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Abstract. Let V be a regular semigroup and an ideal extension of a semigroup 5 by
a semigroup Q. Congruences on V can be represented by triples of the form {a, P, r),
here called admissible, where a is a congruence on 5, P is an ideal of Q and x is a
O-restricted congruence on Q/P satisfying certain conditions. We characterize the trace
relation T on V in terms of admissible triples. When the extension V of S is strict, for a
congruence v on V given in terms of an admissible triple, we characterize vK, vK, vT and
vT again in terms of admissible triples.

1. Introduction and summary. Let 5 be a regular semigroup and ^(5) be its
congruence lattice. For p e ^(5), the kernel (respectively, trace) of p is the set of all
elements of S p-related to idempotents (respectively, the restriction of p to idempotents
of 5). The relation on "#(5) which identifies congruences on 5 with the same kernel
(respectively, trace) is the kernel relation K (respectively, the trace relation T) for S. The
classes of these (equivalence) relations are intervals and it is convenient to introduce the
notation pK = [pK,pK] and pT = [pT,pT] for the respective classes of p e ^(S). Then
p^*pK and p—*pK are the kernel operators and p^*pT and p^>pT are the trace
operators. The nature of these operators furnishes valuable information concerning both
congruences on S and the congruence lattice ^(5).

: Now let V be a regular semigroup with an ideal S. Then V is an (ideal) extension of 5
by Q = V/S, where the latter is the Rees quotient semigroup. We may set V = 5 U Q*
where Q* = Q\{0}. In such a case, both 5 and Q are regular semigroups so the above
analysis can be applied to 5, Q and V. The problem is to reduce this analysis for V to
those for 5 and Q. As a first step, we must express the congruences on V in terms of S
and Q, and if possible, in terms of ^(S) and ^(Q). In the present setting, this problem
was solved in [3] as follows. Each congruence on V is expressed in terms of an
(admissible) triple (O,P,T), where a e ^ ( 5 ) , P is an ideal of Q and r is a O-restricted
congruence on Q/P, satisfying certain conditions.

Representing the congruences on V in terms of triples as above, we may ask whether
the relations K and T on ^(V) can be expressed by means of the same relations on ^(5)
and ^(Q). We may go one step further by asking for v^, vK, vT, vT for a congruence v
on V expressed in terms of a triple. The first task is easy: expressing the kernel and the
trace. However, the problem of characterizing K on ^(V) does not seem to admit a
convenient solution, whereas T admits a simple expression. The problem with the kernel
and the trace operators in this generality does not seem amenable to a successful
treatment.

In order to make some progress in this context, we restrict our attention to the
special case when V is a strict (or retract) extension of S and in various situations add
further restrictions. For strict extensions, we are able to characterize v^, vK, vT and vr.

Section 2 contains some terminology, notation, background material and preliminary
results. The relation Ton ^(V) is characterized in Section 3. In the remaining part of the
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paper, we assume that V is a strict extension of 5. For a congruence v on V given by
means of an admissible triple, we calculate vT and vT in Section 4 and v^ and vK in
Section 5 again in terms of admissible triples.

2. Preliminaries. In addition to the standard terminology and notation, which can
be found, for example, in [1], we state explicitly the following nomenclature and
symbolism.

Let A' be a set. The equality relation on X is denoted by ex or simply by e. The
universal relation on X is denoted by a>x. The restriction of a function or a relation 6 to
X is denoted by 6\x- If d is an equivalence relation on X and x e X, then xd denotes the
0-class containing x. If also AcX, then

A 6 = {x € X | xda for some a e A}

is the saturation of A by d; if Ad = A, then 6 saturates A. If Y is also a set, then
X\Y={xeX\x$Y}.

Let R be a semigroup. If A s R, then E{A) denotes the set of all idempotents in A. If
R has an identity, then R1 = R otherwise Rl stands for R with an identity adjoined. The
congruence lattice of R is denoted by <£(/?). Assume that R has a zero. If A c /?, then
/4* =/4\{0}. An equivalence relation 6 on R is O-restricted if {0} is a 0-class; the set of all
O-restricted congruences on R is denoted by %)(R). Further, R is categorical at zero if for
any a,b,ceR,ab¥=0 and bc^O imply abc=£0.

If 0 is a relation on R, then 0* denotes the congruence on R generated by 9. If 6 is
an equivalence relation on R, then 0° denotes the greatest congruence on R contained in
6; explicitly

ad"b if xaydxby fo r all x , y e / ? ' .

