
J. Functional Programming 11 (5): 441–466, September 2001. Printed in the United Kingdom

c© 2001 Cambridge University Press

441

Persistent triangulationsã

GUY BLELLOCH, HAL BURCH†, KARL CRARY, ROBERT HARPER,

GARY MILLER and NOEL WALKINGTON

School of Computer Science, Carnegie Mellon University,

Pittsburgh, PA 15213, USA

Abstract

Triangulations of a surface are of fundamental importance in computational geometry,

computer graphics, and engineering and scientific simulations. Triangulations are ordinarily

represented as mutable graph structures for which both adding and traversing edges take

constant time per operation. These representations of triangulations make it difficult to

support persistence, including ‘multiple futures’, the ability to use a data structure in several

unrelated ways in a given computation; ‘time travel’, the ability to move freely among versions

of a data structure; or parallel computation, the ability to operate concurrently on a data

structure without interference. We present a purely functional interface and representation

of triangulated surfaces, and more generally of simplicial complexes in higher dimensions.

In addition to being persistent in the strongest sense, the interface more closely matches the

mathematical definition of triangulations (simplicial complexes) than do interfaces based on

mutable representations. The representation, however, comes at the cost of requiring O(lg n)

time for traversing or adding triangles (simplices), where n is the number of triangles in

the surface. We show both analytically and experimentally that for certain important cases,

this extra cost does not seriously affect end-to-end running time. Analytically, we present a

new randomized algorithm for 3-dimensional Convex Hull based on our representations for

which the running time matches the Ω(n lg n) lower-bound for the problem. This is achieved

by using only O(n) traversals of the surface. Experimentally, we present results for both an

implementation of the 3-dimensional Convex Hull and for a terrain modeling algorithm,

which demonstrate that, although there is some cost to persistence, it seems to be a small

constant factor.

1 Introduction

The PSciCo (Parallel Scientific Computing) Project at Carnegie Mellon is investi-

gating the use of functional programming languages for scientific computing. Our

working hypothesis is that, as the scale and complexity of scientific computing prob-

lems increases, so the need for more sophisticated languages also increases. A rich

type structure that provides not only conventional numeric and vector types but also

function types, recursive types, and user-defined abstract types seems especially im-

portant, as does a flexible module system that supports libraries of interchangeable

components. To achieve acceptable performance, and to expand feasible problem

ã This research was supported in part by NSF Grant CCR-9706572.
† Research supported by an NSF graduate fellowship.

https://doi.org/10.1017/S0956796801004087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004087

442 G. Blelloch et al.

sizes, it is also important to exploit parallelism, which is increasingly available on

stock platforms. To address these requirements, we are investigating the use of

functional programming as a basis for advanced scientific computing, combining

NESL (Blelloch, 1996), an applicative language that provides implicit data paral-

lelism, and Standard ML (Milner et al., 1997), a higher-order language with a rich

module system. We are working on a variety of problems, including n-body prob-

lems in physics, computational geometry problems, such as Delaunay Triangulation

and multi-dimensional convex hull problems, and the solution of partial differential

equations by the finite element method.

This paper focuses on a particular problem, the representation and construction of

triangulated surfaces. Triangulated surfaces (more generally, simplicial complexes)

are widely used in a number of fields such as computer graphics and scientific

computing. For example, the starting point for solving a boundary value problem by

the finite element method is the triangulation of the region over which the solution

is constructed. Standard representations of surfaces (Guibas & Stolfi, 1985; Berg

et al., 1997) are ephemeral in the sense that they are defined in terms of mutable

graph structures. Once a modification to the surface is made, the previous version

of the surface is destroyed. In some situations it is convenient to have a persistent

representation of the surface, one for which operations on the surface do not

destructively update it, but rather create an independent ‘version’ while retaining the

original. For example, a persistent surface representation admits a simple formulation

of Ruppert’s algorithm (Ruppert, 1995) for triangulating regions with boundaries in

which we ‘undo’ a partial triangulation on the fly in the rare case that boundary

constraints lead to undesirable acute triangles. Persistent representations of surfaces

also permit interactive exploration and incremental modification of a triangulation

through the convenience of ‘time travel’, the ability to maintain a complete history

of the evolution of a data structure.

This paper is concerned with the use of persistent representations of triangu-

lated surfaces. A straightforward approach to achieving persistence is to replace

uses of arrays by a purely functional (immutable) dictionary using balanced search

trees (Myers, 1984). The disadvantage of this approach is that it imposes an addi-

tional O(lg n) cost per operation stemming from the logarithmic cost of dictionary

lookup compared to the constant cost of array access. Various attempts have been

made to reduce this overhead (Driscoll et al., 1989; Dietz, 1989; O’Neill & Burton,

1997; Okasaki, 1998). These methods tend to be quite complex, apply only to par-

ticular data structures, or employ imperative (mutable) data structures internally.

Reliance on underlying mutable data structures complicates parallelization, since

interlocks are required to avoid interference between processors. In contrast purely

functional implementations parallelize without special provision, precisely because

they avoid mutation entirely.

Rather than attempt to improve the local (per-operation) cost of operations on

the data structure, we instead emphasize the global, or end-to-end, efficiency of

algorithms that make use of the data structure. By being clever at the higher level

we can get away with a näıve purely functional representation, without sacrificing

the global efficiency of the algorithms of interest. In this paper, we explore this

https://doi.org/10.1017/S0956796801004087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004087

Persistent triangulations 443

approach in the context of a persistent representation of triangulated surfaces. We

employ a simple surface representation with an elegant interface that follows very

closely the mathematical definition of a surface. Although we incur a logarithmic

cost overhead per operation, we nevertheless are able to use our data structure to

build efficient implementations of two higher-level algorithms, in both an asymptotic

and empirical sense.

The first example is the construction of the convex hull (Berg et al., 1997) (a

triangulated surface) of a set of n points in three-dimensional space. An Ω(n lg n)

lower bound for the problem is well-known (Berg et al., 1997), and matching

upper bounds are achieved by several algorithms in the ephemeral case. A näıve

transcription of these algorithms to the persistent case would result in a sub-optimal

O(n lg2 n). At first glance this may seem to be an inherent cost of a locally sub-

optimal representation of surfaces. We prove that this supposition is false by giving

a new, randomized convex hull algorithm, which we call the bulldozer algorithm, that

achieves the optimal O(n lg n) time bound in the expected case, despite the reliance

on the simple persistent representation of surfaces. The key observation is that,

whereas our algorithm requires O(n lg n) floating point operations (to determine

whether a point lies inside or outside of the partially-constructed hull), it requires

only O(n) surface operations. Since each surface operation takes O(lg n) time, the

running time of the algorithm is still bounded by O(n lg n). To assess the practicality

of this algorithm, we measure its performance on a variety of data sets. Our second

example is the implementation of a terrain modeling algorithm given by Garland and

Heckbert (Garland & Heckbert, 1995) using our persistent surface representation.

Here no analytic bounds are known, but we are able to demonstrate practical

efficiency on realistic data sets.

In section 2 we describe our representation of triangulated surfaces as simplicial

complexes. In section 3 we present a brief summary of the bulldozer algorithm, which

is described more fully in a companion report (Burch et al., 2000). In section 4 we

evaluate the performance of the bulldozer algorithm on a variety of data sets,

and compare it to the performance of the Minnesota Quickhull (Barber et al.,

1996) implementation. In section 5 we evaluate an implementation of Garland and

Heckbert’s terrain modeling algorithm (Garland & Heckbert, 1995) based on our

representation of surfaces.

