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Abstract. Let V be a regular semigroup and an ideal extension of a semigroup § by
a semigroup Q. Congruences on V can be represented by triples of the form (o, P, 1),
here called admissible, where ¢ is a congruence on S, P is an ideal of Q and 7 is a
O-restricted congruence on Q/P satisfying certain conditions. We characterize the trace
relation T on V in terms of admissible triples. When the extension V of S is strict, for a
congruence v on V given in terms of an admissible triple, we characterize v, v, v, and
vT again in terms of admissible triples.

1. Introduction and summary. Let § be a regular semigroup and 4(S) be its
congruence lattice. For p € €(S), the kernel (respectively, trace) of p is the set of all
elements of S p-related to idempotents (respectively, the restriction of p to idempotents
of §). The relation on %(S) which identifies congruences on S with the same kernel
(respectively, trace) is the kernel relation K (respectively, the trace relation T') for S. The
classes of these (equivalence) relations are intervals and it is convenient to introduce the
notation pK =[pg, p¥] and p” =[ps, p”] for the respective classes of p € 6(S). Then

"p—px and p— pX are the kernel operators and p— p; and p—p” are the trace
operators. The nature of these operators furnishes valuable information concerning both
congruences on S and the congruence lattice 6(S).

Now let V be a regular semigroup with an ideal S. Then V is an (ideal) extension of S
by Q =V/S, where the latter is the Rees quotient semigroup. We may set V =SU Q*
where Q* = Q\{0}. In such a case, both S and Q are regular semigroups so the above
analysis can be applied to §, Q and V. The problem is to reduce this analysis for V to
those for § and Q. As a first step, we must express the congruences on V in terms of §
and Q, and if possible, in terms of €(S) and €(Q). In the present setting, this problem
was solved in [3] as follows. Each congruence on V is expressed in terms of an
(admissible) triple (o, P, 1), where o € 6(S), P is an ideal of Q and 7 is a O-restricted
congruence on Q/P, satisfying certain conditions.

Representing the congruences on V in terms of triples as above, we may ask whether
the relations K and T on (V) can be expressed by means of the same relations on €(S)
and €(Q). We may go one step further by asking for v, v*, v7, v7 for a congruence v
on V expressed in terms of a triple. The first task is easy: expressing the kernel and the
trace. However, the problem of characterizing K on €(V) does not seem to admit a
convenient solution, whereas T admits a simple expression. The problem with the kernel
and the trace operators in this generality does not seem amenable to a successful
treatment.

In order to make some progress in this context, we restrict our attention to the
special case when V is a strict (or retract) extension of § and in various situations add
further restrictions. For strict extensions, we are able to characterize vy, v*, vy and v’

Section 2 contains some terminology, notation, background material and preliminary
results. The relation T on €(V) is characterized in Section 3. In the remaining part of the
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paper, we assume that V is a strict extension of S. For a congruence v on V given by
means of an admissible triple, we calculate v; and v in Section 4 and v and v in
Section 5 again in terms of admissible triples.

2. Preliminaries. In addition to the standard terminology and notation, which can
be found, for example, in [1], we state explicitly the following nomenclature and
symbolism.

Let X be a set. The equality relation on X is denoted by ey or simply by €. The
universal relation on X is denoted by wy. The restriction of a function or a relation 6 to
X is denoted by 6|x. If 6 is an equivalence relation on X and x € X, then x6 denotes the
0-class containing x. If also A € X, then

A0 ={xe€X |x6a for some ae A}

is the saturation of A by 6; if A@ =A, then 0 saturates A. If Y is also a set, then
X\Y={xeX |x¢ Y}.

Let R be a semigroup. If A = R, then E(A) denotes the set of all idempotents in A. If
R has an identity, then R' = R otherwise R' stands for R with an identity adjoined. The
congruence lattice of R is denoted by 4(R). Assume that R has a zero. If A c R, then
A* = A\{0}. An equivalence relation 8 on R is O-restricted if {0} is a 6-class; the set of all
O-restricted congruences on R is denoted by 4,(R). Further, R is categorical at zero if for
any a,b,ceR, ab+#0 and bc #0 imply abc #0.

If 6 is a relation on R, then 8* denotes the congruence on R generated by 6. If 6 is
an equivalence relation on R, then 6" denotes the greatest congruence on R contained in
0; explicitly

a6°b if xayOxby for all x,y € R'.