If -4 c g , let 6 be the equivalence relation on R whose classes are A and £>Vl (whichever
one is nonempty), then nA = 0° is the principal congruence relative to A; explicitly

anAb if (xay eAOxby eA for all jc,y e/?1).

In fact, KA is the greatest congruence p on R which saturates A We shall sometimes write
nA for emphasis. If R has a zero, then £„ = jr{0) is the greatest O-restricted congruence on
R. If / is an ideal of R, then R/I denotes the Rees quotient semigroup of R relative to /; as
a set R/I = (R\I)U{0}.

Let R be a regular semigroup, that is for every a e R there exists x e R such that
a = axa. Let p 6 %{R). Then

kerp = {a e R \ ape for some e e E(R)}, trp = P\E{R) •

are the kernel and the trace of p, respectively. They induce a complete A-congruence #
and a complete congruence T on ^(R) by

A/Cp if kerA = kerp, A7p if trA = trp,

respectively. The K- and T-classes are intervals, so we use the notation

pK = [pK,pK], pT = [pT,pT}.
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LEMMA 2.1. ([2], Theorem 3.2). Let R be a regular semigroup and p e <#(/?). Then

pK = {(x,x2)\xekerp}*, pK = nkCTp. D

We say that p is idempotent pure if ker p = £(5).
LEMMA 2.2. ([2], Theorem 3.2). Let R be a regular semigroup, p e <#(/?), 6 = Up

and denote by juxtaposition the product of binary relations. Then

Pr = e\ pr = (%6££6gn®e®o®)". a

Throughout the paper we fix the following notation: V is a regular semigroup and an
{ideal) extension of S by Q. Hence 5 is an ideal of V, the Rees quotient VIS = Q, where
we set V = S U Q*; in addition, both 5 and Q are regular semigroups.

From ([3, Corollary 1 to Theorem 1]) we deduce the following description of
congruences on V. Let o e ^(S), P be an ideal of Q and T € %)(Q) satisfy the following
conditions:

(i) a, b e Q\P, arb, xoy ̂ >axaby, xaoyb,
(ii) for every a e P* there exists a' e S such that x e S^axoa'x, xaoxa'.

In such a case, we say that a and a' are o-linked, call (a, P, T) an admissible triple and
define a relation v on V by

axb if a,beQ\P,

a'ob' if a,beP*,

a'ob if aeP*,beS,

aob' if aeS,beP*

aob if a,beS,

where a, a' and b, b' are a-linked. Then v is a congruence on V and, conversely, every
congruence on V has this form. According to ([4, Corollary 3.2]), this representation is
unique.

The notation v = ^{o, P, r) will always denote the above congruence implicitly
implying that (a, P, r) is an admissible triple.

In fact, given v e ^{V), the admissible triple for v is (a, P, r), where

= v\s, P={aeQ* \avb for some beS}U{0},

arb<£>a,beQ\P,

Note that if a, a' are a-linked and oca' for o' € ̂ (5), then a, a' are also a'-linked.
We shall need the following criterion for inclusion of congruences on V.

LEMMA 2.3. ([4, Lemma 3.1]). Let v, = ̂ (a,-, P-,, r,) for i = 1, 2. Then v, c v2 if and
only if a, c a2, P\ c P2, T\ saturates P2\P\ and rt \Q\p, c r2|0\p,. D

LEMMA 2.4. Lef v = <g(a, P, r). 77ien

ker v = ker a U {a e P* \ a' e ker a for some a' eS o-linked to a} U (ker T)*.

Proof. Let a e V. For a e S, clearly a e ker v if and only if a e ker o. Similarly, for
a e Q\P, clearly a e ker v if and only if a e ker r.
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Next let a e P*. Assume first that a e ker v. Then ave for some e e E(V) and we must
have e e £ ( 5 U P*). Let a' be an element of 5 u-linked to a. Then a've and a'v D S is an
idempotent a-class and thus must contain an idempotent, say /. Then a'of so that
a' e ker a. Conversely, suppose that a' e ker a for some a' eS a-linked to a. Then a'oe
for some e e E(S) and thus ava've so that a e ker v. •

A mapping cp: Q*—*S is a partial homomorphism if for any a,b eQ*, ab^frO in Q
implies (ab)cp = {acp){bcp). If in addition,

{ (a<p)b if aeQ*,beS,

a(b<p) if aeS,beQ*,

{aq>){bq>) if a,beQ*,abeS,

then the multiplication in V is determined by cp and V is a s/n'c? extension of 5.
Starting with Section 4, we assume that V is a strict extension of S, where the

multiplication is determined by the partial homomorphism cp:Q*—>S. The mapping
xp = cp U is is a retraction of V onto 5, where is is the identity mapping on S. If 1 e V1 and
1 $ V, we write l<p = lip = 1 e S1.