2 Surfaces

Both the convex hull algorithm and the terrain modeling algorithm presented in later

sections construct a two dimensional surface embedded in three dimensional space.

In the case of the convex hull, this is the surface of the smallest enclosing convex

polytope of a set of points, and in the case of the terrain modeling, the surface

represents an approximation to the topography of a geographical region. In both

cases it is convenient to think of the surface as a connected set of triangles covering

the surface; if the surface is specified by polygonal faces they are subdivided into

triangles. Consequently, the surfaces of interest are sometimes called triangulated

surfaces, or simply triangulations.

https://doi.org/10.1017/S0956796801004087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004087

444 G. Blelloch et al.

Following Giblin (1977), we define a closed surface to consist of a set of triangles

satisfying the following three conditions:

1. Any two triangles have at most one vertex or one edge (and its two vertices) in

common; no other forms of overlap are permitted. This is called the intersection

condition.

2. The surface is connected in the sense that there is a path from any vertex to

any other vertex consisting of edges of the triangles of the surface.

3. For each vertex, the set of edges opposite that vertex in any triangle, called

the link of that vertex, forms a simple, closed polygon.

This definition relies on the familiar concept of a triangle. A triangle consists

of a set of three distinct vertices, specified in some order. This raises the question

of when two triangles are equivalent. Under an ordered interpretation, 4ABC is

distinct from both 4BCA and 4CAB, even though they enumerate the vertices in

the same sequence, and is also distinct from 4ACB, which reverses the order of

presentation. Two orderings that differ by an even permutation (i.e. that can be

obtained from one another by an even number of swaps) are said to determine the

same orientation. Thus 4ABC , 4BCA and 4CAB all have the same orientation,

whereas 4ACB, 4CBA and 4BAC have the opposite orientation. The orientation

may be thought of as determining two ‘sides’ of a triangle; 4ABC is the ‘front’

of 4ABC, and, correspondingly, 4ACB is the ‘back’ of 4ABC. Under an oriented

interpretation we identify triangles that have the same orientation, and distinguish

those that do not. This idea generalizes to higher dimensions in that two orderings

of vertices have the same orientation iff they differ by an even permutation.

Following Giblin, we maintain a careful distinction between the configuration of

the triangles on the surface (i.e. their adjacency relationships) and the embedding

of the triangles in three-dimensional space (i.e. , the assignment of coordinates to

their vertices). When embedding a triangle 4ABC in three-dimensional space, we

require that the points assigned to the vertices be affinely independent, which is to

say that the vectors B − A and C − A are linearly independent, or, equivalently, that

the three points are not collinear. The convex hull algorithm will determine not only

the configuration of triangles, but also their embedding in three-dimensional space.1

A closed surface is a special case of the more general concept of a simplicial com-

plex (Giblin, 1977; Alexandroff, 1961), which applies in an arbitrary dimension. Our

implementations of the three-dimensional convex hull and of the terrain modeling

algorithm are based on an abstract type of simplicial complexes. Not only does this

support generalization to higher-dimensional spaces, but it also allows us to exper-

iment with various implementations of simplicial complexes without disturbing the

application code. Indeed, we experimented with several different implementations

before settling on the one we describe here.

Just as a closed surface is a set of triangles satisfying some conditions, a simplicial

complex is a set of simplices over a set of vertices satisfying some related conditions.

1 To avoid degeneracies and to simplify the presentation, we assume that the input set of points to the
hull algorithm has the property that no four points are coplanar.

https://doi.org/10.1017/S0956796801004087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004087

Persistent triangulations 445

A zero-dimensional simplex is a ‘bare’ vertex, a one-dimensional simplex is a line

segment, a two-dimensional simplex is a triangle, a three-dimensional simplex is a

tetrahedron, and so on. A complex is a configuration of simplices subject to some

simple conditions.

We assume we are given a totally ordered set V of vertices.2 An n-dimensional

ordered simplex, or n-simplex, is an (n + 1)-tuple of distinct vertices. An oriented

simplex is an equivalence class of ordered simplices with the same orientation. A

simplex s is a sub-simplex, or a face, of a simplex t, written s 6 t, iff s is a subsequence

(not necessarily proper) of t. An n-dimensional, oriented, pure simplicial complex, or

just n-complex for short, consists of a set V of vertices and a set S of oriented

simplices satisfying the following conditions:

1. Every vertex determines a 0-simplex. We usually do not distinguish between a

vertex v and its associated 0-simplex (v).

2. Every sub-simplex of a simplex in S is also a simplex of S .

3. Every simplex s ∈ S is a sub-simplex of some n-simplex in S .

A closed surface is a 2-complex in which the link of every 0-simplex is a simple,

closed polygon having that 0-simplex as an interior point.

The signature (interface) of the simplicial complex abstract type is given in

figure 3. This abstraction relies on an abstract type of vertices, whose signature is

given in figure 1, and an abstract type of simplices, whose signature is given in

figure 2. Taken together, these signatures summarize the entire suite of operations

available to applications that build and manipulate complexes. We have omitted

some operations that are not required in this paper, such as a list of the exceptions.

The signature VERTEX specifies that vertices admit a total ordering, which is

required for the efficient implementation of simplicial complexes. We associate a

point with each vertex; this is used to embed a simplex in space, as described earlier.

The embedding is established by the new operation, which creates a ‘new’ vertex

at the specified point. The state is used to generate new vertex ‘labels’ purely

functionally. The location of a vertex in space is obtained using the loc operation,

which yields the point in space associated with vertex. The type of points is left

completely unspecified since the simplicial complex package need not be concerned

with its exact representation.

The signature SIMPLEX defines the abstract type of (ordered) simplices over a

given type of vertices. As with vertices, we require that simplices be totally ordered

by some unspecified order relation so that simplices may be used as keys in a

dictionary. The operation dim yields the dimension of a simplex. The apex of the

simplex is the first vertex of the sequence of vertices defining the simplex. The

vertices operation yields the sequence of vertices of a simplex, apex first.3 The

simplex operation creates an n-simplex from a sequence of n+1 vertices. The faces

2 This total ordering is not ordinarily required in the mathematical setting, but is necessary for imple-
mentation reasons.

3 We make use of an abstract type of sequences (’a seq), a form of immutable array whose primitive
operations are designed to support implicit parallelism (Blelloch, 1996).

https://doi.org/10.1017/S0956796801004087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004087

446 G. Blelloch et al.

signature VERTEX =

sig

type vertex

val compare : vertex * vertex -> order

type state

type point

val new : state * point -> state*vertex

val loc : vertex -> point

end

Fig. 1. Signature of vertices.

signature SIMPLEX =

sig

structure Vertex : VERTEX

type simplex

val compare : simplex * simplex -> order

val dim : simplex -> int

val vertices : simplex -> Vertex.vertex seq

val simplex : Vertex.vertex seq -> simplex

val down : simplex -> Vertex.vertex * simplex

val join : Vertex.vertex * simplex -> simplex

val faces : simplex -> simplex seq

val flip : simplex -> simplex

end

Fig. 2. Signature of simplices.

operation yields a sequence of (n−1)-dimensional sub-simplices of a given n-simplex

in arbitrary order. The flip operation inverts the orientation of a simplex (flips to

its reverse side). The down operation takes an n-simplex and returns its apex and

the (n− 1)-simplex opposite the apex. The join operation builds an n-simplex from

a given vertex and (n− 1)-simplex, taking the vertex as apex and the (n− 1) simplex

as its opposite face.