If A< Q, let 6 be the equivalence relation on R whose classes are A and Q\A (whichever
one is nonempty), then x4 = 8" is the principal congruence relative to A; explicitly

arn b if (xay e Ao xby € A for all x,y e RY).

In fact, 7, is the greatest congruence p on R which saturates A. We shall sometimes write
x % for emphasis. If R has a zero, then { = 7, is the greatest O-restricted congruence on
R. If I is an ideal of R, then R/I denotes the Rees quotient semigroup of R relative to I; as
a set R/I=(R\I)U {0}.

Let R be a regular semigroup, that is for every a € R there exists x € R such that
a =axa. Let p € €(R). Then

kerp ={aeR |ape for some e€ E(R)}, trp=p|gr, .

are the kernel and the trace of p, respectively. They induce a complete A-congruence K
and a complete congruence T on €(R) by

AKp if ker A =ker p, ATpiftrA=trp,
respectively. The K- and T-classes are intervals, so we use the notation

oK =[px.p*}.  pT=[p7,p"].
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Lemma 2.1. ([2], Theorem 3.2). Let R be a regular semigroup and p € €(R). Then
pK={(x7x2)|XEkerp}*’ pK=nkcrp- D

We say that p is idempotent pure if ker p = E(S).
LeEmMA 2.2. ([2], Theorem 3.2). Let R be a regular semigroup, p e 4(R), 6 =trp
and denote by juxtaposition the product of binary relations. Then

pr=0%  p’=(LOLOL N ROROR). O

Throughout the paper we fix the following notation: V is a regular semigroup and an
(ideal) extension of S by Q. Hence S is an ideal of V, the Rees quotient V /S = Q, where
we set V =S5 U Q%; in addition, both $ and Q are regular semigroups.

From ([3, Corollary 1 to Theorem 1]) we deduce the following description of
congruences on V. Let o € €(S), P be an ideal of Q and 1 € 4,(Q) satisfy the following
conditions:

(i) a,b e Q\P, atb, xay > axoby, xaoyb,

(ii) for every a € P* there exists a' € § such that x € S > axoa'x, xaoxa’.

In such a case, we say that a and a' are g-linked, call (o, P, t) an admissible triple and
define a relation v on V by

-

atb if a,beQ\P,
a'ob’ if a,beP*,
avb& ca'ob if aeP*, bes,
aob' if aeS,beP*
Lacb if a,beSs,

where a, a’ and b, b’ are o-linked. Then v is a congruence on V and, conversely, every
congruence on V has this form. According to ([4, Corollary 3.2}), this representation is
unique.

The notation v=%€(o, P, t) will always denote the above congruence implicitly
implying that (o, P, 1) is an admissible triple.
In fact, given v € €(V), the admissible triple for v is (o, P, t), where

o=v|s, P={aeQ*|avb for some beS}U {0},
atb&a, b e Q\P, avb, and 0710.

Note that if a, a' are o-linked and o c ¢’ for ¢’ € €(S), then a, a’ are also ¢’-linked.
We shall need the following criterion for inclusion of congruences on V.

Lemma 2.3. ([4, Lemma 3.1]). Let v,=%€(0;, P, t;) for i=1,2. Then v\c v, if and
only if 0, c 05, P, c Py, T, saturates P,\P, and r.|Q\p: c rz|Q\,,3. O

LEmMA 2.4. Let v=€(0, P, ). Then

kerv=kera U {ae P*|a’' ekero for some a’' €S o-linked 10 a} U (ker 7)*.

Proof. Let aeV. For a€ S, clearly a e ker v if and only if a € ker . Similarly, for
a € Q\P, clearly a € ker v if and only if a e ker 7.
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Next let a € P*. Assume first that a € ker v. Then ave for some ¢ € E(V) and we must
have e € E(S U P*). Let a’ be an element of § o-linked to a. Then a’ve and a’'v N S is an
idempotent o-class and thus must contain an idempotent, say f. Then a'cf so that
a’' e ker g. Conversely, suppose that a’ € ker o for some a’ € § o-linked to a. Then a’ce
for some e € E(S) and thus ava’ve so thataekerv. O

A mapping ¢ :Q*— S is a partial homomorphism if for any a,be Q*, ab#0 in Q
implies (ab)@ = (a@)(be). If in addition,
(ap)b if aeQ* bes,
ab=43 a(bp) if aeS,beQ*,
(ap)(bep) if a,beQ* abes,
then the multiplication in V is determined by @ and V is a strict extension of §.
Starting with Section 4, we assume that V is a strict extension of S, where the

multiplication is determined by the partial homomorphism @:Q*—S. The mapping

Y =@ U g is a retraction of V onto S, where i is the identity mapping on S. If 1€ V' and
1¢V, we write lg=1y=1€eS".
In such a case, we have the following important simplification.

