solution of Equation (50) for the quarter-car model (Louhghalam et al.,
2019). Using the model invariants (30) and (32), this asymptotic model holds—in first order—for the
front and rear suspension system as:

Πi ¼ δEi

gΩw
0

� �
Vw�2
0 mS,i ω4�w

S,i

¼ π
2

1þ ki
mimS,i

� �1�w=2

ki�w
2

� 
 !
: (52)

Whence the specific energy dissipation of the half-car model (of dimension Energy½ �M�1L�1 ¼LT�2):

Ed ¼ δE1þδE2

mS
¼ gΩw

0

� �
Vw�2
0 ω4�w

S mw=2�1
S,1

1
2

Π1þκ2�w=2mS,2

mS,1
Π2

� �
: (53)

The specific energy dissipation is an interesting synergistic cost quantity combining vehicle properties
( f S, ki, κ, mi, mS,i), road roughness parameters (gΩw

0 , w), and vehicle operational conditions (speedV0).
This shows the relevance of the proposed inverse approach for crowdsourced road roughness-induced
vehicle energy consumption.

4. Results and Discussion

The premise of the proposed approach is that an acceleration-based inverse analysis is able to accurately
provide estimates of road roughness metrics commensurable with classical means such as laser-based
measurements of longitudinal road profiles. Moreover, a second goal of the approach is the crowdsourced
assessment of road roughness metrics. Therefore, road roughness parameters obtained with the proposed
approach need to be insensitive to phone position, vehicle type, and velocity. The results presented here
address these issues.

More specifically, a first litmus test for the proposed approach is a comparison of quantities, inferred
from vehicle acceleration measurements, with actual measurements of the same quantity. This is achieved
here by comparing roughnessmetrics obtained from lasermeasurements of longitudinal road profiles with
those obtained from smartphone measurements. The experimental data set is discussed first. We then
illustrate the calibration of the proposed model for a subset of the experimental data. We then validate the
calibrated model against a second independent data set of road roughness data. Finally, for the state of
California, we illustrate that the crowdsourced-IRI measurements of the proposed approach converge, in
distribution, to the reported data.

4.1. Experimental data set

Laser measurements of road roughness profiles were acquired by a commercially available service which
employs a state-of-the-art multifunction vehicle for conducting pavement profile and surface condition
assessment (Dynatest, 2019). The vehicle was equipped with a road surface profiler (Dynatest Road
Surface Profiler Model 5051 Mark III), five laser sensors and two accelerometers to cover up to 3.6m
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width of traveled lane, and an inertial profiler system and 3D laser crack measurement system which
permits collecting pavement longitudinal and transverse profile and surface condition data in one pass.
Data collection was performed under prevailing traffic conditions (no hindrance to traffic) during daytime
and dry weather conditions. Two test tracks were investigated (Figure 3a): (a) 13.8 km centerline miles on
two lanes of a thoroughfare with a dominating inner-city component, and (b) 11.6 km centerline miles of a
highway on three lanes, thus a total of 62.4 km.

4.1.1. Longitudinal profile measurements (direct measurements)
The laser-measured longitudinal profile for the two test tracks are illustrated in Figure 3 in form of an
elevation plot, together with a probability density function (PDF) of the elevation in Figure 3b. Of
particular interest for the pursuing analysis are the following observations:

1. The elevation PDFs exhibit symmetry (zero skewness) and zero mean (Figure 3b). This, in turn,
implies that forces generated by this road roughness can be viewed as a symmetric zero-mean
stationary process, which is the underlying assumption of our PSD-modeling approach.

(a) (b)

(c) (d)

Figure 3. Direct measurements of road roughness from laser measurements for the two test tracks:
(a) Coordinates of the test tacks. (b) PDF of road roughness for the experiments and their corresponding
zero-mean Gaussian fit in dashed lines. Laser-measured longitudinal profiles of (c) test track 1 and

(d) test track 2.
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2. The elevation fluctuations of the two test tracks are substantially different. Precisely, elevation
fluctuations of the inner-city test track 1 are approximately three times the values of the highway

test track 2, that is, σ 1ð Þ
ξ =σ 2ð Þ

ξ ≈ 3 where σξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〈 ξ� 〈ξ〉Lð Þ2〉L

q
is the elevation standard deviation

with < :> representing the average (mean) operator. This suggests that the road roughness noise
strength g (Equations (14) and (15)) between the two test roads exhibit an overall ratio

of g 1ð Þ=g 2ð Þ≃ 9. The average IRI should hence scale, on average, as 〈IRI〉 1ð Þ
L =〈IRI〉 2ð Þ

L ≃ σ 1ð Þ
ξ =σ 2ð Þ

ξ ≈3,
provided similar value distributions of the road roughness waviness number w (Equation (44)).