In such a case, we have the following important simplification.

LEMMA 2.5. ([3, Proposition 2]). Let V be a strict extension of S, where the
multiplication is determined by a partial homomorphism cp:Q*—*S. Let o e<€{S), P be an
ideal of Q and x e %)(Q/P). Then (ex, P, r) is an admissible triple if and only if

a,b e Q\P,aTb^>acpobcp. O

LEMMA 2.6. Let V be a strict extension of S, where the multiplication is determined by
a partial homomorphism cp:Q*—>S. Let v = ^ ( a , P, r). Then

ker v = ker o U {a e P* | acp e ker o) U (ker T)*.

Proof. This is a direct consequence of Lemma 2.4. D

3. The trace relation. A technical lemma is needed here in order to characterize
the relation T on <g(V) in terms of T on <g(5) and <€(()/P), where P is an ideal of Q.

LEMMA 3.1. Let v, = <g(a,-, Q, e) for i = 1, 2, a, 7a2, and e e E{Q*). Then there exist
ex, e2 e E(S) such that e]v]ev2e2 and e]ol A o2e2.

Proof. Let i = 1,2. Since ev, D 5 is an idempotent a,-class, it contains an idempotent,
e, say. Clearly exV\ev2e2; we shall show that e,a, A a2e2. First let «, be an inverse of eet

and let g, = ee,u,e. Then

e,)u,e = ee,«,e = g, e £ (5 ) ,

g, = ee,M,ev,ee,u,<?e,

so that g, < e and g,v,e, i = 1,2. Here < is the natural partial order on the idempotents.
Now ev2g2 implies g, = g1ev2glg2 and g, = egxv2g2g{ so that

g\O2g\g2o2g2gx. (1)

Interchanging the roles of g,, g2 and a,, a2, we obtain

(2)
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Let v be an inverse of gxg2 and let h = gig^wgi- Then h e E(S) and we get

Hence g\O2h and the hypothesis implies that g\Oxh. Together with (2), this gives
g\O\g\g2Vg\O[g2vgl whence

g\O\gig\- (3)

Similarly, we let w be an inverse g2gi and / = giWg2gt. Then t e E(S) and by (1), we
obtain

Hence g{a2t and the hypothesis implies that g{o{t. Together with (2), this gives
g\0\giWg2g\O\g\Wg2 whence g,o[gtg2. This together with (1) and (3) yields

ACT2g2g,. (4)

Now interchanging the roles of gu g2 and ou o2 we obtain

g2a, A CT2g2gi^i A a2g,g2

which together with (4) yields

g,a, A a2g2. (5)

We have seen above that e,v,ev,g, so that e,a,g, for / = 1,2. The hypothesis implies
that exoxg\ gives e,a2gi and e2a2g2 gives e2a,g2. This together with (5) finally yields

so that e,O"i A o2e2, as required. D
We are now ready for the relation T.

THEOREM 3.2. Let v, = %{ah Pt, T,) for i = 1, 2.

a2, P^=P2, T,TT2.

Proof. (a)4>- If e,feE(S) are such that ea , / , then evxf so by hypothesis ev2/
whence ea2/- Therefore tr a, c tr a2 and by symmetry, a, T^ .

Let e e E(Pl\P2). Then ev, n 5 is an idempotent a,-class so it contains an idempotent,
/say. Hence ev,/which by hypothesis implies that ev2f which is impossible since e £ P2
and v2 saturates 5 U P2. Therefore £(/)

1\P2) = 0- If a e P,\P2, then for any inverse a' of
a, we have aa' e P\\P2 which we have just seen to be impossible. Thus Px\P2 = 0 that is
P\ e p2- The equality F, = P2 now follows by symmetry.

If e,f e E(T\P) are such that eT,/, then ev,/ so by hypothesis ev2f whence et2f.
Therefore tr r, c tr r2 and by symmetry, T, TT2.