Lemma 2.5. ([3, Proposition 2]). Let V be a strict extension of S, where the
multiplication is determined by a partial homomorphism ¢ :Q*—S. Let o € 6(S), P be an
ideal of Q and t € 6,(Q/P). Then (o, P, t) is an admissible triple if and only if

a,beQ\P,ath >apobep. 0O

LemMa 2.6. Let V be a strict extension of S, where the multiplication is determined by
a partial homomorphism @ :Q*— S. Let v=%€(0, P, 1). Then

kerv=ker o U {a € P*|ag e ker o} U (ker 7)*.

Proof. This is a direct consequence of Lemma 2.4. [

3. The trace relation. A technical lemma is needed here in order to characterize
the relation T on €(V) in terms of T on 4(S) and €(Q/P), where P is an ideal of Q.

Lemma 3.1. Let v;=%(0;,0,€) fori=1,2,0,To,, and e € E(Q*). Then there exist
e, e, € E(S) such that e\v,ev,e, and ¢,0, A 05e;.

Proof. Leti=1,2. Since ev; N § is an idempotent o;-class, it contains an idempotent,
e; say. Clearly e,v,ev,e,; we shall show that e,0, A 0,¢,. First let u; be an inverse of ee;
and let g; = ee;u;e. Then

2 _ _ —
gi = (eeju;ee;)ue = ee;u;e = g; € E(S),
8 = ee;uev;eeuee; = eeve;,

so that g;<e and g;vie, i =1,2. Here < is the natural partial order on the idempotents.
Now ev,g, implies g, = g,ev,g,8, and g, = eg,v,g,g, so that

£1028182028281- (1)
Interchanging the roles of g,, g, and o,, 0,, we obtain
£201828101818>- 2
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Let v be an inverse of g,g, and let & = g g,vg,. Then h € E(S) and we get

h = g182V81028182V8182 = §182028.1-
Hence g,0,h and the hypothesis implies that g,0,h. Together with (2), this gives
81018182V8,0,82v8, Whence -
81018281 (3)
Similarly, we let w be an inverse g,g, and ¢t =g ,wg,g,. Then t € E(S) and by (1), we
obtain
[=81Wg2810:8:81W8281 = £2810281.
Hence g,0,t and the hypothesis implies that g,0,t. Together with (2), this gives
£10.8\Wg28,0,8,wg-> whence g,0,8,8-. This together with (1) and (3) yields
8101 A 02818201 A 028281 4)

Now interchanging the roles of g,, g, and o,, 0, we obtain

8201 N 02828101 A 028,182

which together with (4) yields
8101 A 0y83. (5)

We have seen above that e;v,ev,g; so that e;,0,g; for i =1,2. The hypothesis implies
that e,0,g, gives €,0,g, and e,0,¢, gives e,0,g,. This together with (5) finally yields

€101 AN 028101 AN G28,0, A 08,

so that e,0, A 0,¢e,, as required. O
We are now ready for the relation T.

THeorREM 3.2. Let v,=%6(0;, P, ;) for i=1,2. Then
VITV2©0|T02, P|=P2, ‘L',TTZ.

Proof. (a)=>. If e,f € E(S) are such that eo,f, then ev,f so by hypothesis ev,f
whence eo,f. Therefore tr o, ¢ tr 0, and by symmetry, 0,7T0,.

Let e € E(P,\P,). Then ev, N § is an idempotent o,-class so it contains an idempotent,
f say. Hence ev, f which by hypothesis implies that ev,f which is impossible since e ¢ P;
and v, saturates S U P3. Therefore E(P\P,) = . If a € P\P,, then for any inverse a’ of
a, we have aa’ € P\\P, which we have just seen to be impossible. Thus P\P, = that is
P, ¢ B,. The equality P, = P, now follows by symmetry.

If e,f € E(T\P) are such that er,f, then ev,f so by hypothesis ev,f whence ez, f.
Therefore tr T, < tr T, and by symmetry, 7, TT,.

(b)&. Lete,fe E(V) be such that ev, f. If e, f € S, then 0,70, implies that ev,f,
and if e, f € Q\P, then 7,Tt, implies that ev,f. Consider the case e, f € Pf. By Lemma
3.1, there exist e, e, f;, f- € E(S) such that

€,V evies, fivifvaha, ev,f }

€10, A 0263, fioy A 0y f>.