The signature SIMPCOMP specifies the abstract type of oriented simplicial com-

plexes. There are no mutation operations on complexes. Instead we supply opera-

tions to create new complexes from old, as discussed in the introduction. The type

’a complex of n-dimensional simplicial complexes is parameterized by a type ’a

of data values associated with the n-simplices of the complex. The new operation

creates an empty complex of specified dimension n. The sequence of vertices of a

complex are returned by the vertices operation, in an arbitrary order. The sim-

plices of a given dimension are returned by the simplices operation. The grep

operation finds all the simplices of maximal dimension having a given simplex as

a face. More precisely, given a dimension d 6 n and a d-simplex s, grep returns

a sequence containing (in unspecified order) the simplices of dimension d having s

as a face. The find operation is a specialization of grep for dimension n − 1. The

operation add adds a simplex to a complex, with specified data value; to ensure

https://doi.org/10.1017/S0956796801004087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004087

Persistent triangulations 447

signature SIMPCOMP =

sig

structure Simplex : SIMPLEX

type ’a complex

val dim : ’a complex -> int

val new : int -> ’a complex

val isEmpty : ’a complex -> bool

val vertices : ’a complex -> Simplex.Vertex.vertex seq

val simplices : ’a complex -> int -> Simplex.simplex seq

val data : ’a complex * Simplex.simplex -> ’a option

val grep : ’a complex -> int * Simplex.simplex -> Simplex.simplex seq

val find : ’a complex * Simplex.simplex -> Simplex.simplex seq

val add : ’a complex * Simplex.simplex * ’a -> ’a complex

val rem : ’a complex * Simplex.simplex -> ’a complex

val update : ’a complex * Simplex.simplex * (’a -> ’a) -> ’a complex

end

Fig. 3. Signature of simplicial complexes.

that the condition 3 in the definition of simplices is preserved, we may only add an

n-simplex to an n-complex. The operation rem removes a simplex from a complex,

yielding the reduced complex. The update operation applies a specified function to

the data associated with the given simplex. We note that for all operations on a

simplicial complex the simplices are viewed as oriented but not ordered (all orders

of the same orientation are considered equivalent). For example if a simplex with

a particular order is added to the complex, later searches on other orders with the

same orientation will find that simplex. Similarly the simplices and grep functions

will only return a single order for each oriented simplex.

In our implementation, an n-simplex is represented by a sequence of vertices of

length n+1, with the apex being the lead vertex of the sequence. The down operation

strips off the apex and returns the remaining (n−1)-simplex, as described above. We

implement complexes using the Map signature taken from the SML/NJ library. An

n > 1 complex is represented by a mapping from each vertex to the (n− 1)-complex

consisting of the faces opposite it. A 1-complex is implemented specially to avoid

the overhead of maintaining the map.

We may build an n-complex by a sequence of n − 1 applications of a ‘boot-

strapping functor’ that builds an n-complex from an (n− 1)-complex, starting with

the direct implementation of the 1-complex. However, for reasons of efficiency, we

choose to implement the 2-complexes directly, rather than by bootstrapping. In

this optimized implementation we use the first vertex of a simplex as a key into a

red-black tree (Bayer, 1972; Okasaki, 1998). Each node of the red-black tree then

stores as its value an association list that maps the second vertex to the third vertex

and the data. Using an association list is adequate in practice since the number of

entries is small (the average number is 6). To make the implementation optimal in

theory one could convert to a balanced tree if the size of the list becomes too long.

In our direct implementation searching for a simplex involves searching the red-

https://doi.org/10.1017/S0956796801004087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004087

448 G. Blelloch et al.

p

Fig. 4. Example of a tent with exterior point p. The lit faces belonging to the old hull are

marked with dashed borders and the horizon is shown in bold.

black tree and then the association list. Adding a simplex involves searching the

red-black tree to see if the vertex is already there. If it is, the simplex is added to the

existing association list, otherwise a new association list is created. When a simplex

is added, it is added to the tree in all three orders with the same orientation. This

is important so that searching (i.e. grep and find) can be implemented efficiently.

Deleting a simplex involves searching the tree and deleting the simplex from the

corresponding association list. If the association list becomes empty, then the tree

node is also deleted. As with addition, the deletion needs to be executed in all three

orders.

3 Convex hull: the Bulldozer algorithm

It is well known that the problem of constructing the convex hull of a set of points in

three dimensions requires Ω(n lg n) time (Berg et al., 1997). Asymptotically optimal

algorithms for the problem are also known (Clarkson & Shor, 1989; Chazelle, 1991)

for the ephemeral case. In this section we will give an optimal randomized algorithm

for the persistent case. The algorithm represents the surface of the convex hull as a

two-dimensional simplicial complex.

We will be concerned with incremental methods that expand the convex hull of a

set of points to include a new point. Many algorithms, including our own, are based

on a tent construction. Given a point p exterior to the hull of a set of points, we may

extend the hull to include this point as follows. View the exterior point p as a light

source illuminating a subset of the faces of the hull (note that a face is either fully

light or fully dark). These lit faces are removed by the construction. The boundary

of the lit faces is a set of edges called the horizon. The construction then creates

a pyramidal tent whose apex is the exterior point and whose base is the horizon.

This construction extends the convex hull to include the point p as a new vertex

(see Figure 4). Any points that become interior to the hull when a tent is added are

discarded. A complete hull is constructed by going through the points and adding

them to the hull one at a time.

Several incremental algorithms based on the tent construction are known; they

differ in how the exterior point is chosen, and how the set of exterior points is

maintained during the construction. During construction most of these algorithms

maintain, for each exterior point, one face that is visible to that point. Clarkson and

Shor’s algorithm (Clarkson & Shor, 1989), the Minnesota Quickhull algorithm (Bar-

ber et al., 1996), the Motwani and Raghavan algorithm (Motwani & Raghavan,

https://doi.org/10.1017/S0956796801004087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004087

Persistent triangulations 449

1995), and the Bulldozer algorithm described here, all maintain such information.

The motivation for keeping this association is that, since the set of faces that are

visible to any one point is connected, knowing one visible face allows the algorithm

to walk through the visible faces to find them all. When a tent is added to the hull

the lit faces are removed from the hull. To maintain the association of points to

faces, each point that is associated with one of these lit faces needs to be associated

with a new visible face, or determine that it is now interior and can be dropped.

One reason that previous algorithms are inefficient in the persistent case is that

the process of finding a new visible face can require the traversal of ‘too many’

faces. Since in the persistent case each traversal step requires O(lg n) steps, we must

bound the overall number of traversals to O(n) to ensure that the construction may

be completed in O(n lg n) time. To do this the algorithm is careful about how it

associates a face with each point and how it reassigns the points. The algorithm

begins by selecting a point that will always be interior to the hull – the center point

of the hull. Consider the rays from the center point to each exterior point. If such

a ray penetrates the surface at a face, we associate the point to that face.4 We

associate exterior points with their appropriate faces by storing on each face a list

of the associated points.