(b)<=. Let e , / e £ ( K ) be such that evj. If ej eS, then CT,r<72 implies that ev2f,
and if e , / e QVP, then T,7Y2 implies that ev2/. Consider the case e,f e P*. By Lemma
3.1, there exist e,, e2,f,,f2eE(S) such that

/iV,/v2/2, ev,/ |
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Consequently elvlevifvlfl so that 6,0,/, which by hypothesis gives e,a2/whence

ev2e2o2e^o2fa2f2v2f

and thus ev2f.
By symmetry, it remains to consider the case e e P*, f eS. With the above notation,

we have e ^ e v j / s o that e{otf which by hypothesis gives e,o2f where ev2e2a2e|/and thus
ev2f.

Therefore in all cases ev2f which proves that tr v, c tr v2 and by symmetry equality
prevails. Consequently v,7V2. •

It would be natural to attempt to characterize vT and vT in terms of admissible triples
when v itself is given in this form. In this generality, this does not seem feasible. We limit
ourselves to the following special case.

COROLLARY 3.3. Let v = %{p, Q, e). Then vT = (oT, Q, e).

Proof. Since (a, Q, e) is an admissible triple, so is (oT, Q, e). Let 8 = ̂ (oT, Q, e).
By Theorem 3.2, we have vT8. Next let v' = <#(a\ P', r') be such that v'Tv. By
Theorem 3.2, we get o'Ta, P = Q and r'= e. Hence o'coT which by Lemma 2.3
implies that v 'cf l . This proves the required maximality of 8. •

A similar analysis for the kernel relation is not possible because of the fact that a
situation of the form <g(a, P, T)/C^(a', P', r') with P¥=P' is possible. We limit ourselves
only to the analogue of Corollary 3.3 for the kernel.

PROPOSITION 3.4. Let v = <g(a, Q, e). Then vK = <g(a*, Q, e).

Proof. Since (a, Q, e) is an admissible triple so is (a*, Q, e). Let 8 = <€(oK, Q, e).
By Lemma 2.4, we have

ker v = keroU {a e Q* | a' eker o for some a' eS a-linked to a}, (7)

ker0 = kera*U{ae(2* |a"ekercr* for some a"eS a*-linked to a}, (8)

where ker a = ker oK. If aeQ* and a ' e k e r a are a-linked, they are also a^-linked so
that (7) is contained in (8). Conversely, let aeQ* and a" e ker a be a^-linked. Then for
all x e S, we have axoKa"x and xaaKxa". Now let a' e S be such that a, a' are a-linked.
Then for all xeS, we have axaa'x and xaoxa' which implies that also axaKa'x and
xaoKxa'. It follows that a'xoKa"x and xa'oKxa" for all x e S. Recall that a semigroup T is
weakly reductive if for any a,b eT, xa = xb and ax = bx for all x e T implies that a = b.
Weak reductivity of S/oK gives that a'oKa". Since a"ekeroK, we must have that
a' e ker aK = ker a. Therefore (8) is contained in (7) and equality prevails so that vKd.

Next let v' = %{a'', P', r') be such that v'Kv. By Lemma 2.4 we have an expression
for kerv' analogous to that for kerv in (7) which implies that ker a' = kera. It follows
that o'Ko and thus a' c aK. The remaining three conditions in Lemma 2.3 are trivially
satisfied which gives that v' a.8 which establishes the required maximality of 8. D
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4. The lower and upper ends of trace classes. We reiterate first that henceforth V is
a strict extension of 5, where the multiplication is determined by a partial homomorphism
q>:Q*—*S. This will not be stated explicitly. Besides characterizing the ends, we include
several consequences of these results.

THEOREM 4.1. Let v = <€{o, P, x). Then vT = <€(oT, P, xT).

Proof. In view of Theorem 3.2, it suffices to show that (oT, P, xT) is an admissible
triple.

Let t] = tr o and 9 = tr x. By Lemma 2.2, we have oT = rj* and xT = 6*, the first of
these taken within 5 and the second one within Q/P. Let axTb for a, b e Q\P. Then there
is a sequence

a=xlelyt, Jc,/,y, =x2e2y2,. . . ,xnfnyn = b (9)

for some *,,>>, e (<2/P)' and efif,, i = 1, 2,. . . , n. Since r is O-restricted and xT c T, we
have that rT is O-restricted. In the above sequence, we have

axTxxjxy^Tx2f2y2. . . xrb

which together with a ¥=0 in Q/P implies that all these elements are nonzero in Q/P. We
may thus apply q> to the sequence (9) thereby obtaining

ay = (j:iqD)(e,<jp)(y,(p), (jr,<p)(/,<p)(>'1<p) = (x2<p)(e2<p)(y2<p) • • • (xn<p)(fnq>)(y,,(p) = b<p

with xw, yw e Sl. In addition e,-r/- implies that e,q>ofj(p by Lemma 2.5 so that e,q>r\f,<p.
Since aT = t\* by Lemma 2.2, we get aq>oTb(p. By Lemma 2.5, {oT,P,xT) is an
admissible triple and therefore v r = ^(CTr, P, xT). •

THEOREM 4.2. Ler v = <g(a, P, r). Then vT = « ( a r , P, xT D a)

oab if a,beQ\P, acpoTbcp, OaO.