(6)
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Consequently e, v ev, fv, f; so that e,0, f; which by hypothesis gives e,0,f whence

ev26:0,€,0,f,0, 5V, f

and thus ev,f.

By symmetry, it remains to consider the case e € P}, f € S. With the above notation,
we have e,v,ev, f so that e,o, f which by hypothesis gives e,0,f where ev,e,0,e, f and thus
ev,f.

Therefore in all cases ev,f which proves that tr v, c tr v, and by symmetry equality
prevails. Consequently v, Tv,. O

It would be natural to attempt to characterize v;-and v in terms of admissible triples
when v itself is given in this form. In this generality, this does not seem feasible. We limit
ourselves to the following special case.

CoRrOLLARY 3.3. Let v=%(0,Q,€). Thenv' =(o",Q, €).

Proof. Since (o, Q, €) is an admissible triple, so is (67, O, €). Let 6 =€6(a”, Q, ¢€).
By Theorem 3.2, we have vT6. Next let v' =%(o', P', ') be such that v'Tv. By
Theorem 3.2, we get 0'To, P=Q and t'=¢. Hence o' c o’ which by Lemma 2.3
implies that v’ ¢ 6. This proves the required maximality of 6. O

A similar analysis for the kernel relation is not possible because of the fact that a
situation of the form €(o, P, T)K6(o’, P', t') with P # P’ is possible. We limit ourselves
only to the analogue of Corollary 3.3 for the kernel.

ProposITION 3.4. Let v=€(0, Q, €). Then v* =€(c*, Q, ¢).

Proof. Since (0, Q, €) is an admissible triple so is (6%, Q, €). Let 8 = €(d*, 0, €).
By Lemma 2.4, we have

kerv=keroU {ae Q*|a’ ekero for some a’ € S o-linked to a}, )]

ker 8 =ker 6* U {a e Q* | a" e ker o* for some a" € S o*-linked to a}, (8)

where ker o =ker o*. If ae Q* and a’ e ker o are o-linked, they are also o*-linked so
that (7) is contained in (8). Conversely, let a € Q* and a” € ker 0 be o”-linked. Then for
all x € S, we have axo®a"x and xao*xa”. Now let a’ € S be such that a, a' are o-linked.
Then for all x € S, we have axoa’x and xaoxa’ which implies that also axo®a’x and
xao®xa'. 1t follows that a’xo*a"x and xa’'c*xa" for all x € S. Recall that a semigroup T is
weakly reductive if for any a,b € T, xa = xb and ax = bx for all x € T implies that a = b.
Weak reductivity of S/o* gives that a’'o*a”. Since a”eker o, we must have that
a' e ker o* = ker 0. Therefore (8) is contained in (7) and equality prevails so that vK®.
Next let v/ = €(o’, P', ") be such that v'Kv. By Lemma 2.4 we have an expression
for ker v’ analogous to that for ker v in (7) which implies that ker o’ = ker ¢. It follows
that 0'Ko and thus o’ c 0. The remaining three conditions in Lemma 2.3 are trivially

satisfied which gives that v’ < 6 which establishes the required maximality of 6. O
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4. The lower and upper ends of trace classes. We reiterate first that henceforth V is
a strict extension of S, where the multiplication is determined by a partial homomorphism
@:0*—S. This will not be stated explicitly. Besides characterizing the ends, we include
several consequences of these results.

THEOREM 4.1. Let v =%(0, P, 1). Then vy = €(o+, P, 14).

Proof. In view of Theorem 3.2, it suffices to show that (o, P, 77) is an admissible
triple.

Let n =tro and 6 =tr . By Lemma 2.2, we have o, =7n* and 1= 0%, the first of
these taken within S and the second one within Q/P. Let at;b for a, b € Q\P. Then there
is a sequence

a=xiey,, Xifivi=xey,. .. x,fiy.=b )

for some x;,y;, € (Q/P)" and e0f,, i=1,2,...,n. Since 1 is O-restricted and 7, 7, we
have that 7, is O-restricted. In the above sequence, we have

arex, fiyitrxafoys . .. Trb

which together with @ #0 in Q/P implies that all these elements are nonzero in Q/P. We
may thus apply @ to the sequence (9) thereby obtaining

a@ = (x,@)(e,@)(n®). x1@)[ie)(1P) = (x20)(€20)(y29) - . . (x,@)(f,@) (V@) = b

with x,¢, y;@ € S'. In addition e;zf; implies that e;paf.g by Lemma 2.5 so that e;pnf.
Since o, =n* by Lemma 2.2, we get aporbp. By Lemma 2.5, (o7, P,ty) is an
admissible triple and therefore vy = €(or, P, 7). O

THEOREM 4.2. Let v=%(0,P,t). Then v =€(0", P, 1" N &) where
aéb if a,beQ\P, apa’be, 060.