Each step of the algorithm selects an exterior point p uniformly at random for

addition to the hull. Since the points are associated with faces, rather than faces

with points, to do so the algorithm first selects at random a face that has points

associated with it, where the probability of selecting a face is proportional to the

number of associated points. It then selects a random point associated with this face

to serve as a ‘light source’. Once the light source p is selected, the algorithm finds

and then removes all faces visible to p by searching the surface in a particular order

starting with the associated face of p. The search defines a directed acyclic graph

whose nodes are the visible faces and the horizon edges, and whose arcs connect

adjacent faces or a face with one of its horizon edges; we call this graph the walking

graph of the hull with respect to the light source. Figure 5 gives one example of a

walking graph.

Walking graphs have several important properties:

1. The associated face of the light source has in-degree zero.

2. The graph is acyclic.

3. All nodes of the graph are reachable from the associated face of the light

source.

The algorithm visits each node in the graph in topological order. When visiting

a face, every point assigned to the face is either discarded, because it is interior to

the hull, or pushed out along one of the face’s out-edges to another face or horizon

edge in the walking graph (which we call ‘bulldozing’). This process for a single face

requires at most two plane-side tests per point, and is based on the location of the

center point as well as the light source. When the search is complete, each point

associated with any of the visible faces has either been discarded or associated with

4 We make the assumption that no four points are co-planar.

https://doi.org/10.1017/S0956796801004087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004087

450 G. Blelloch et al.

Fig. 5. An example of a walking graph. The black dot represents the light source.

a horizon edge. One additional test can determine whether a point is interior to

the hull or visible to the tent panel formed by this edge and the light source. The

bulldozing is done so that the tent panel associated with the horizon edge to which

a point is pushed is the associated face of that point. Thus, if the point cannot

see that face, it cannot see any face and can therefore be discarded. The precise

details of the construction of the walking graph are given in the Appendix, where

Theorem 10 states that this construction is correct in the sense that it does extend

the convex hull to include the new point p.

The runtime of the algorithm can be separated into the cost of plane-side tests,

required to walk points out to the horizon, and the cost of manipulating the

simplicial complex. Theorem 11 of the Appendix uses a backwards analysis and

Euler’s formula to show that that the average number of faces inserted at each stage

is at most six, so that the expected number of faces created during the construction

of the convex hull is of O(n). This immediately leads to a linear bound on the number

of traversals of the simplicial complex. Clearly the simplicial complex is traversed

whenever a face is added (during the tent construction) or deleted (during a search

for light triangles). The only other time the simplicial complex is traversed occurs

when a triangle is detected on the dark side of the horizon. Since each horizon edge

gives rise to exactly one new tent face, the number of such traversals is bounded by

the total number of faces. Since the cost of each traversal is O(lg(n)) it follows that

the total expected cost of maintaining the simplicial complex to describe the surface

is O(n lg(n)).

We next consider the cost of ‘bulldozing’ points not yet in the hull. If Hk denotes

the convex hull of the first k points, consider the addition of the point p = pk+1

to the hull. Since points get ‘bulldozed’ along faces of Hk that they can see, the

number of edges a point q ∈ Pn−k−1 = {pk+2, . . . , pn} traverses in the walking graph

is bounded by the number of faces F ∈ Hk visible to both p and q. Theorem 12 of

the Appendix shows that the expected total number of such point-face pairs,

{(q, F) ∈ Pn−k−1 ×Hk |F visible to both p and q}
(and hence the number of plane side tests) is bounded by O(n/k). It follows that the

expected cost of bulldozing the points is
∑n

k=1 O(n/k) = O(n lg(n)).

https://doi.org/10.1017/S0956796801004087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004087

Persistent triangulations 451

4 Convex hull: experimental evaluation

Although our theory shows using a purely persistent dictionary for storing a sim-

plicial complex is asymptotically optimal, we are interested in the actual overhead.

In particular we were worried that the constant factors could make the ideas im-

practical. For this reason we ran several experiments to study the overhead. These

experiments involved measurements on the bulldozer three-dimensional hull algo-

rithm, and on a terrain triangulation algorithm, described in the next section. The

goal in the experiments is to compare the work needed to maintain the simplicial

complex to the other work in the algorithm. This other work mostly consists of the

numerical aspects and is dominated by floating-point operations.

In our experiments we used the following five distributions of points in three

dimensions:

1. OnSphere: random uniformly distributed points on the unit 2-sphere (i.e. the

surface of the unit ball in three dimensions).

2. EqHeavy: random points on the sphere that are weighted to be mostly on

the equator. These are generated by producing random points on the sphere,

stretching the equator (x and y coordinates) by a factor of 100 so that the

distribution is on a disk-like surface, and then projecting the points back down

onto a sphere by scaling their length to one.

3. PolHeavy: random points on the sphere that are weighted to be mostly at

the poles. These are generated by producing random points on the sphere,

stretching the poles (z coordinate) by a factor of 100 so that the distribution

is on a stretched ellipsoid surface, and then scaling the points back down onto

a sphere as in the EqHeavy distribution.

4. InBall: random uniformly distributed points in the unit ball.

5. BordHeavy: generated by producing points randomly in a unit ball and then

mapping each point (x, y, z) to the point (x, y, x2 + y2 + z2). This creates a

distribution for which most of the points are near or on the surface of the

hull.

We selected these since we wanted data sets both where all the points are in the final

result (the expensive case) and where some are inside. We also wanted nonuniform

distributions, which are what EqHeavy, PolHeavy, and BordHeavy give us.

To get a machine- and language-independent measurement of the costs we first

measured various operation counts. For the manipulation of the simplicial complex

(the topological part of the algorithm) we count both the number of dictionary

operations and the total number of key-comparisons made by the dictionary code.

For the numerical (geometric) part of the algorithm we count the number of

plane-side tests, from which we can easily determine the number of floating-point

operations.

As mentioned in section 2, the simplicial complex is implemented using red-black

trees with vertex identifiers used as keys. For a tree of size n, each insertion, deletion

or search will traverse O(lg n) nodes. At each node, the key being searched (an

integer identifier for the vertex) is compared to the key at the node. In addition to

https://doi.org/10.1017/S0956796801004087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004087

452 G. Blelloch et al.

100

200

300

400

500

128K 256K 512K

N
um

be
r

of
 O

pe
ra

tio
ns

 (
M

ill
io

ns
)

Problem size (points)

key-comparisons (OnSphere)
floating-point ops (OnSphere)

key-comparisons (BordHeavy)
floating-point ops (BordHeavy)

Fig. 6. Operation counts as a function of input size for two of the distributions using the

Bulldozer algorithm. The two sets of counts for OnSphere are almost identical.

 Dictionary-Comparisons Floating-Point-Ops

 0

 200

 400

 600

 800

 OnSphere EqHeavy PolHeavy InBall BordHeavy

Fig. 7. Operation counts (in millions) for all five data distributions using the Bulldozer

algorithm. The input size is 512K points.

the key-comparisons made in the red-black tree, which are based on the first vertex

of the simplex being searched, key-comparisons are also required when searching for

the second vertex of the simplex in the association-list of the node that is found (see

section 2). Our key-comparison counts include these association-list comparisons.

The key-comparisons is therefore a measure of the total number of red-black-tree

nodes visited, plus the total number of association-list elements visited. Our theory

states that the expected total number of dictionary operations is O(n) and since

the red-black tree operations visit O(lg n) nodes, the total number of expected

key-comparisons is O(n lg n).