Proof. Let v r = ^ (a ' , , ) where the blanks stand for entries to be determined. By
Theorem 3.2, oTo' and thus a' ^ aT. Let aoTb. Then for 0 = t ra , by Lemma 2.2, we
have

within 5 and thus for every x, y e 5' ,

xayte

Let 0 ' = t r v . Then 0 = 0 ' | s a n d for any ^,_y e V

(xip)a

and thus, for any x,y eV\

xay££6 '5£d'Z£n3ld'9ld' Mxby

so that a(S£O'%e'%nme'S?ld'®)% within V. Therefore avTb whence fla'
Consequently or c.o' and equality prevails. From Theorem 3.2 we get that vr

^(a7^, P, ) where the blank stands for the entry to be determined.
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Clearly a is an equivalence relation on Q/P. The set 0xT is an ideal of Q. If it
contains a nonzero element, it also contains a nonzero idempotent, say e. But then ex'O
so that exO, which contradicts the hypothesis that r is O-restricted.

Hence also xT is O-restricted. Set r/ = xT D a. Next let a, b e ^A/3 be such that 0776
and let ceQ\P. If ac=/=0 in <2/^> then acxTbc implies bc¥=0 and aab gives (ac)cp =
(aq>)(ccp)aT (bcp)(ccp) = {bc)cp so that acobc. If ac = 0 in Q/P, then acxTbc implies be = 0.
Therefore acrjbc in all cases; similarly carjeb which proves that 77 is a congruence on (2/P-
Trivially rj is O-restricted. By Lemma 2.5, we conclude that (oT, P , ry) is an admissible
triple; let § = <€(oT, P, r/).

If e,f e E(Q\P) are such that er / , then by Lemma 2.5 we have e(paf(p whence
ecpoTfq>. It follows that tr r c t r ( r r n a) = tr rj. Conversely, trivially tr r/ c tr r 7 = tr x and
thus tr x = tr r?. Therefore xTr] which by Theorem 3.2 implies that vT%.

Finally, let v' = %{a\ P', x') be such that v'Tv. By Theorem 3.2, we get a T a ,
P' = P and T T T . Hence CT' C a r and T' S XT. U a,b e Q\P are such that ax'b, then by
Lemma 2.5 we have acpo'b(p whence aq>oTbq> so that aab. Therefore x' c a which implies
that x' c. rj. Now Lemma 2.3 implies that v ' c | which establishes the desired maximality
of | . D

In the next consequence of the above theorem we have a case in which a in the
theorem may be omitted.

COROLLARY 4.3. Let v = c€(o, P, x) and assume that q> maps Q\P onto S. Then
vT = <€(oT,P,xT).

Proof. In view of Theorem 4.2, it suffices to prove that xT c.a. Hence let axTb,
6 = tr x and r\=tx a. By Lemma 2.2, for any x,y e (Q/P)1, we have

so that

xaySeedfiegdhgxby, xay&ie'df'^g'dh'^xby (10)

for some e, f,g,h, e', f, g', h' e E(Q/P). Since if, 91 and 0 are O-restricted, we have
xay # 0 if and only if xby =£ 0. Now assuming that xay =£ 0, we may apply <p to the
sequences in (10) so that by Lemma 2.5, writing l<p = 1, we obtain

{xq>)(a(p){yq>)9te'<pTif'<p9tg'<prih'<p9L{x<p)i!b<p)(yq>)

and thus

Since this holds for all x, y e (Q\P) U {1} and <p maps Q\P onto 5 , we conclude that
a<p(£erj££r]g D 0tr\9tr]0t)%(p so that by Lemma 2.2 ayoTb(p and thus aaft. D

The next result provides a copy of the trace class of a congruence on V expressed by
means of an admissible triple.