Proof. Let vI = %(o’, , ) where the blanks stand for entries to be determined. By
Theorem 3.2, 0To’ and thus o' = o”. Let ao™. Then for 8 =tr o, by Lemma 2.2, we
have

a(LOLOL N ROROR) b
within § and thus for every x,y € §',
xayL0L0L N RORORxby.
Let 6’ =trv. Then 6 = 0'|s and for any x,y e V',
(x9)a(yp)LO' L0’ L Y RO'RE' R(xw)b(yw)
and thus, for any x,y e V',
xay£0'£0'LNRO' RO’ Rxby

so that a(£0'¥0'LNRO'RO'R)’b within V. Therefore av’b whence aa’b.
Consequently 0" c o' and equality prevails. From Theorem 3.2 we get that v’ =
€(o7, P, ) where the blank stands for the entry to be determined.
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Clearly & is an equivalence relation on Q/P. The set Ot is an ideal of Q. If it
contains a nonzero element, it also contains a nonzero idempotent, say e. But then et’0
so that et0, which contradicts the hypothesis that 7 is O-restricted.

Hence also 77 is O-restricted. Set =77 N &. Next let a, b € Q\P be such that anb
and let c € Q\P. If ac#0 in Q/P, then act”bc implies bc #0 and adb gives (ac)p =
(a@)(cp)aT (be)(ce) = (bc)g so that acdbe. If ac =0 in Q/P, then act”bc implies bc = 0.
Therefore acnbc in all cases; similarly cancb which proves that 7 is a congruence on Q/P.
Trivially 5 is O-restricted. By Lemma 2.5, we conclude that (¢, P, n) is an admissible
triple; let £=€(a’, P, ).

If e,f € E(Q\P) are such that etf, then by Lemma 2.5 we have epofe whence
epa'f. It follows that tr T c tr(z” N &) = tr . Conversely, trivially trp ctrt’ =tr 7 and
thus tr ¢ = tr . Therefore TTn which by Theorem 3.2 implies that vTE.

Finally, let v’ =%€(o', P', ') be such that v'Tv. By Theorem 3.2, we get o'To,
P'=P and 7'Tr. Hence 0’ <o and t' c t”. If a, b € Q\P are such that at’b, then by
Lemma 2.5 we have apo’'bg whence apo”b@ so that agb. Therefore T’ < & which implies

that 7' < n. Now Lemma 2.3 implies that v’ < § which establishes the desired maximality
of§&. O

In the next consequence of the above theorem we have a case in which & in the
theorem may be omitted.

CoroLLARY 4.3. Let v=%(o, P, 1) and assume that ¢ maps Q\P onto S. Then
vi=4(",P,1").

Proof. In view of Theorem 4.2, it suffices to prove that 17 < . Hence let at’b,
@ =trt and n =tr 0. By Lemma 2.2, for any x,y € (Q/P)", we have
xayF0L0L N RORORxby
so that
xay<LeOfLgOhLxby,  xayRe'Of' Rg'Oh' Rxby (10)

for some e, f, g, h,e', f', g', h' € E(Q/P). Since ¥, ® and 6 are O-restricted, we have
xay #0 if and only if xby #0. Now assuming that xay #0, we may apply ¢ to the
sequences in (10) so that by Lemma 2.5, writing 1¢ = 1, we obtain

(x@)ap)(yp)ZepnfoLgpnheL(xp)(be)(ye),

(x@)ap)(yp)Re' onf eRg' enh' eR(x@)(be)(y)
and thus

(x@)(a@)(y@)EnEnL N AnRnR(x@)(be)(ye).

Since this holds for all x,y e (Q\P)U {1} and ¢ maps Q\P onto S, we conclude that
ap(LnEnE N RAnR)’be so that by Lemma 2.2 apo’bg and thus agb. O

The next result provides a copy of the trace class of a congruence on V expressed by
means of an admissible triple.