We measured the number of key-comparisons and floating-point operations for

https://doi.org/10.1017/S0956796801004087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004087

Persistent triangulations 453

all the distributions and for a range of input sizes up to 512K points. A graph

showing the operation counts as a function of size is given in figure 6 for two of the

distributions. A bar graph showing the operation counts for the five distributions

on 512K points is given in figure 7. The graphs show that the number of key-

comparisons is approximately the same as the number of floating-point operations

for the first three distributions in which all the points are on the sphere. For the

other two distributions in which some points are inside the ball, the number of

key-comparisons is significantly less than the number of floating-point operations

(by a factor of 30 for the InBall distribution and a factor of 10 for the BordHeavy

distribution). This is to be expected since the resulting hull is significantly smaller

than the size of the input, and the simplicial-complex operations are only used on

the simplices that are created, while plane-side tests are required on all the input

points.

We were also interested in actual running times of the simplicial complex code

since one might imagine that traversing a node of a tree is more expensive than a

floating-point operation. To be fair on this measure we wanted to compare times to a

well tuned existing implementation of three-dimensional Convex Hull. We therefore

selected the Minnesota Quickhull code (Barber et al., 1996). Since our code is

written in ML and the Minnesota code is written in C, we could not compare the

times directly. We also did not want to completely rewrite our code in C, or the

Minnesota code in ML. Instead we instrumented our code to dump out traces of all

the operations on the simplicial complex. We then wrote C code that simulates the

complex operations using balanced trees and linked lists. The idea is to get an sense

of how much time relative to the Quickhull code the persistent implementation of

the simplicial complex requires. The results are shown in figure 8. As can be seen,

the cost of the simplicial-complex operations is at most half the total cost of the

Minnesota code, and this is for a distribution, OnSphere, where the number of

operations on the complex is high. Since some of the cost of the Minnesota code is

dedicated to manipulating its representation of the simplicial complex (it would be

hard to separate this out) it is reasonably safe to conclude that using a persistent

dictionary in their code to manipulate the surface would incur less than a 50%

overhead, and for many distributions very much less.

5 Terrain modeling: experimental evaluation

One interesting real-world application of the convex hull algorithm is terrain mod-

eling (Garland & Heckbert, 1995). Terrain data is important to many real-world

applications, such as flight simulators. However, rendering a terrain at full resolution

is impractical for terrains of any significant size. Therefore, applications that rely on

terrain data require terrain models that approximate full terrains using substantially

fewer polygons.

Given a two-dimensional array of evenly spaced height samples from the full

terrain, a terrain modeling procedure computes a triangulation of the terrain that

minimizes the error between the actual sample values and the values given by

the triangulation. Moreover, the triangulation so determined, when projected onto

https://doi.org/10.1017/S0956796801004087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004087

454 G. Blelloch et al.

0

1

2

3

4

5

6

16K 32K 64K

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Problem size (points)

Minnesota Quickhull Time
Additional time for Simplicial Complex Ops

Fig. 8. Running time as a function of the input size for both Minnesota Quickhull and for

the C implementation of the dictionary operations. The distribution uses is OnSphere.

the plane, is required to have the Delaunay property5 (Berg et al., 1997), as such

triangulations have several desirable properties. However, since it is prohibitively

expensive to compute a triangulation that is actually optimal, heuristics are typically

employed that perform well in practice.

One such heuristic is the greedy insertion heuristic. The greedy insertion heuristic

starts by dividing the rectangle into two triangles, and initializes a priority queue

with one point from each triangle, the point having the greatest error between the

sample value and the value given by the triangle. The heuristic then builds the

triangulation incrementally, at each step obtaining the sample point with maximum

error from the priority queue and updating the Delaunay triangulation to include

that point.6 The priority queue is then updated to include the points of maximum

error for each new triangle. Typically, only a few triangles are created in each step,

resulting in only moderate rescanning of the terrain samples. This process is then

repeated until an acceptable maximum error is achieved.

We implemented this heuristic using our persistent triangulation package. Delau-

nay triangulations can be computed using a three-dimensional convex hull procedure

by projecting the points from the plane onto a paraboloid (the surface specified by

the equation z = x2+y2) and computing the convex hull of the projected points (Berg

et al., 1997), so the implementation was straightforward. To measure its performance,

we ran it on two sets of terrain sample data, one from the vicinity of Ozark, Missouri,

and the other from the west end of Crater Lake, Oregon. 1000-point triangulations

5 The Delaunay property specifies that no point lies within the circumcircle of any triangle of which it
is not a vertex, except in certain degenerate circumstances.

6 An alternative greedy heuristic, designed to avoid narrow triangles, is to add the circumcenter of the
triangle containing the point of maximum error, rather than the point of maximum error itself.

https://doi.org/10.1017/S0956796801004087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004087

Persistent triangulations 455

0
50

100
150

200
250

300
350

0

100

200

300

400

350

400

Fig. 9. 1000-point triangulation of Ozark.

0

50

100

150

200

250

300

0

100

200

300

400

1600

1800

2000

2200

2400

Fig. 10. 1000-point triangulation of Crater Lake.

of these two data sets are given in figures 9 and 10. As in the previous section, we

counted key-comparisons and floating-point operations for each run. The results

appear in figure 11 and show that the number of key comparisons is significantly

smaller than the number of floating-point operations, especially for the smaller sizes.

A Analysis of the Bulldozer algorithm

We give a detailed description and an analysis of the algorithms outlined in Section 3.

Define the Convex Closure of a set S , denoted CC(S), to be the smallest convex

set containing S , and the Convex Hull of S , denoted CH(S), to be the surface of

CC(S). Thus the convex closure of a finite set of points in three dimensions is a

https://doi.org/10.1017/S0956796801004087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004087

456 G. Blelloch et al.

2

4

6

8

10

12

14

16

1600 3200 6400 12800

N
um

be
r

of
 O

pe
ra

tio
ns

 (
m

ill
io

ns
)

Problem size (points)

key-comparisons (Ozark)
floating-point ops (Ozark)

key-comparisons (Crater Lake)
floating-point ops (Crater Lake)

Fig. 11. Operation counts as a function of input size.

three-dimensional polytope and its hull is a surface of two-dimensional polytopes. If

no four points are coplanar then the hull will consist of two-dimensional simplices

(triangles). If S is a set of points or points and an edge, let S(X) be the simplex

formed by the elements of the set X. For example, if p, q and r are points and e is

an edge, then S(pqr) is a triangle, while S(pqe) is a tetrahedron.

A.1 Algorithm

The bulldozer algorithm takes a set of points P = {p1, . . . , pn}, with the points

assigned in a random order. We assume that no four points are coplanar.

In three dimensions a point p is said to see a face F ∈ H , where H is a convex

figure, if and only if there exists a ray that begins at p and that enters H through

the interior of the face F . Note that if F is coplanar with p, p is not said to be able

to see F . If p can see F ∈ H , then F is said to be visible to p with respect to H . An

edge e adjacent to faces A and B is said to be a horizon edge of p iff exactly one of

A and B is visible to p. It is interesting to note that if e is an horizon edge of p in

H , then S(pe) is a face in CH(H ∪ {p}). (This will be proved later.) The definitions

for two dimensions are analogous.

For a given convex hull H = CH(P ′), where P ′ ⊂ P and a fixed interior point c,

define the associated face of a point p ∈ P as the face ofH penetrated by the ray ~cp. If

c is not coplanar with any three points of P, each point has a unique associated face.

It is clear that if a point p cannot see its associated face, then it is interior to the hull.

