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Abstract

A permutation TT of the set {1, 2, . . . , n) is four-discordant if TT(I)^*> ' + 1 , i + 2, i+3 (mod ri) for
K / < » . Generating functions for rook polynomials associated with four-discordant permuta-
tions are derived. Hit polynomials associated with four-discordant permutations are studied.
Finally, it is shown that the leading coefficients of these rook polynomials form a "tribonacci"
sequence which is a generalized Fibonacci sequence.

7950 Mathematics subject classification {Amer. Math. Soc.): primary 05 A 05; secondary 05 A 15.

Introduction

The problem considered in this paper is the fourth problem in a hierarchy
of problems. These problems involve permutations 7rt denned on the n-set
N = {1,2,...,«} where ir£j)=i+j—l (modn), such that ir^J)eN.

The first problem in this hierarchy is the probleme des rencontres, also known as
the problem of derangements. For a discussion of derangements, see Berman and
Fryer (1972). This problem is to enumerate the permutations of an n-set discordant
with the identity permutation TTX. A permutation IT is discordant with a given
permutation 7T{ if n(j) ̂  ir^j) for all jeN.

Kaplansky and Riordan (1946) and Touchard (1953) studied the probleme des
menages, the second problem in this hierarchy. This problem is to enumerate the
permutations of an n-set discordant with TT1 and IT2.

Riordan (1954) was the first to study the third problem in this hierarchy; 13 years
later Moser (1967) also studied this problem. This problem is to enumerate the
permutations of an n-set discordant with ITX, 7T2 and TTZ.

The fourth problem in this hierarchy is the enumeration of the permutations
of an n-set discordant with irx, TT2, TTZ and TT4. In this paper, the approach of Riordan
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(1954, 1958) is followed to solve this problem, the enumeration of four-discordant
permutations, by means of rook polynomials and hit polynomials. If Moser's
approach had been followed, then a more appropriate name for this problem
would be the number of very reduced 5xn Latin rectangles. The results obtained
in solving this problem support the conjecture made by Yamamoto (1956).

The rook polynomial of a rectangular board enumerates the ways nonattacking
rooks can be placed on the positions of the board marked with an "x". In particular,
the coefficient of?* in the rook polynomial expressed in the variable t, is the number
of ways that k nonattacking rooks can be placed on the marked positions of the
board. The leading coefficient of the rook polynomial is the permanent of the
rectangular matrix where 1 indicates the marked positions of the board and 0
indicates the unmarked positions. Mine (1964), and later Metropolis and others
(1969), studied permanents associated with these problems.

The rook and hit polynomial approach is superior to the permanent approach
because the coefficients of the hit polynomial yield a complete enumeration of the
permutations denned on the set N with respect to hits. The discordant permutations
are those permutations with zero hits. The permanent approach only enumerates
those permutations with zero hits.

Rook polynomial recurrences

Consider the four-ply staircase board Sn shown in Figure 1. Note that the Sn

board has n rows and n + 3 columns. Write Sn for its rook polynomial in the
variable t. Based on the definition of the rook polynomial, direct computation
yields Sn for n — 1,2,3:

Si=l+4f,

S2= 1 + St+I3t2,

S3= l + 12/+40<2 + 36/3.

Developing according to all positions in the first row, it is found that

(1) Sn = (1 +1) Sn_x + / 7 U + t\Jn_x + tVn_x

where Tn_x is the polynomial of the board (corresponding to Sn) with the first
row and second column removed; C/re_i, with the first row and third column
removed; Vn_1, with the first row and fourth column removed.
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Further development yields equations (2) and (3) which are a pair of coupled
recurrences involving only St and T{.

(2) Un = Sn-tSn_1

(3) Sn = (1 +2t)Sn_1-(t+3t*)Sn_2+(t2+2ts)Sn_3+tiSn_i

n_2 for

Consider the truncated four-ply staircase board sn shown in Figure 1. The sn

board can be obtained from the Sn board by eliminating the last three columns and

* X X X X +• X

X X X X X X

Sn: n . . . . I x x x
i, x x x x sn: n x x x x

X X X X

FIGURE 1. Rook polynomial boards.

rotating about the main diagonal. Write sn for its rook polynomial in the variable /.
Direct computation yields sn for n = 1,2,3:

S1=l + t,

s2= l + 3t+t2,

An easy development yields the following equation:

(4) sn = Un_1-tSn_i+t*Sn_3+tsn_1 fo

Consider the completed truncation four-ply staircase board an shown in Figure 1.
The un board is associated with permutations discordant with nv TT2, TT3, TT4, as
defined in the introduction. The an board can be obtained from the Sn board by
truncating the last three columns and moving these columns to the lower left-hand
corner. Write an for its rook polynomial in the variable t. Direct computation
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yields an for n = 1,2,3:

o1=l+t,

Developing according to the six positions in the lower left-hand corner yields
the following equation:

(5) *» = *« + M»_i + tBn_y + / C n _ ! + t D n _ x + / £ „ _ ! + / / ;_!.