CoRrOLLARY 4.4. Denote by AT the set of all admissible triples and, for (o, P, T)€
AT, let

(0,P, )T ={(0',P', ") e AT | €(c', P', T")T%(a, P, 7)).
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Then, for any (o, P, t)e AT, we have
(0,P, )T =([07, 0" X {P} x[t7,T" NE)) N AT. (11)
Proof. Let (6',P',t") € (o, P,t)T. Then
(6(o,P,1))rc6(0',P', 7)Y (€(0, P, 1))
which by Theorems 4.1 and 4.2 gives
%(or,P,17r)c€6(0’',P',1)cb(c™,P, 1" N &)

which in turn implies that o, co'co”, P=P' and 1yt 1’ Na. It follows that
(o', P', t') is contained in the right hand side of (11). The proof of the converse follows
essentially by reversing the steps above. O

5. The lower and upper ends of kernel classes. We continue with thé hypothesis
that V is a strict extension of § and characterize these ends including some special cases.
THEOREM 5.1. Let v =€(0, P, t). Then vx = €(0ok, P', t') where
A={aeP*|apeckera} U (kert)* (12)
and P’ is the set of all a in Q* for which there exists a sequence
A= YL, X U1 Y1 =X2U2 )2 - - - 5 Xn—iUn—1 Yot = XnllnYn (13)
in Q*, x,v,y, €S with x;, y, € (Q")* and
{u;, v;} ={z;, 23}, z;€A for i=1,2,...,n-1,

and for i = n, either the same condition or v, =u3, u,€ A, B=[AN(Q\P")]U {0} and
T = (2§ )k
Proof. Let v =%(&, R, n). By Lemma 2.6, we have
ker v=ker o U {a € P*|a@ e ker o} U (ker 7)*, (14
ker v =ker £U {a € R* | ap e ker £} U (ker n)*
and vKv, implies that ker o = ker & and
A={aeR*|apekera} U (kern)*=kervyNQ* (15)

The former implies that 6K& whence o c &.
Next let aEb. Then avgb and thus there exists a sequence of the form

a=XyU; Yy, X\ U Y = XolpUs, . . ., XU, Y, = b for some }
x, i€V {u,vy={z,2?},ziekervfori=1,2,...,n
Then (16) implies that

a = (), yp)(ny), Y)W )nY) = () (@) ©Vy), . . ., (Y).p)(yak) =b

with {uy, v} ={zy, (zy)*}, and in view of (14), z;y € ker 0. Therefore aoxb which
implies that & c o and equality prevails.
Note that

(16)

R ={aeQ*|avgb for some b e S} U {0}. (17)
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First let a € P’ with the notation as in the statement of the theorem. For i=1,2,...,n,
in view of (12) and (14), z; € A implies that z; € ker v and u, € A implies that u, € ker v.
Hence avgx,v, y, € S and thus (17) implies that a € R. Therefore P’ = R.

Conversely, let a € R*. In view of (17), there exists a sequence of the form (16) with
beS. Since a=x,u,y, ¢S, there exists a least positive integer j such that x,u;y, ¢ S for all
i <j. Without loss of generality, we may assume that j =n — 1. We thus have arrived at a
sequence in Q* of the form (13). It follows that x;, y;€ (Q")* for i=1,2,...,n. In view
of (15), we also have z;e A fori=1,2,...,n—1. For i =n, we have {u,,v,} = {z,, 22}
with z, e kerv and also x,u,y, ¢S, x,v,y, €S. If 22¢€ Q*, then z, € Q* and thus 2, € A.
Otherwise z2e S and we must have v, = z2 so that u, = z, whence v, =u?2 and u, € A.
Therefore a € P'. Consequently R c P’ and equality prevails.

Now let a, b € Q\P'. Assume first that anb. Then avb and we have a sequence of the
form (16). Here z; € ker v and since a, b € Q\P', we must have, in view of (15), that

zzekervN(Q\P')=AN(Q\P') = B*.
In particular, B = ker 7 which in view of ([2, Theorem 2.13]) yields that B = ker x§'"".
Now the sequence (16) where z; € ker 78" gives that a(x8'7')b, that is at'b. Since 7 is

O-restricted, this shows that  c t’. Furthermore, kern = B =ker %" =ker ¢’ so that
T’ = 1} c 17 and equality prevails. O

CoROLLARY 5.2. Let v =6(0, {0}, 7). Then vy = 6(0, {0}, t).

Proof. For P={0} in Theorem 5.1, we have A =(kert)* and P’'={0} so that
B =ker 7 and thus ' = (Tyer )k = () =14. O

CoroLLARY 5.3. Assume that Q is categorical at zero. Let v = €(o, P, t) and suppose
that a € P* and ag eker o imply that a*e€ Q*. Then in the notation of Theorem 5.1,
P'={0} and B =AU {0}.