We proceed by analyzing the spatially varying roughness PSD of the measurements. This is achieved by
considering a length window of 800m moving with a constant distance of 50m over the elevation data of
the two test tracks. The model PSD, Sξ Ωð Þ≃ g Ω=Ω0ð Þ�w (Equation (20)), is fitted to the experimental
PSD for each window to obtain the spatial variation of roughness metrics as shown in Figure 4a,b. The
statistics of such roughness metrics (Figure 4c,d) confirm that, in a global sense, both unevenness index and
waviness number show higher values in the rougher road. More precisely, the mean ratios for waviness

number and unevenness index of the two tracks read as 〈w〉 1ð Þ
L =〈w〉 2ð Þ

L ≈1:3 and 〈gΩw
0 〉

1ð Þ
L =〈gΩw

0 〉
2ð Þ
L ≈2:1.

The mean value of IRI is then obtained via Equation (44) at the mean points, thus leading to

(a) (b)

(c) (d)

Figure 4. Spatial variation of roughness metrics inferred from measured roughness PSD: unevenness
index gΩw

0 and waviness number w for (a) test track 1 and (b) test track 2. Distribution of (c) waviness
number and (d) unevenness index for the two test tracks.
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〈IRI〉 1ð Þ
L =〈IRI〉 2ð Þ

L ≃ 3:5. Furthermore, the standard deviation of IRI can be calculated from that of
waviness number and unevenness index using the multivariate delta method given by,

σIRI ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ut �V �u

p
, (54)

where u is the gradient of IRI (i.e., u¼∇IRI¼ ∂IRI=∂ gΩw
0

� �
,∂IRI=∂w

� �T
) and V is the covariance

matrix:

V¼ σgΩw
0

� �2
σw,gΩw

0

σw,gΩw
0

σwð Þ2

" #
, (55)

The off-diagonal elements of V are almost zero, implying that w and gΩw
0 are truly two uncorrelated

quantities characterizing road roughness PSD. The ratios of standard deviation for the PSD-inferred

roughness metrics are σ 1ð Þ
w =σ 2ð Þ

w ≈ 0:5 and σ 1ð Þ
gΩw

0
=σ 2ð Þ

gΩw
0
≈1:9 for waviness number and unevenness index,

respectively. Substituting the statistical moments of gΩw
0 and w in Equation (54) yields σ 1ð Þ

IRI=σ
2ð Þ
IRI ≈2:7,

which confirms that inner-city IRI values exhibit larger fluctuations compared to the highway.

4.1.2. Derived roughness metrics: IRI
We remind ourselves that IRI is not a direct measurable quantity but a derived quantity representing the
length-averaged motion of the suspension system of the GC traveling at a constant reference speed of
VREF ¼ 80 km=h; that is (Sayers, 1995; Sayers and Karamihas, 1998):

IRI¼ 1
Lw

ðτw
0

_zGCj j dt, (56)

where Lw ¼VREFτw is the segment length (corresponding here to the length window), τw the residence
time in the segment length when the vehicle moves at the reference speed; zGC is the suspensionmotion of
the GC subject to dynamic excitation of the road profile. There are two ways of determining the IRI
from elevation measurements, namely direct time-domain integration of the equations of motion of the
quarter car model (ProVAL, 2017), or inverse Fourier transform using the FRF HGC

z ωð Þ of the GC
(i.e., _zGC ¼

Ðþ∞
�∞ iωHGC

z ωð Þbξ t ωð Þ dω, with bξ t ωð Þ the Fourier transform of the temporal excitation of the
spatial roughness profile transformed via the time–space correspondence x¼VREF t). The time-domain
integration includes both transient and steady-state responses. The transient part, however, decays
exponentially in strongly damped systems such as the GC model, converging quickly to the steady-
state solution captured by the inverse Fourier transform approach (Botshekan et al., 2019). Otherwise
said, a large enough length window, Lw, ensures the compatibility of time and frequency approaches in
determining IRI.