The first step in the algorithm is to let H = CH({p1, p2, p3, p4}), where for each

1 6 i 6 4, pi ∈ P. Let c be a fixed point interior to H. For every other point pi
(4 < i 6 n), let Fi be the associated face of pi with respect to H and c. For each

face, maintain a list of the points associated with that face. In addition, keep track

of the face associated with each point pi (4 < i 6 n) with respect to H .

https://doi.org/10.1017/S0956796801004087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004087

Persistent triangulations 457

The inductive hypotheses are:

1. H is the convex hull of {p1, p2, . . . , pk−1},
2. the associated face, if any, for each point pj (k 6 j 6 n) exterior to H is

known, and

3. for each point pj (k 6 j 6 n), either pj is interior to H or pj is in the list of its

associated face.

The incremental update associated with adding pk is composed of three logical

operations:

1. Remove the faces that pk can see.

2. For each horizon edge e of pk in H , add S(epk) to H .

3. For all points previously assigned to removed faces, determine in which list

they belong, if any. Update the points appropriately.

The algorithm performs all three operations simultaneously. The idea is to remove

a face once it is determined to be visible. The points that were associated with that

face are then ‘bulldozed’ across one of the edges of the face, creating new faces if

some of the edges of the current face are horizon edges.

A.1.1 The Walking Graph

In order to facilitate explaining the algorithm, we will first define the notion of a

walking graph.

Definition 1

The walking graph of a hull H , with a fixed interior point c, and an exterior point

p is a directed graph on the faces of H that are visible to p and the horizon edges

of p in H . Consider two visible faces A and B that share an edge e. There is an arc

from A to B in the walking graph if and only if the face S(ec) is visible to p with

respect to S(Bc). There is an arc from a visible face A to a horizon edge e if and

only if e is an edge of A.

This graph represents all the possible ‘bulldozing’ which may occur. Each point

currently associated with a visible face is pushed along the arcs of the walking graph

until either the point is determined to be interior to the new hull or the point arrives

at a horizon edge. The methodology for this bulldozing is described more precisely

below.

Theorem 2

If there is an arc between two adjacent faces, from face A to face B of a hull H ,

and they are both visible to p with respect to H , then the intersection of the planar

extension of A and ~cp is closer to c than the intersection of the planar extension of

B and ~cp.

https://doi.org/10.1017/S0956796801004087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004087

458 G. Blelloch et al.

c

p

B
A

Fig. A 1. Example of Theorem 2.

b

a
y

c

p

x q

Fig. A 2. Illustration of proof of Theorem 2.

Proof

Assume that there is an arc from A to B in the walking graph. Let e be the edge

in both A and B, and let q be the midpoint of e. Consider the plane P formed

by c, p, and q, and look at the intersections of the planar extensions of A and

B with this plane. Since q is on both planar extensions and on P , we know that

these intersections must be non-empty, so they must be lines; let a and b denote

these intersections. The intersections of A and B with P are segments along a and b

respectively, with q as an end point of both segments. Let x and y denote the other

end point of the intersections of A and B with P respectively. This arrangement is

illustrated in figure A 2.

Let H ′ denote the intersection of H and P . Since the intersection of two convex

figures is convex, H ′ must be convex. Moreover, a and b are bounding lines for H ′,
since A and B are bounding planes for H .

Since the edge c̄q is visible to p with respect to S(cqy), p is on the opposite side

of ~cq as y. This means that p and x must be on the same side of ~cq. However, since

https://doi.org/10.1017/S0956796801004087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004087

Persistent triangulations 459

Fig. A 3. Example of face projection definition.

c

q

e

p F
E

G

Fig. A 4. Figure for Theorem 3 projected to the plane containing p and c and

perpendicular to e.

b is a bounding line for H ′ and p is not within H ′, p and x must lie on opposite

sides of b. Therefore, the intersection of a and ~cp must also be on the same side of

b as c. Thus, the intersection of b with ~cp is closer to c than the intersection of a

with ~cp. q

It follows from Theorem 2 that the walking graph is acyclic. Moreover, for any

two adjacent visible faces A and B, there exists exactly one arc between them.

Theorem 3

Given a convex hull H , an interior point c, and an exterior point p, let P be a plane

perpendicular to ~cp. There is an arc from a visible face A to an adjacent visible face

B if and only if the shared edge e projected onto P is visible to the projection of p

with respect to the projection of B.

Proof

Let B ∈ H be a face visible to p, and let e be an edge of B. Let q be the vertex

of B such that q 6∈ e. Define P as above. Let E be the plane that contains e and c.

Let F the plane that contains e and is perpendicular to P . Let G be the plane that

contains e and p. Note that p and c are in the same half space bounded by F .

https://doi.org/10.1017/S0956796801004087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004087

460 G. Blelloch et al.

Assume there is an arc into B across the edge e. Then, by definition, p is in the

opposite half space as q with respect to E. Since p can see B, we know that q and c

are on the opposite sides of G. Examine figure A 4, a projection of the set of points

to the plane contain p̄c and perpendicular to e. These constraints imply that p and

q are on opposite sides of F , since c and q are on the same side of F . Thus, p can

see e of B when projected to P .

Assume that p is in the opposite half space of F as q. This is equivalent to saying

e is visible to p with respect to B, when all are projected to P . Since p can see B,

we know that q is on the opposite side of G as c. This gives us, as demonstrated

in figure A 4, that q is on the opposite side of E as G, so p can see the face S(e, c)

with respect to S(B, c). Clearly, the face A that shares e is visible, so there is an arc

from A to B across e. q

Note that if a face A which is visible to p with respect to H has an edge e such

that e is not visible to p when all are projected as described in Theorem 3, and if

there is no arc across e, then Theorem 3 shows that the face B sharing e is not

visible, so e is a horizon edge.

Let q denote a point that is exterior to H , and whose associated face in H is

visible to p.

Lemma 4

Given a hull H , a fixed interior point c, an exterior point p, and an exterior point

q, the associated face of q in H intersects the ray ~pq when both are projected to a

plane perpendicular to ~cp.

Proof

The ray ~cq projects to the same ray as ~pq in the plane. Since the intersection of ~cq

and the associated face must also lie on the ray’s projection, this means that this

point lies on the projection of ~cq. q

Definition 5

Given an exterior point q, draw a ray from p to q and project it to the P described

in Theorem 3. The walking path of q is defined as follows: start at the projection

of the associated face (which is on the projection of ~cp by Lemma 4) and proceed

to the next face out along the ray (which is along an arc by Theorem 3). Continue

until there is no next face, at which point a horizon edge has been reached. The

path generated is the walking path of q in the walking graph of H .

The fact that the planar extension of S(pcq) intersects all faces traversed by the

walking path of q in H follows directly from the definition.

Theorem 6

The face created by p and the horizon edge of the walking path of q is the associated

face of q in H ′ = CH(H ∪ {p}).
Proof

If the associated face of q in H ′ is a face from H , then its associated face in H must

be that same face, which contradicts the given. Thus, the associated face of q in H ′

https://doi.org/10.1017/S0956796801004087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004087

Persistent triangulations 461

must contain the point p. Project all of the faces of H ′ that contain p to a plane P

that is perpendicular to ~cp. The rays ~cq and ~pq coincide in P . Any ray that starts at

p can intersect only one face that contains p (at any point other than p), so this ray,

by definition, intersects the horizon edge of that face. Also, the projection of the

intersection of ~cq with H ′ must lie along the projection of ~pq, that only intersects

that same face. Thus, ~cq intersects H ′ in the face created by p and the horizon edge

of its walking path. q

Theorem 7

If a point q cannot see a face F in its walking path, then it cannot see its associated

face in H ′.