COROLLARY 4.4. Denote by s&3~ the set of all admissible triples and, for (o, P, x) e
siST, let

(o, P, x)T = {(a', P1, x') e dp I « ( a \ P', x')T<$(o, P, x)}.
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Then, for any (a, P, T) e sdST, we have

(a, P, x)T = ([ay-, oT] x {P} x [xT, xT n a]) D MST. (11)

Proof. Let (a', P \ x') e (a, P, x)T. Then

(«(a, P, x))T c «(a ' , P \ T') £ («(a, P, r ) ) r

which by Theorems 4.1 and 4.2 gives

« ( a r , P, r r ) c « ( a \ P', T') <= <g(ar, P, r r n a)

which in turn implies that oTco'^oT, P = P' and r r c i ' c r r D f f . It follows that
(a', P', T') is contained in the right hand side of (11). The proof of the converse follows
essentially by reversing the steps above. •

5. The lower and upper ends of kernel classes. We continue with the hypothesis
that V is a strict extension of 5 and characterize these ends including some special cases.

THEOREM 5.1. Let v = %(p, P, x). Then vK = ^{oK, P', r') where

A = {aeP* | a<p e ker a} U (ker r)* (12)

and P' is the set of all a in Q* for which there exists a sequence

a=xiulyl,xlvlyl=x2u2y2,- • • ,xrl-1vn_1yn_l = xnunyn (13)

in Q*, xnvnyn e S with *,, y, e (£>')* and

{«,, Vj) = {zh zj}, z,eA for i = 1, 2 , . . . , n - 1,

and for i = n, either the same condition or vn = u2
n, uneA, B = [A D (Q\P')] U {0} and

Proof. Let vK = <€(%, R, rj). By Lemma 2.6, we have

ker v = ker a U {a e P* | aq> e ker a} U (ker x)*,

ker vK = ker f U {a e R* | acp e ker §} U (ker r))*

and vKvK implies that ker a = ker § and

A = {a e R* | aq> e ker a} U (ker »/)* = ker vK D g*. (15)

The former implies that oK£ whence oK e §.
Next let a§4>. Then av f̂e and thus there exists a sequence of the form

a = xluiyuxiviy]=x2u2v2,. . . ,xnvnyn = b for some j

xi,yieV\{ui,vi} = {zi, z?},z(-e ker v for « = 1,2,. . . ,/i.J

Then (16) implies that

with {Uitp,Vjip} = {Zj\p, (Zjip)2}, and in view of (14), ztf e ker a. Therefore aaKb which
implies that ^c,oK and equality prevails.

Note that

R = {aeQ*\ avKb for some b e 5} U {0}. (17)
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First let a e P' with the notation as in the statement of the theorem. For i = 1 , 2 , . . . , « ,
in view of (12) and (14), z,- e A implies that z, e ker v and un e A implies that un e ker v.
Hence avKxnvnyn e S and thus (17) implies that a e R. Therefore P' c R.

Conversely, let a eR*. In view of (17), there exists a sequence of the form (16) with
b e S. Since a = xlu[yl $ S, there exists a least positive integer; such that *,«,->', 4 S for all
i =£/. Without loss of generality, we may assume that / = n — 1. We thus have arrived at a
sequence in Q* of the form (13). It follows that *,, y,- e (£?')* for j = 1, 2 , . . . , n. In view
of (15), we also have z, e/4 for / = 1 , 2 , . . . , « - 1. For i = n, we have {un,v,,} = {zn,z

2
n}

with zn e ker v and also xnunyn $ S, xnvnyn eS. If z2
neQ*, then zn e Q* and thus z,, e A.

Otherwise z2
neS and we must have vn = z\ so that un = zn whence vn = u2 and «„ e A

Therefore a 6 P'. Consequently R c.P' and equality prevails.
Now let a, b e Q\P'. Assume first that arfb. Then avb and we have a sequence of the

form (16). Here z, e ker v and since a, b e Q\P', we must have, in view of (15), that

z, e ker v n (Q\P') = AH (Q\P') = B*.
In particular, B = ker rj which in view of ([2, Theorem 2.13]) yields that B = ker JI%"".
Now the sequence (16) where z, e kert tg"" gives that a{7i%lp')Kb, that is ax'b. Since r] is
O-restricted, this shows that I J C I ' . Furthermore, ker 77 = B = k e r ^ ^ / p = ker r ' so that
T' = x'Kc.t] and equality prevails. •

COROLLARY 5.2. Let v = ^ ( a , {0}, T). Then vK = ̂ {oK, {0}, TK).