Based on this compatibility, we can further compare direct determination methods of IRI with the
indirect method stipulated in our model using random vibration theory, as exemplified by Equation (43)
and its asymptotic form in Equation (44). Specifically, in contrast to the direct methods (whether in time or
frequency domain), the random-vibration-theory-based approach requires the stochastic nature of the

suspension motion in form of a multiplying constant, χ¼E _zj jGC

 �

Lw
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E _z2GC

 �

Lw

q
(Equation (43)), as

input. Figure 5 displays the probability distribution of χ obtained for the two test tracks. A peak close to

χG ¼ ffiffiffiffiffiffiffiffi
2=π

p
is found which implies that the distribution of the suspension motion is predominantly

Gaussian (Louhghalam et al., 2015). This suggests that road roughness, on the Lw-length scale, is
expected to be normally distributed for the two test tracks. It should, however, be noted that the lower-
fluctuation test track 2 shows a secondary peak around χ=χG ≈ 0:75. This suggests that, while road
roughness, as a random process, in test track 2 is predominantly Gaussian, there is a secondary dominant
distribution that roughly resembles Laplace distribution with χL=χG≈0:85 (Louhghalam et al., 2015).
Further evidence for the Gaussian nature of roughness distribution is depicted in the inset of Figure 5
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which dispalys the probability distribution of higher-order central moments for road roughness, namely
skewness (3rd order) and excess kurtosis (4th order), exhibiting a maximum around zero.

In what follows, for the pursuing calibration and validation of roughness metrics derived from
smartphone acceleration measurements, we consider the direct time-integrated IRI measurement as
reference, whichwill be labeled IRIexp. The IRIexp values for the two test tracks are shown in Figure 6a,c,
with the inner-city thoroughfare (test track 1) exhibiting, on average, three times higher IRI than the
outer-city highway. In addition, as shown by the difference in standard deviations, stronger fluctuations
of IRI around the mean value for the rougher road are clear in Figure 6a,c.

4.2. Calibration—validation of smartphone enabled roughness measurements

The inverse approach developed in this paper employs an L2 norm regularization to estimate the IRI from
the acceleration PSD. This regularization involves a set of reference values, θi,ref (Equation (49)) for the
unknowns of the problem (Equation (42)). Overall validation of smartphone-enabled roughness identi-
fication is achieved through a two-step calibration-validation procedure, in which one part of the acquired
data is used for calibration, and the other part for validation. With a focus on transferability of the
calibrated reference values, we consider the high-fluctuation inner-city thoroughfare (test track 1) for
calibration, and the low fluctuation highway data set (test track 2) for validation.

4.2.1. Calibration
The experimental set-up for calibration comprises a vehicle with three smartphones (“sensors”) placed at
different locations of the vehicle, namely a phone holder attached to the bottom left of the front windshield
(Figure 7a), a cup holder in between the front seats (Figure 7b), and a fixture on the floor behind the right
passenger seat (Figure 7c). The outputs of each sensor are the acceleration signal recorded at a 100Hz
frequency, the vehicle speed obtained from vehicle’s GPS coordinates recorded at a 1Hz frequency
(Figure 8). The inverse analysis proceeds by considering a τw ¼ 45 s time window moving forward with
a time distance of Δτw ¼ 1 s. For each time window, the inverse approach provides values for the
unknowns: road roughness parameters (gΩw

0 , w) or equivalently (IRI, w), vehicle properties
( f S, k1, k2, m1, m2, ρ, ζ 1, ζ 2, κ), and phone position rp. The calibration of the L2 norm reference

Figure 5. Distribution of χ exhibiting a peak around χG ¼ ffiffiffiffiffiffiffiffi
2=π

p
. The inset shows the skewness (dashed

line) and the excess kurtosis (solid line) of road roughness.
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values, θi,ref , is achieved by simultaneously minimizing (a) the L2-norm regularized form of the PSD fit
for each time window (Equation (49)) and (b) the overall difference between measured and derived IRI
values for the entire test track; that is:

min
θi,ref

X
jð Þ
δE2

j; δE j ¼ 1� IRImod x j
� �

IRIexp x j
� � (57)

where IRImod x j
� �

is the model IRI-value for time window j centered at mid-segment position x j obtained
from the fitted model parameters, gΩw

0 x j
� �

and w x j
� �

, using Equation (44). The subset of half-car
parameters and their corresponding reference values θi,ref , ensuring transferability for different road
classes and vehicles are listed in Table 1. The successful calibration is shown in Figure 6, in form of a
comparison of the spatial variation of the experimental vs. model IRI along test track 1 (Figure 6a), as well
as in form of a PDF of the absolute relative error of IRI, ∣δE j∣, obtained from the three sensors positioned
at three locations in the vehicle (Figure 6b). The PDFs for each sensor exhibit peaks close to 10%,
suggesting that the calibration has an expected accuracy of greater than 90%.