Proof

Let G be the walking graph for p in H , and let W be the walking path of q in G.

Let A be a face in W that q cannot see, and B be the next face. If no such face

exists, then the theorem trivially holds. Let P be the plane defined by p, q and c, and

examine the intersection of H and P . Since A and B are in the walking graph, they

must have a non-zero intersection with this plane. Since A and B are in the walking

graph, q must be on the same side of the intersection of the plane S(c, e) and P as

p is. By Theorem 2, however, the intersection of A is closer to c than B is. Thus, a

point may be above A but not above B, but not the reverse (see figure A 2). Thus, q

must be able to see the intersection of B and P , and thus B itself. Thus, if a point

cannot see a face F in its walking path, then it cannot see any face past that face in

the walking path. A similar argument shows that if a point cannot see the last face

in its walking graph then it cannot see its associated face, since the associated face’s

intersection with ~cp is at p, which must be above the ray’s intersection with the last

face in the walking path. q

A.1.2 Iterative algorithm

Adding an interior point is simple, as it does not affect the hull, so the inductive

hypotheses are maintained. To add an exterior point pk and maintain the inductive

hypotheses, start with the associated face F in H of pk . For each point q 6= pk
associated with F , project it to a plane P perpendicular to c, and determine which

of the edges is penetrated by ~pq. Delete F from the complex. For each adjacent face

G, recur into G, passing the set of points whose rays penetrated the shared edge

along with the shared edge e.

The recursive call includes a set of points S , a face F and an edge e. For each

recursive step, determine if F is visible to p. If it is not, then add the face created

from e and p to the complex. Test each of the points from S , and associate them

with the new face if they can see it. If they cannot see it, discard them as interior to

the hull.

If F is visible to p with respect to H , first throw away any points from the

recursive call which cannot see F . For each edge e ∈ F , determine if p can seeS(c, e)

with respect to S(F, e). If any other edges are, and the face across that edge is still

a member of the complex, add the set S to the set of points associated with F and

https://doi.org/10.1017/S0956796801004087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004087

462 G. Blelloch et al.

return. Otherwise, for each point q, determine which of the edges is penetrated by

the ray ~pq, projecting the entire system to the plane P . For each non-empty set,

make recursive calls with the appropriate set of points, the edge, and the other face

from the simplex which contains that edge.

A.2 Analysis

We will first show that the algorithm is correct, and then look at its asymptotic

behavior.

A.2.1 Correctness

The proof of correctness hinges on maintaining of the induction hypotheses:

1. Hk is the convex hull of {p1, p2, . . . , pk}.
2. Every point pi (k < i 6 n) is associated with the appropriate face if it is

exterior to Hk , and marked as interior otherwise.

Lemma 8

CH(S ∪ {p}) = CH(S) ∪T \ V , where V is the set of faces that p can see in CH(S),

and T is the set of faces constructed from horizon edges of CH(S) and p.

Proof

Let F ∈ V ⊂ CH(S). Let HF be the half space bounded by F that contains S . Since

p 6∈ HF , by the definition of visible, F 6∈ CH(S ∪ {p}).
Suppose F 6∈ V and F ∈ CH(S). Since p ∈ HF and S ∪ {p} ∈ HF , so F ∈

CH(S ∪ {p}).
Otherwise, F ∈ T and F 6∈ CH(S). Let A and B be the faces whose intersection

is the horizon edge F contains. As S ∈ HA and S ∈ HB , S ∈ HA ∩HB ⊂ HF . Thus,

F ∈ CH(S ∪ {p}).
Let F ∈ CH(S∪{p}) but F 6∈ T and F 6∈ CH(S). Clearly, p ∈ F , so let e be the edge

from F that does not contain p. Let a and b be the vertex of A and B respectively

that is not an endpoint of e. Then a ∈ CH(S), since otherwise a 6∈ CH(S ∪ {p}),
because a 6= p. Similarly, b ∈ CH(S). If āb 6∈ CH(S), then āb intersects the interior

of CH(S), and thus the interior of CH(S ∪ {p}), so āb ∈ CH(S). If āb is not visible

to p in CH(S), then p̄a penetrates the interior of CH(S), and thus the interior of

CH(S ∪ {a, b}) Thus, e = āb is visible, so one of the faces that share e is visible to

p. If only one face is visible, then e is a horizon edge, and F ∈ T , thus both must

be visible. Let A and B be the faces that share e, and a and b the points of A and

B respectively that are not endpoints of e. Since both A and B are visible, a and b

must be on opposite sides of F , which means that F 6∈ CH(S). q

Lemma 9

For any hull H , interior point c, and exterior point p, all faces visible to p are

reachable from the associated face of p in the walking graph of H .

https://doi.org/10.1017/S0956796801004087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004087

Persistent triangulations 463

Proof

As all faces for the associated face of p have positive in-degree and the graph is

acyclic, it is sufficient to prove that the graph is weakly connected. As the convex

hull is a simple closed polygon, the set of adjacent nodes to any given node is a

simple cycle. Thus, the set of boundary edges forms a simple cycle, so the set of

faces must be connected. q

Theorem 10

If Hk is the convex hull of {p1, p2, . . . , pk} and the associated face for pk is known,

then the bulldozing algorithm produces Hk+1, the convex hull of {p1, p2, . . . , pk+1}.
Proof

Lemma 8 implies that the insert/delete process produces the correct convex hull.

Lemma 9 implies that the walking methodology visits the entire walking graph, so

the insert/delete process is finished. q

This shows that the convex hull is maintained, and Theorems 6 and 7 demonstrate

that the associations are kept correctly. It follows that the induction hypotheses are

maintained by the iterative steps, which establishes correctness of the algorithm.

A.2.2 Asymptotics

The initialization can be done in O(n) operations by enumerating all the faces and

determining which face ~cpi intersects for 4 < i 6 n. When adding pk to the hull

Hk , each light face is visited exactly once. Determining the in-degree and out-degree

of that face in the walking graph takes O(1) time. Each point q associated with

a deleted face of Hk requires the associated face in Hk+1 to be computed. q may

be associated with every face of Hk that both it and pk can see in the course of

the update step, but it will never be associated with the same one twice. The cost

of ensuring that the point q can see its associated face is subsumed by the cost of

walking it out. Determining if a point can see a face on its walking path take O(1)

time, and determining which edge is penetrated by the projection of ~pq also takes

O(1) time. Thus, for each face F ∈ Hk and point q such that F is visible to both pk
and q, and q’s associated face is visible to p, the algorithm takes O(1) time.

For a given convex hull H , a point p dominates a point q ∈ H if p̄q ∩H = {q}. A

point p strongly dominates q if q 6∈ CH(H ∪ {p}). A point p weakly dominates q if it

dominates q but does not strongly dominate it.

Theorem 11

The expected number of faces inserted by the inclusion of pk+1 is at most six.

Proof

Instead of counting the number of visible faces, consider the number of visible

points. Let y be the number of points pk+1 weakly dominates in Hk . This is equal

to the number of faces inserted by pk+1’s inclusion.