Proof. We adopt the notation of Theorem 5.1. Let a € P'* and write x,,, u,, v,,, Y.,
z, without subscripts. Then xuy #0 in Q. Also {u,v}={z,z°} with zeAcQ* If
z e (ker 7)*, then z%tz so that z°e Q\P. Assume that z € P*. Then zg e ker o and the
hypothesis implis that z2€ Q*. If u =z, then v =u” and thus xu #0, uu #0 and uy #0
which by categoricity at zero yields xu?y # 0, that is xvy # 0. Otherwise u = z* which gives
v® = u whence xv’y # 0 which by categoricity at zero yields xvy # 0. Therefore P’ = {0}.
Hence B=(ANQ*)U{0}=AU{0}. O

For a characterization of v* we need a preliminary result. Recall that J(a) denotes
the principal ideal generated by a.
LemMMA 5.4, Let R c Q*. Then
P={aeQ*|J(@)NR =T}V {0}
is the union of all ideals 1 of Q such that INR =J.

Proof. Since R < Q*, we have {0} N R = and hence there exists at least one ideal
of Q disjoint from R. Let U be the union of all such ideals.

If aeP, then J(a)NR = and thus J(a)c U so that ae U. Therefore Pc U.
Conversely, let a € U. Then there exists an ideal J of V such that aeJ and JNR ={.
Since J(a) cJ, it follows that J(a) N R = and thus a € P. Therefore U c P and equality
prevails. 0O
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THEOREM 5.5. Let v =€(0, P, 7). Then vX = €(c%, P', t") where
R ={aeQ\kert|ap ekero},
P'={aecQ*|J(@)NR=T}UP,
aéb if a,b e Q\P', apo*be, 060,
n=(tlow)U{(0,0)}, '=n"N6NEyp-

Proof. 1. P' is an ideal of Q by Lemma 5.4.

2. t saturates P'\P. Indeed, let ath with a € Q\P and b € P'\P. Hence J(b))NR =
and thus, for every x,y € Q', xby ¢ R. We wish to show that xay ¢ R. If xby € ker 7, then
xaytxby implies that xay € ker T and thus xay ¢ R. Otherwise, xby ¢ ker 7. Since xby ¢ R,
we must have (xby)@ ¢ ker 7. The hypothesis atb implies that apobe by Lemma 2.5.
Hence (xay)@o(xby)e and thus (xay)@ ¢ ker 0. Also xby ¢ ker T implies that xay ¢ ker 7.
Therefore again xay ¢ R. Consequently a € P’ and thus 7 saturates P'\P.

3. 7 saturates Q\P' and n € €,(Q/P’). The first assertion follows from part 2 and the
fact that 7 saturates Q\P. The second assertion is a consequence of the first.

4. ' € 6,(Q/P’). Let a,b,c e Q\P' be such that at’'b and ac € Q\P’. Then aCQ,pb
implies that aclg,p-bc and thus bc#0 in Q/P’, that is bce Q\P', since Ly/p is
O-restricted. In addition an®b implies that acn®bc. Finally, apo®be implies (ac)p =
(a@)(c@)a®(b@)(cp) = (bc)p. Therefore act'bc. By symmetry, bc #0 in Q/P’ implies
ac ¥ 0 and the same conclusion is reached. Hence 7’ is a right congruence and, by duality,
itisa congruence. Since t' = {op (o1 T < G), 7' is O-restricted.

5. (6%, P', t') is an admissible triple. Indeed, let a, b € Q\P’ be such that at'b. Then
a6b which vyields a@po®be. The assertion now follows by Lemma 2.5. Let 0=
€(ok,P', 1)

6. vK6. By Lemma 2.6, we have

kerv=keroU {a € P*|ap ekera} U (ker 7)*,
ker 6 =ker 0¥ U{a € P'* | ap e ker 0¥} U (ker 7')*.
In order to prove that ker v = ker 8, we let a € V and consider the following cases.
(i) aeS:aekervoaekerooacekero®Saceker.
(i) ae P\S:ackervoap ekeroSap ekero ©ackerb.

(iii) a € P'\P: If a € (ker T)*, then ate from e € E(Q\P) which by Lemma 2.5 yields
apoe@ and thus ap € ker 6. Hence

(18)

aekerv>acekert>agekero>ap e ker o >aeker 6.