(a) (b)

(c) (d)

Figure 6. Calibration-validation results: experimental and model IRI (L¼ 800 m, τW ¼ 45 s) for (a) test
track 1 and (c) test track 2. Distribution of absolute relative error to quantify the accuracy of the proposed

inverse method for (b) tracks 1 and (d) test track 2.
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4.2.2. Validation
Like the calibration test track, the experimental set-up for validation is carried out with three smartphones
in the same position as before (Figure 7), continuously recording accelerations with a 100Hz frequency,
and vehicle speed with a 1Hz frequency (Figure 9). The validation test track is a highway with
substantially lower elevation fluctuations than the training track (Figure 3b). The spatially resolved
predicted IRI values are shown in Figure 6c, and the PDF of the absolute relative error in Figure 6d.

Of particular interest are the observations that (i) the relative absolute error has almost an identical
distribution as the one for the training set obtained from error minimization (compare Figure 6b with
Figure 6d); (ii) the error distribution is almost identical for the three sensors mounted in the vehicle. The
first observation provides strong evidence of the transferability of the proposed approach from one road
class to another (inner city, highways,…). In fact, following the Federal Highway Administration
(FHWA) categorization of pavement quality (FHWA, 2019), the comparison of the two test tracks shows
that the highway used for validation falls within the good ride quality category (IRI < 1.4m/km), whereas
the inner city thoroughfare used for calibration exhibit poor ride quality (IRI > 2.6m/km). Quantitatively,
the ratio of average IRI values for the two test tracks is 〈IRI〉 1ð Þ

L =〈IRI〉 2ð Þ
L ≈3, as predicted from the

elevation measurements. Moreover, the observation that all sensors provide similar error distributions

(a) (b)

(c) (d)

Figure 7. (a–c) Locations of sensors 1, 2, and 3. (d) Distribution of inferred phone positions inferred from
the inverse analysis.
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with a peak around10% indicates that the proposed approach can predict laser-based IRImeasurementswith
approximately 90% accuracy. The fact that this accuracy is only marginally affected by phone position
confirms, a posteriori, the relevance of the proposed half-car model and the use of the phone position as an
additional unknown. Thus, rather than considering phone position as a deterministic input parameter, the
phone position is an additional degree of freedom to capture the acceleration signal along themoving time
window. The output is thus a distribution of the relative position rp of themeasurement device (Figure 7d).
Similar distributions are obtained for vehicle properties. Byway of illustration, Figure 10a,b display PDFs
of the front and back damping ratios of the vehicle’s suspension system, which are almost insensitive to
the phone position. This insensitivity to phone position is critical for evaluating derived quantities, such as
the the specific energy dissipation, Ed, which convolutes spatially varying road roughness properties with
PDFs of vehicle properties (Equation (53)). This is shown in Figure 10 in form of the cumulative specific
energy dissipation (Figure 10c), and the specific energy dissipation vs. IRI for the two test tracks

(a) (b)

(c) (d)

Figure 8. Summary of measurements for the calibration experiment performed on test track 1: (a) velocity
time history and (b–d) acceleration signals recorded by sensors 1–3, respectively.

Table 1. Calibrated reference values in the regularization function.

f s k1 m1 k2 m2 κ r 2ms,1=ms,2

1.5 14.4 0.16 12.0 0.15 0.55 0.25 1.0
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(Figure 10d). The results confirm previous findings that the dissipated energy is chiefly governed by the
surface quality of the road (Botshekan et al., 2019). The slope of the accumulated specific energy
(Figure 10c) scales with a power exponent of respectively 1.5 for the inner city (test track 1) and 0.5
for the highway (test track 2). This scaling is attributable to a combination of two phenomena
(Equation (53)): (a) the difference in road roughness properties (gΩw, w) (Figure 4) and (b) the
difference in operating conditions, speed V0 (Figure 6a,c), which scales as Vw�2

0 the specific energy
dissipation. A combination of these two phenomena explains the spread of data in the Ed vs. IRI plot
shown in Figure 10d.