Proof. For F = {0} in Theorem 5.1, we have ,4 = ( k e n ) * and P' = {0} so that
B = ker T and thus r ' = (^kerr)/c = (rK)K = rK. D

COROLLARY 5.3. Assume that Q is categorical at zero. Let v = ^ ( a , P, r) and suppose
that a e P* and acpe ker o imply that a2eQ*. Then in the notation of Theorem 5.1,
P' = {0} and B=AU{0}.

Proof. We adopt the notation of Theorem 5.1. Let a e P'* and write xn, «„, v,,, y,,,
zn without subscripts. Then xuyi^O in Q. Also {u,v} = {z,z2} with zeAcQ*. If
z e (ker r)*, then Z2TZ SO that z2 e Q\P. Assume that z e P*. Then zcp e ker a and the
hypothesis implis that z 2 e Q*. If u = z, then u = «2 and thus XM 9^0, uu # 0 and u_y # 0
which by categoricity at zero yields xu2y ¥= 0, that is xvy ^ 0. Otherwise u = z2 which gives
v2 = M whence xu2.y ^ 0 which by categoricity at zero yields xvy ¥=0. Therefore P' = {0}.
Hence B = (ADQ*)\J {0} =AU {0}. D

For a characterization of vK we need a preliminary result. Recall that J{a) denotes
the principal ideal generated by a.

LEMMA 5.4. Let R<=Q*. Then

P = {aeQ*\J(a)nR=0}\J{O}

is the union of all ideals 1 of Q such that I (~)R = 0.

Proof. Since R c Q*, we have {0} D R - 0 and hence there exists at least one ideal
of Q disjoint from R. Let U be the union of all such ideals.

If aeP, then J(a) DR = 0 and thus J(a) c U so that a e I/. Therefore P e t / .
Conversely, let a e U. Then there exists an ideal J of V such that a eJ and 7 n R = 0 .
Since J(a)^J, it follows that 7(a) D R = 0 and thus a e P. Therefore £/ c P and equality
prevails. •

https://doi.org/10.1017/S0017089500030767 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500030767


REGULAR SEMIGROUPS 229

THEOREM 5.5. Let v = <#(a, P, x). Then vK = « ( / , P', r') where

R = {a e £Aker x | acp e ker a} ,

/" = {ae(?* |y(a)nK = 0 } U P ,

aobifa,be Q\P', a<poKb<p, OaO,

7? = (T|exp.) U {(0, 0)}, T' = rjK n a n £0/l...

Proof. 1. P' is an /dec/ o/ Q by Lemma 5.4.
2. r saturates P'\P. Indeed, let axb with a e Q\P and 6 g P'\P. Hence J{b) C\R = 0

and thus, for every x,y e Q\ xby $ R. We wish to show that xay $ R. If xby e ker x, then
xayxxby implies that xay e ker x and thus xay ( R. Otherwise, xby £ ker x. Since xby $ R,
we must have (xby)cp $ ker r. The hypothesis arft implies that acpobcp by Lemma 2.5.
Hence (xay)cpo(xby)cp and thus (xay)<p £ ker a. Also xfry $ ker r implies that xay $ ker x.
Therefore again xay $ R. Consequently a e P' and thus r saturates P'\P.

3. T saturates Q\P' and r] e %)(Q/P'). The first assertion follows from part 2 and the
fact that x saturates Q\P. The second assertion is a consequence of the first.

4. T' € %(QIP'). Let a, ft, c e Q\P' be such that ax'b and ac e Q\P'. Then fl£e/i>'&
implies that ac^Q/Pbc and thus bc=£0 in Q/P', that is bceQ\P', since ^O/P. is
0-restricted. In addition arĵ fc implies that acr\Kbc. Finally, aq>oKbq> implies {ac)q> =
(aq})(ccp)oK(bcp)(c(p) = (bc)cp. Therefore acx'bc. By symmetry, be # 0 in Q/P' implies
ac=£0 and the same conclusion is reached. Hence r' is a right congruence and, by duality,
it is a congruence. Since x' c £Q/P, (or x c a), r ' is O-restricted.

5. (oK, P', x') is an admissible triple. Indeed, let a, b e Q\P' be such that ax'b. Then
aob which yields acpoKb(p. The assertion now follows by Lemma 2.5. Let 6 =
<g(a*, P \ r ').

6. vKd. By Lemma 2.6, we have

ker v = ker aU {a e P* | ay e ker a} U (ker T)*,

ker 6 = ker a K U { a e P'* | acp e ker aK} U (ker r')*.