Here /4B_1 is the polynomial of the board (corresponding to an), with the (n—2)th
row and first column removed; Bn_1 is the polynomial of the an board, with the
(« — l)th row and first column removed; Cn_x is the polynomial of the an board,
with the «th row and first column removed; Dn_t is the polynomial of the board
(corresponding to sn), with an additional "x" placed in («, 3)-position and the
(« —l)th row and second column removed; En_x is the polynomial of the sn

board, with the nth row and second column removed; F n _ 1 is the polynomial of the
sn board, with the «th row and third column removed.

After a long and somewhat routine development, the A{, Bt, Q , D{, E{, Ft

polynomials can be eliminated from equation (5); thus equation (6) is obtained.

(6) an = 2sn + tSn_x -

+ (2t+6t2)Un_2 fo

Thus equations (2), (3), (4) and (6) form a system of recurrences that make it
possible to solve for Sn, Un, sn and an once the necessary initial values are computed
from the definition of a rook polynomial. In the next section, we obtain generating
functions from these recurrences.

Generating functions

Solving equations (2) and (3) simultaneously for Sn yields the following
recurrence:

(7) Sn-(l

5n_8 = 0 for

A slight modification of equation (7) will yield equation (8) which is valid
Let So = 1 and St = 0 for i<0. By checking equation (7) for 0<« < 8, equation (8)
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is obtained.

(8) 5 n - ( l+40S r e _ 1 +4/^ n _ 2 +^S n _ 3 +( r 2 +4f 3 +2^)5 n _ 4

- (3f4 + 4/5) Sn_5 -1« 5M_7 +t* Sn_a = S^ + >2 Sn2 for n > 0.

Here Snfc denotes the Kronecker delta function. From equation (8), the generating
function S(t, u) is expressed in terms of the two-variable polynomial A(f, u).

(9) A(t,u)S(t,u)=l + t2u\

where

(10) A ( / , M ) = l -

and

(11) S(t,u)= £sTC«».
re=0

Note that equation (9) is the generating function form of equation (8).
In the same way that equation (9) was obtained, the following generating

functions for Un, sn and on are obtained.

(12) A(

(13) £

(14) A(;, u) o(t, u)=\-2,tu-(t- 2t2) u2+{t + 5fi+2t3) u3

- (7^+371* + 33?5) M6 - (it3+271*+64/5+30*6 - 4r7) «7

+ (9/5 + 57f6 + 93;7 + 33/8) M 8 +(4/ 7 + 6t8 - 3t9) u9

Let P{t,u) denote the polynomial on the right-hand side of equation (14). The
following theorem is a summary of the computation leading to equation (14).

THEOREM. The generating function for the rook polynomials of the an boards, is
given by
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Hit polynomials

The hit polynomial is defined in terms of the coefficients ank of the rook poly-
nomial an. Recalling that an is a polynomial in the variable t, the following
expansion is obtained:

(16) "»=£*»*'*.
fc=0

In equation (17), the hit polynomial is expressed in terms of the variable y. The
coeflBcient of yk in the hit polynomial is the number of permutations of an.«-set
that have exactly k hits. A hit occurs when n(i) = i, i + l, i+2 or i+3 (modn) for
some ie{1,2,...,«}. In particular, the coeflBcient of y° in the hit polynomial, is the
number of four-discardant permutations. The hit polynomial, see Riordan (1954,
1958), is obtained from equation (16) by replacing tk with (n-k)\(y-l)k.

(17) Nn(y) = S on,k{n-k)\ (y-l)k = £ Nn_ky
k.

k=0 k=O

From equations (10) and (14), the following equation is derived.

(18) an = (1 + 4/) an_x - 4t* an_% -1* an_3 - (t* + 4t3 + 2t*) an_4

+ Qt* + At5) <7n_5 +16 an_7 -1
8 an_8 for n > 12.