4.3. Validation of crowdsourced IRI-measurements

An additional validation is performed using crowdsourced measurements from smartphone devices and
average road roughness data for various road segments as provided by the FHWA database of the US
Department of Transportation (DOT) (FHWA, 2018). Within the US road network, states of California,
Virginia, and Texas have been the most common regions used in studying the performance of the state-
wide road network systems, which is mainly attributed to their large network size and public availability
of data. Crowdsourced roughnessmeasurements were acquired with Carbin educational app, available for
Android and iOS (Carbin, 2019). The app anonymously collects acceleration, gyroscope, and GPS data

(a) (b)

(c) (d)

Figure 9. Summary of measurements for the validation experiment performed on test track 2: (a) velocity
time history and (b–d) acceleration signals recorded by sensors 1–3, respectively.
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for an individual user driving at a speed greater than 7 km/hr, and sends the data to a server, where the data
are analyzed with the proposed approach. The crowdsourced data herein considered are from the state of
California, collected by 85 anonymous users during the time period April 2019–April 2020. Given the
limited information about different road classes and crowdsourced coverage for roads other than interstate
highways, we choose to focus on two types of comparisons: (a) all roads (crowdsourced: 27,697 km
vs. DOT: 22,691 km) and (b) interstate highways (crowdsourced: 19,008 km vs. DOT: 4,100 km). In order
to identify interstate data in crowdsourced measurements, we resort to using data only for speeds greater
than 120 km/hr, which is a real-life highway lower speed limit in the state of CAwhere passenger vehicles
in free-flow traffic conditions are observed to drive between 120 and 130 km/hr (75–80 mph speed in a
65–70 mph speed limit zones). While such speed limit may underestimate the range of the selected
network—specifically during highway traffic measurements, where speeds may be far below 100km/hr—
overall, such an approach for extracting interstate values leads to an accurate representation of
California’s interstate highway system, as depicted in Figure 11a. With clear outlines of crowdsourced
(a) and (b) networks, we can proceed with the validation using DOT data. Unfortunately, DOT data offer

(a) (b)

(c) (d)

Figure 10. Distribution of (a) front ζ 1 and (b) rear ζ 2 damping coefficients. (c) Cumulative specific
energy dissipation for test tracks 1 and 2 in respectively solid and dashed lines, and (d) specific energy

dissipation as a function of IRI (d).
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only average values for a specific range of FWHA IRI limits, which constraints the comparison
methodology to a probability distribution. As shown in Figure 11b, the cumulative distribution functions
(CDFs) for both types of comparison, namely all roads and interstate highways, present a remarkable
resemblance in the overall trend between crowdsourced data and the one provided byDOT’s FWHA. The
marginal difference between crowdsourced data andDOTmeasurements proves the validity and power of
the proposed approach at the network scale. Besides ease of assessment, the additional value of the
crowdsourced approach is that it permits evaluation of the environmental footprint induced by road
roughness. This is shown in Figure 11c in form of the PDF of the specific energy dissipation as recorded
by the vehicles for the two road classes. The change in specific energy dissipation with IRI is evaluated
from:

∂E
∂IRI

¼ cov E, IRIð Þ
var IRIð Þ , (58)

(a) (b)

(c) (d)

Figure 11. Validation of crowdsourced roughness determination at network scale: (a) Map of crowd-
sourced data points for the state of California, (b) comparison of the CDF between the crowdsourced
analysis results and the data set from the FHWA’s DOT, (c) PDF of specific energy dissipation, and

(d) PDF of the change in specific energy dissipation w.r.t. IRI.
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where cov X,Yð Þ stands for the covariance and var Xð Þ for the variance. The PDF of such change is shown
in Figure 11d, considering a length window of 10 km, moving with a 1 km length-step through the
network. At the scale of the two networks, the results readily confirm that the dissipated energy is
governed by the surface quality of the road (Botshekan et al., 2019), as the difference in the PDFs in
Figure 11c mirror-images the CDFs of IRI in Figure 11b. In addition, the PDF of the change in energy
dissipationwith IRI in Figure 11d provides a snapshot of the type of vehiclesmeasuring the road condition
in a crowdsourced fashion. In fact, the two-peak distribution is indicative of two classes of vehicles which
differ in their propensity of dissipating energy in the vehicles’ suspension system due to roughness.While
the number of measuring vehicles is too small for any generalization, there is value in such analysis
for vehicle type and condition assessment to further evaluate the environmental impact related to
road conditions.