For the converse, we first note that a € P’ implies a ¢ R and thus either a e ker t
or ag ¢ ker 0. Hence the above sequence of implications can be reversed.
(iv) a € Q\P': First note that

aeker0&aekert’
Saekern”, ada’, a eker {op
Saekern,apa’a’p,aeker {yp
Saekert,apoa’p,aeker §yp
Sata®, apaa’e, alypa’. (19)
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Assume that ata’. By Lemma 2.5, we have a@oa®. For any x,y € (Q/P')', we have
xaytxa’y. By part 3, t saturates Q\P' which then implies that xay #0 if and only if
xa’y #0 in Q/P'. Therefore af,,p-a’. Now (19) implies that

ackerveackertacekert ©aekerf.

Therefore ker v = ker 6.
7. If viKv, then v, c 8. Let vi=%(0,, P,, ) and assume that v, Kv. By Lemma 2.6,
we have

. kerv,=kero,U {a € P{|ap ekero,} U (ker 7,)*
which, together with (18), by hypothesis gives ker ¢, = ker o and
{aePt|apekera,)U(kert,)*={aeP*|apekero} U (kerr)* (20)

It follows that o,Ko and hence o, c o*. In order to prove that v, < 8, by Lemma 2.3, it
remains to show that

PcP, 7, saturates P'\P,, Tilow < T’ o (21)

Let ae RN P,. Then a ¢ ker 7, ap e ker o and a € P}. The last two conditions imply
that a is in the left hand side of (20). But the first two conditions imply that g is not in the
right hand side of (20). This being impossible, we conclude that R N P, =@. By Lemma
5.4, P' is the greatest ideal of Q which is disjoint from R and thus P, P’'. This
establishes the first condition in (21).

In order to prove the second condition in (21), we let

A={aeQ\P |at,b for some b e P'\P,} UP,.

We show next that A is an ideal of Q. Indeed, let a € A* and c € Q\P, be such that
ac ¢ P,. There exists b € P'\P, such that at,b by the definition of A. Hence act,bc whence
bc ¢ P, since 1, is O-restricted. Thus bc € P'\P; which yields ac € A*. By duality and since
P, is an ideal of Q, we conclude that A is an ideal of Q.

Now assume that a € A M R. We have seen above that PN R =J. Hence a € A\P,
and there exists b € P'\P, such that at,b. Further, a e R implies that a ¢ ker t and
ap ekero. Since atr,b, by Lemma 2.5 we get ago,bp; also ag € kero implies
a@ € ker 0, whence b e ker g,. Hence b € ker o and since b € P’, we also have that
b ¢ R. But then b € ker 7 by the definition of R. By (20), a ¢ ker 7 implies a ¢ ker 7, and
b e ker 7 implies that b € ker ;. This is incompatible with at,b. Therefore AN R =

We have proved that A is an ideal of Q disjoint from R which by Lemma 5.4 gives
that A ¢ P'. It follows that 1, saturates P'\P,.

It remains to establish the last condition in (21). Since 7, saturates both Q\P, and
P'\P,, it also saturates Q\P’. Letting t, = (7,|p\p') U {(0, 0)}, we get T, € €,(Q/P’). Now
condition (20) yields that 7,Kt which implies that 7, c t*. Let a, b € Q\P’ be such that
at,b. Then at,b and thus at*b. Also at,b implies that agpo,be whence apa*be since
o,c o, and thus adb. Since 1,€ 6 (Q/P') and {,p is the greatest O-restricted
congruence on Q/P’', we get > c {g/p. In particular, afy,p-b. We have proved that at’b
which shows that 7,|p\» < T'|p\p.

This completes the verification of the requirements in Lemma 2.3 for the inclusion
v, < 6. Therefore 6 has the required maximality so that # =v*. O

https://doi.org/10.1017/50017089500030767 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500030767

REGULAR SEMIGROUPS 231
REFERENCES

1. J. M. Howie, An introduction to semigroup theory (Academic Press, 1976).

2. F. Pastijn and M. Petrich, Congruences on regular semigroups, Trans. Amer. Math. Soc.
295 (1986), 607-633.

3. M. Petrich, Congruences on extensions of semigroups, Duke Math. J. 34 (1967), 215-224.

4. M. Petrich, The congruence lattice of an ideal extension of semigroups, Glasgow Math. J.
35 (1993), 39-50.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF WESTERN ONTARIO
LonDpoN, ONTARIO

CaNaDA N6A SB7

https://doi.org/10.1017/50017089500030767 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500030767