Using the coefficient notation introduced in equation (16), the following equation
is derived from equation (18):

(19) an,k = an-l,k + 4crn-l,k-l ~ 4an-H,k-2 ~ c7n-3,fc-2 ~ an-i,k-2

- 4orn-4,fc-3 - 2crn-i,k-i + 3tT»-5,fc-4 + 4<7n-5,k-& + an-l,k-d

-On-sjc-s forn>12.

Using equation (19) to replace anM in equation (17) and doing a considerable
amount of simplification, the following equation is obtained.

(20) Nn(y) =

- ( « - 2 ) [y- If Nn_3(y) + [y- If N'n_3(y)

+ 2(2y+n-5) [y- If N'^iy)- [y-

+ {Ay + 3n -16) [y -1 ]4 Nn_5(j) - 3 ^ - 1 ]5 N'n_,(y)

-6) \y- If Nn_7(y)-[y- IT N'n^(y)-[y- If Nn_s(y)

for n^ 12.
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Here the prime denotes differentiation with respect to the variable y. Table 1 gives
the coefficients ank for 0 < n < 11. Table 2 gives the coefficients Nmfc for 4 < n < 11.
The Nn>k coefficients have combinatorial meaning only for n ^ 4 . Equation (20)
can be used to compute the polynomials Nn(y) for n ̂  12.

An 0

TABLE 1

Coefficients <jnlc

1 2 3 4 5 6 7 8 10 11

0
1
2
3
4
5
6
7
8
9
10
11

1 1 1 1
1 4 9
2 18

6

1
16
72
96
24

1
20
130
320
265
44

1
24
204
752
1185
672
80

1
28
294
1456
3521
3892
1617

144

1
32
400
2496
8264
14272
11776
3776
264

1
36
522
3936
16659
39924
52071
33480
8577
484

1
40
660
5840

30210
93568
171060
175360
90745
19080
888

1
44
814
8272
50677
193556
461208
667832
554532
236808
41745
1632

0
1
2
3
4
5
6
7
8
9

10
11

TABLE 2

Coefficients Nn> k

7 8 10 11

0
0
0
0
24

1
0
10
20
45
44

2
24
60
152
210
192
80

31
154
595
980
1421

1106
609
144

264
1664
4512
8832
9776
8832
4512
1664
264

2783

15984
44802

74784
90396
70452

43206
15768
4221
484

30818
173000
457040
759920
853100
707744

405800
180560
49730
10200

888

369321
2004486
5159517
8282472
9261714

7464996
4539282

1989768
673893
145926
23793

1632

A tribonacci sequence

Yamamoto (1956) observed that the Lucas numbers (which form a Fibonacci
sequence) are found as the leading coefficients of the rook polynomials associated
with the three-discordant permutations. Thus it is reasonable to find a 'tribonacci'
sequence as the leading coefficients of the an polynomials. Observe the diagonal
entries in Table 1.
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THEOREM. The leading coefficients of the an polynomials satisfy the following
tribonacci recurrence:

(21) °n,n = an-l,n~l + °n-2,n-2 + °n-Z,n-3 ~4 for « > 7-

PROOF. By studying the contribution to the leading coefficient of an, denoted
l(an), by the terms on the right-hand side of equation (6), the following equation
is obtained:

(22) an>n = l(an) = 2l(s

Since the sn board is triangular for all n, it follows that l(sn) = 1. Applying equation
(22) to aiti for / = «, n — l, it—2 and n—3, the following equation is derived:

(23) CTnn - O-n_ljm_! - On-2,n-2 - an-3,n-3

+ 4/(t/n_2) - 8/(l/n_3) - 8/(t/«_4) - 6l(Un_5) for n ̂  11.

From equations (2) and (3), equations (24) and (25) are obtained by studying the
contribution of the leading coefficients /(f/f) and l(S{).

(24) /([/,) = /(£<) - / ( S ^ ) - l(S^+/(^_3) - l(JU^ for / ̂  4.

(25) KSi) = 2/(Si_1) - 3l{St_J+2/(Sf _3)+/(Sf _,)

) fon>7.

By applying equations (24) and (25) for / = n — 1, n — 2, « — 3 and « —4 to equation
(23), the following equation is obtained.

(26) Onn-(Tn^n.!-(Tn_2)7l_2-on-3,n-3 = ~ 4 for rt> 11.

For « = 7, 8, 9 and 10, direct computation with the values given in Table 1
completes the proof.
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