In order to prove that ker v = ker d, we let a e V and consider the following cases,
(i) a eS:a 6 ker v O a e k e r a O a e k e r a ^ O a e ker 0.

(ii) a e P\S:a e ker vOa<p e ker oOacp e k e r / o a eker d.
(iii) a e P'\P: If a e (ker T)*, then axe from e e E(Q\P) which by Lemma 2.5 yields

acpoey and thus a<p e ker a. Hence

a e ker v => a e ker x^>aq> e kera ^ acp e ker a* => a e ker 0.

For the converse, we first note that a e P' implies a $ R and thus either a e ker x
or acp i ker a. Hence the above sequence of implications can be reversed,

(iv) a e Q\P'\ First note that

a e ker 6<^>a e ker x'

e ker r]K, aba2, a e ker £e / P .

e ker r/, acpoKa2cp, a e ker t,QIP'

e ker r, acpaa2cp, a e ker £e/P.
2- (19)
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Assume that axa2. By Lemma 2.5, we have a(poa2cp. For any x,y e (Q/P')\ we have
xayrxa2y. By part 3, x saturates Q\P' which then implies that xay¥=Q if and only if
xa2y*0 in Q/P'. Therefore at,QIPa2. Now (19) implies that

a e ker v O a e ker r O n e ker r ' O o e ker 8.

Therefore ker v = ker 6.
1. IfviKv, then v, c 0. Le/ v, = ^(ou Pu r,) and assume that v,/Cv. By Lemma 2.6,

we have

ker V! = ker a, U {a e P* \ atp e ker a,} U (ker r,)*

which, together with (18), by hypothesis gives ker a, = ker o and

{a e Pf | a<p e ker a,} U (ker T,)* = {a e P* | cup e ker a) U (ker r)*. (20)

It follows that oxKo and hence a, c a*. In order to prove that v, c 0, by Lemma 2.3, it
remains to show that

P i c f , T, saturates P'\P,, T\\Q\P-G*'\Q\P-- (21)

Let a e /? fl Pj. Then a $ ker T, a<p G ker a and a e P*. The last two conditions imply
that a is in the left hand side of (20). But the first two conditions imply that a is not in the
right hand side of (20). This being impossible, we conclude that R D F, = 0 . By Lemma
5.4, P' is the greatest ideal of Q which is disjoint from R and thus Px c P'. This
establishes the first condition in (21).

In order to prove the second condition in (21), we let

A = {ae Q\PX | axxb for some b e P'\PX} U P,.

We show next that A is an ideal of Q. Indeed, let aeA* and c e Q\Pt be such that
ac $ P,. There exists b e P'\Pt such that axxb by the definition of A. Hence acxxbc whence
be $ P, since r, is 0-restricted. Thus be e P'\Px which yields ac eA*. By duality and since
P, is an ideal of 2 , we conclude that A is an ideal of Q.

Now assume that a e A D /?. We have seen above that P, D R = 0 . Hence a e A\PX

and there exists b eP'\PX such that ar,fc. Further, aeR implies that a $ ker r and
acpekera. Since axxb, by Lemma 2.5 we get acpoxbq); also a<pekera implies
a(pekera , whence b<peker<7,. Hence bep e ker a and since beP', we also have that
6 £ /?. But then b e ker T by the definition of R. By (20), a £ ker r implies a $ ker r,, and
b e ker r implies that ft e ker T,. This is incompatible with axxb. Therefore A D R = 0 .

We have proved that A is an ideal of Q disjoint from R which by Lemma 5.4 gives
that A c P' . It follows that r, saturates P'\PX.

It remains to establish the last condition in (21). Since xt saturates both Q\P\ and
P'\PX, it also saturates Q\P'. Letting x2 = ( T , | 0 \ P . ) U {(0,0)}, we get r2 e %(QIP'). Now
condition (20) yields that T2^r which implies that r2 c rA. Let a, 6 e ( A f be such that
axxb. Then ar2ft and thus axKb. Also ar ,6 implies that aqjo^bq) whence acpoKb<p since
oxcoK, and thus aaft. Since r2e%{QIP') and £c;//>. is the greatest O-restricted
congruence on Q/P', we get r 2 c to//". In particular, at,QIPb. We have proved that ax'b
which shows that T i l ^ ' C T'|0\/.-.

This completes the verification of the requirements in Lemma 2.3 for the inclusion
V|cfl . Therefore 6 has the required maximality so that 6 = vK. •
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