In order to determine the expected values of x and y, define G to be a digraph

such that:

https://doi.org/10.1017/S0956796801004087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004087

464 G. Blelloch et al.

1. The vertices of the digraph are points of P.

2. All arcs are labeled with a set S ⊂ P such that ‖S‖ = k.

3. There is one arc from p to q with label S if and only if p ∈ S and p̄q ∈
CH(S ∪ {p}).

The expected number of faces inserted is equal to the the expected number of

out-arcs that a point p 6∈ S has with label S .

Relabel the graph as follows: If there is an arc from p to q with label S , relabel

that arc with S ∪ {p}. Thus, there is one arc from p to q if and only if p, q ∈ S , and

p̄q ∈ CH(S). For any q, if q 6∈ S , then its degree is 0. If q ∈ S , then either q ∈ CH(S)

or q 6∈ CH(S). The average degree of q ∈ S is 6 by Euclid’s formula (since all

faces have exactly three edges). If q 6∈ CH(S), then q has degree 0. Therefore, the

maximum in-degree of such a q is 6. Thus, the average in-degree of any q ∈ S is

less than 6.

Since the number of labels is
(
n
k+1

)
, and the number of arcs per label is less than

6(k + 1), the number of arcs is less than 6(k + 1)
(
n
k+1

)
= 6(n − k)(n

k

)
. Then, for a

random labeling S (‖S‖ = k) and point p, the expected out-degree of p with label S

is less than 6(n−k)
n
6 6. It follows that the expected number of faces inserted at each

step is less than 6. q

A pair of points p, q is said to weakly dominate a point x ∈ H if p and q both

dominate x and at least one of them weakly dominates x. The pair p, q strongly

dominates x if both p and q strongly dominate x.

Theorem 12

The expected number of pairs of faces F and points q such that (1) q is associated

with a face of Hk that p can see, and (2) both q and p can see F , is O(n
k
).

Proof

Instead of counting the number of faces that an arbitrary point p and q can see,

examine the number of points that p and q can see. By Euler’s formula, the number

of faces is linear in the number of points, so proving that this expectation is O(n
k
)

is sufficient. Instead of computing the expectation, count the total number of sets

S and points p, q and x such that S ⊂ P, ‖S‖ = k, x ∈ S , p, q 6∈ S , both p and q

can see x in CH(S), and q’s associated face in CH(S) is visible to p. By a simple

relabeling, this is the same as the number of sets S and points p, q, x such that

S ⊂ P, ‖S‖ = k + 2, x, p, q ∈ S , both p and q can see x in CH(S \ {p, q}), and q’s

associated face in CH(S \ {p, q}) is visible to p.

If p and q can both see any face of CH(S \ {p, q}), and p, q ∈ CH(S), then

p̄q ∈ CH(S), then both p and q lie entirely in the half space bounded by the face

both can see, which is convex, so p̄q lies entirely outside CC(S \ {p, q}).
Assume p ∈ CH(S). This may result in an undercount that is off by at most a

factor of 2. There are thus the following cases:

1. q̄x 6∈ CH(S)

Let A = CH(S \ {p}) \ CH(S). By Euler’s formula, ‖A‖ = O(dp + ep), where

dp is the degree of p in CH(S) and ep is the number of points CH(S \ {p}),

https://doi.org/10.1017/S0956796801004087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004087

Persistent triangulations 465

but not in CH(S). Since q̄x 6∈ CH(S \ {p}), q̄x ∈ A. The sum of the degrees in

CH(S) is O(k), again by Euler. For any point y 6∈ CH(S), there are at most 3

points whose deletion may expose y. Thus, the sum of ep is O(k). Therefore,

the total number of triplets p, q, x of this form is O(k).

2. q̄x ∈ CH(S)

(a) p̄x ∈ CH(S)

This means that S(pqx) ∈ CH(S). There are O(k) such triangles in CH(S),

so there are O(k) such triplets.

(b) p̄x 6∈ CH(S)

Swapping p and q around yields a triple p′, q′, x such that p′ ∈ CH(S) and

q̄′x 6∈ CH(S). It has already been shown that there are O(k) such triples

for any S .

Thus, the total for each case is O(k). This means the total number of triplet/set

pairs is O
((

n
k

)
(n−k)2

k

)
, as

(
n
k+2

)
= (n−k−1)(n−k−2)

(k+1)(k+2)

(
n
k

)
. Thus, the expected number of

pairs q, x for a random S and a random p 6∈ S is O
((

n
k

)
(n−k)2

k
1

(n−k)(nk)
)

= O(n
k
). q

Acknowledgements

We thank Chris Okasaki for his red-black tree library, which we used in our

implementation of simplices.

References

Alexandroff, P. (1961) Elementary concepts of topology. New York: Dover.

Barber, C. B., Dobkin, D. P. and Huhdanpaa, H. T. (1996) The quickhull algorithm for convex

hulls. Acm Trans. Mathematical Software, 22(4), 469–483.

Bayer, R. (1972) Symmetric binary B-trees: Data structure and maintenance algorithms. Acta

Informatica, 1, 290–306.

Berg, M. De, Kreveld, M. Van, Overmars, M. and Schwartskopf, O. (1997) Computational

geometry: Algorithms and applications. Springer-Verlag.

Blelloch, G. E. (1996) Programming parallel algorithms. Comm. ACM, 39(3), 85–97.

Burch, H., Miller, G. and Walkington, N. (2000) Computing the convex hull in a functional lan-

guage. Technical report CMU–CS–00–115, Carnegie Mellon University, Computer Science

Department.

Chazelle, B. (1991) An optimal convex hull algorithm and new results on cuttings. Focs,

pp. 29–38. Thirty-Second Annual IEEE Symposium on Foundations of Computer Science.

Clarkson, K. L. and Shor, P. W. (1989) Applications of random sampling in computational

geometry. Discrete & Computational Gometry, 4, 387–421.

Dietz, P. F. (1989) Fully persistent arrays. Workshop on algorithms and data structures: Lecture

Notes in Computer Science 382, pp. 67–74. Springer-Verlag.

Driscoll, J. R., Sarnak, N., Sleator, D. D. and Tarjan, R. E. (1989) Making data structures

persistent. J. Computer & System Sci. 38(1), 86–124.

Garland, M. and Heckbert, P. (1995) Fast polygonal approximation of terrains and height

fields. Technical report CMU-CS-95-181, Computer Science Department, Carnegie Mellon

University.

https://doi.org/10.1017/S0956796801004087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004087

466 G. Blelloch et al.

Giblin, P. J. (1977) Graphs, Surfaces, and Homology. Chapman & Hall, London.

Guibas, L. and Stolfi, J. (1985) Primitives for the manipulation of general subdivisions and

the computation of Voronoi diagrams. ACM Trans. Graphics, 4(2), 74–123.

Milner, R., Tofte, M., Harper, R. and MacQueen, D. (1997) The Definition of Standard ML

(revised). MIT Press.

Motwani, R. and Raghavan, P. (1995) Randomized Algorithms. Cambridge University Press.

Myers, E. W. (1984) Efficient applicative data structures. Proceedings of the 11th ACM Sym-

posium on Principles of Programming Languages, pp. 66–75.

Okasaki, C. (1998) Purely Functional Data Structures. Cambridge: Cambridge University

Press.

O’Neill, M. E. and Burton, F. W. (1997) A new method for functional arrays. J. Functional

Programming, 1(1), 1–14.

Ruppert, J. (1995) A Delaunay refinement algorithm for quality 2-dimensional mesh genera-

tion. J. Algorithms, 18(3), 548–585.

https://doi.org/10.1017/S0956796801004087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004087