5. Conclusions

The impact of road surface quality on ride comfort, fuel consumption, and related environmental
Greenhouse gas emissions has accentuated the importance of road roughness metrics for pavement
management decision-making. As an alternative to direct cost-intensive laser systems for measuring
longitudinal road profiles, the crowdsourced approach requires stable and transferable inverse algo-
rithms to infer the PSD of road roughness together with the vehicle properties from acceleration signals
recorded by passengers’ smartphones. The following deserves attention:

1. At the core of our approach is recognizing that the stochastic acceleration of a smartphone mounted
to the vehicle mass is excited by road roughness considered a zero-mean stationary process.
Classical tools of random vibration theory can thus be employed to link PSD of road roughness to
the PSD of the recorded acceleration signal via the FRF of the vehicle. This has been illustrated and
implemented for a half-car model, with two additional unknowns: the phone position and the
vehicle’s center of gravity.

2. To determine road roughness metrics, an inverse approach is proposed which minimizes the
difference between the measured and model acceleration PSD using road roughness quantities,
vehicle properties, and phone position as adjustable parameters. Given the multiplicative nature
of the involved functional form (PSD of road roughness and the FRF), the well-posedness of the
inverse approach is established through an L2 norm regularization.

3. The regularization term used in the inverse approach requires calibration and validation,
which are achieved by using laser-measured roughness values for both highway and inner-
city roads condensed in form of IRI. As IRI is an integrated quantity of different characteristics
of road roughness PSD (i.e., unevenness index and waviness number), the good agreement
of the proposed approach is evaluated via PDF of the absolute relative error. It is shown that
the peak value of this PDF does not exceed 10%, which implies a 90% expected prediction
accuracy.

4. We also find that the results obtained from the inverse analysis are statistically insensitive to
the phone position, which is an important condition for the proposed approach to be used for
crowdsourced applications.

5. Based on our validation, it is possible to estimate the energy dissipated in vehicle’s suspension
system from the fluctuation–dissipation theorem using themean-squared average of the suspension
motion. The approach provides an explicit means to estimate excess energy dissipation induced
by road roughness. A wide-spread implementation provides needed aggregate data for cities,
counties, and states for not only road quality assessment purposes but also evaluation of
roughness-induced excess fuel consumption and related environmental impact at the network
scale.
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A. Appendix: Useful Relations
NotingmS,i ¼mS,i= mS=2ð Þ, the ratiomS,2=mS,1 ¼mS,2=mS,1 relates to the center of gravity, ρ0, by:

mS,2

mS,1
¼ 3ρ0�1
2�3ρ0

Road roughness PSD description requires two parameters, either the PSD parametersgΩw
0 andw, or IRI andw, since according

to Eq. (44):

gΩw
0

� �¼ IRI2 f wð Þ
where

f wð Þ¼ 2ζGC
ωGC
S

VREF

� �w�3

1þ k
GC

mGC

 !1�w=2

k
GC�w

2

� 
0@ 1A�1

That is the roughness PSD can be rewritten in the form:

Sξ Ωð Þ¼ IRI2 f wð ÞΩ�w; Sξ ωð Þ¼Vw�1
0 IRI2 f wð Þ ω�w

Thus, the acceleration PSD:

Smod
€zS ωð Þ¼ω4�w HzS rp,ω

� ��� ��2Vw�1
0 IRI2 f wð Þ

or in a logarithmic scale:

log gΩw
0

� �¼ 2 log IRIð Þ� log 1þ k
GC

mGC

 !1�w=2

k
GC�w

2

� 
0@ 1A
þ w�3ð Þ log ωGC

S

VREF

� �� �
þ log 2ζGC

� �
If we note that w is close to 2, a limit development around w¼ 2 provides:

log gΩw
0

� �¼ 2 log IRIð ÞþwAGCþBGCþO w�2ð Þ2
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with

AGC ¼ 1
2
log

k
GC

mGC

 !
þ log

ωGC
S

VREF
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� 1

2k
GC 1þ k

GC�1
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log
k
GC

mGC
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BGC ¼ log 2ζGC
� �� log

k
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mGC

 !
�3 log

ωGC
S
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� �� �

þ logk
GCþ 1

k
GC 1þ k

GC�1
� 


log
k
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mGC

 ! !
Thus –in first order–

gΩw
0 ¼ IRI2 expAGC

� �w
exp BGC
� �
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