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POSITIVE LINEAR MAPS ON C*-ALGEBRAS

MAN-DUEN CHOI

The objective of this paper is to give some concrete distinctions between
positive linear maps and completely positive linear maps on C*-algebras of
operators.

Herein, C*-algebras possess an identity and are written in German type
%A, B, €. Capital letters 4, B, C stand for operators, script letters S, 4 for
vector spaces, small letters x, y, 2z for vectors. Capital Greek letters &, ¥ stand
for linear maps on C*-algebras, small Greek letters «, 8, v for complex numbers.

We denote by I, the collection of all # X # complex matrices. I, (A) =
A ® M, is the C*-algebra of X »n matrices over A. A linear map &: A — B
is positive if ®(A4) is positive for all positive 4 in Y. We define & ® 1,:
D, (A) — N, (B) by

® ® 1,((Ap)igiezn) = (P4 1) 127,620

We say & is n-positive if & ® 1,: D, (A) — M, (B) is positive; the set of all
such @ is denoted P,[¥, B]. & is completely positive if & € P,[U, B] for all
positive integers #; the set of all such & is denoted P_[ U, B].

It is evident that

P,[2, B] 2 P,[A, B] D P5[A, B] 2 ... D P [ B].

Stinespring [4] and Arveson [1] have given examples of positive linear maps
that fail to be completely positive. However, all these examples fail to be
2-positive. In Theorem 1, we construct examples of # — 1-positive maps that
fail to be n-positive.

If %A or B is commutative, then Pi[ A, B] = P [ A, B] (see [4, 5; 1, p. 148]).
We establish the converse in Theorem 4, thus giving a characterization of the
commutativity of C*-algebras by means of the ‘completeness’ of positive
linear maps. (The result can be strengthened in the finite-dimensional case, as
we explain in the remarks which conclude the paper.)

An extension of the work of Stinespring and Stgrmer leads to a further
generalization, Theorems 7 and 8: If € is commutative, then

P[0 (C), B] = P [D(C), B], P,[A, M, (C)] = P[A, M(C)].

Hence, we get a simplification of the structure of completely positive linear
maps on a matrix algebra.
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improvements in the paper. Thanks are also due to the referee for simplifying
the proof of Theorem 1.

First we show that n-positivity is different from (z — 1)-positivity for the
linear maps on M,. Let (o) € M,; we recall that trace (ay) = > ,a,,. The

map
®(4) = {(n — 1)(trace 4)} I, — A

serves as the simplest example we can manage for

TreoreM 1. P, [, .1 P, D],
=

It is convenient to regard the elements of I, (M,,) as m X m block matrices
with # X # matrices as entries; then each is also regarded as an mn X mn
matrix with numerical entries. Let £ be the n X # matrix with 1 at the j, &
component and zeros elsewhere. Then (E;)i<;x<n € MM, (IN,) is the block
matrix having the matrix E as its j, k entry, for each j, k.. Now we investigate
the magnitude of (£,) in the following

LEMMA (1) (B — 1) 1,2 — (E)1<; x50 1S B0 positive.

(1) For any rank-(n — 1)-positive projection P in I,

P#{(n — )z — (Ep)igjrza) P#
s positive, where P# = I, X P.
Proof. A straight-forward computation shows that
(Ew)p® = n(Euw)
and more generally
(Eg)p+A# - (Ep) s = (trace 4) (Ex) n
where 4 is arbitrary in M, and 4% = I, ® 4. Now (i) is immediate, since
1/n(E ;) i is a projection and
HEm #ll =n>n— 1

For (ii) we look at

|P#(Eu) nP¥|| = —| PH(Ep) m+ (Ew) al

(E ) P« PH(E )

(Es) P (Ep)p

I R~ = S =

= (trace P) I (E5) ll

=trace P =n —1

asrank P = n — 1.
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Thus we have derived that
P#(n — I)InZP1¢ z Pﬁ(Ejk)jk.P#.

Proof of Theorem 1. @ @ 1,((Ep)n) = (P(Ep))u = (n— 1) L2 — (Ep) x is
not positive (Lemma (i)). So we conclude that @ is not z-positive.

The proof that ® is (» — 1)-positive will be written out only in the case
n = 3;i.e., we will show that

®(4) = 2(trace 4)I; — 4

is 2-positive on M.

It suffices to prove that for any rank-1 positive 6 X 6 matrix X, ® ® 1,(X)
is positive when regarding X in 3, (IM;). Let X = x*x where x is a row matrix
(a1, as, a3, B1, B2, B3), and let

XO = 0 € 9]33(9]23)

Then X¢ = L*¥*(E ;) 1<, 1<3L % where L is

a; B1 O
az B2 0
az B3 0

and L* = I; ® L. Thus
® ®1:(Xo) = L - & Q@ 13(Eu)p- L# = L#*{2[y — (Ezu)ulL*.

Since rank L = 2, there exist a positive projection P of rank 2 and a matrix V
in M; such that L = PN. By Lemma (ii) P#(2Iy — (E ) )P * is positive, so

P ® 13(Xo) = N#P#(2I, — (Ejk)jk)P#N#

is positive. It is equivalent that ® ® 1,(X) is positive.
In the general case, the proof is similar; we start with X = x*x where

x = (@@, a:®, ...,0,Y; ... ;"™ D, ..., 0, V) and obtain
(o . . . .. ™D Q]
L =
T M O

which is of rank at most » — 1. This proves Theorem 1.

From the above theorem, we may perceive that, in general, a positive linear
map will usually not be completely positive. However, Stinespring and
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Stgrmer prove, in the special case that % or 8B is commutative, that P;[9(, 8] =
P [ ¥, B]. We will show that this can never happen in non-commutative
C*-algebras. In other words, if and only if % or B is commutative, will posi-
tivity be the same thing as complete positivity.

We shall adopt Berberian’s extension (see [2] for details) in our proof.

Let A be the space of all bounded sequences of complex numbers endowed
with supremum norm. Let glim be a generalized Banach limit defined on
M; i.e., glim is a linear functional defined on .# such that for any real
sequence (a;),

lim inf (a;) < glim (¢;) < lim sup (a;).

For a fixed Hilbert space.?#’, we define a positive Hermitian bilinear form on
#°>, the space of all bounded sequences in#, by

((x5), (v;)) = glim (¢x5,9,))

where (x,, ;) is the inner-product of x, and y, in .

The quotient space of #° modulo the subspace of all (x;) such that
((x;), (x;)) = 0is an inner-product space. Let#° be the completion. Denote
the coset containing (x;) by [(x,)]..# can be imbedded in.2#° by identifying
each x with [(x)]. For each 4 € & (), we assign 4° € % (#°) such that

A°[(x)] = [(Axy)].
We can see this determines a *-isomorphism of & () into % (#°). Further-
more,
I(4) = TI(4°) = T,(4°)
where IIj is the point spectrum and II is the approximate point spectrum.

LemMa 2. If U is not commutative, then

P, A, M) 2 Po[ A, M.].

Proof. If U is not commutative, there exist Hermitian operators 41, 44, 43

in U such that
A1 = 1(A2A3 - A3A2) # O

LetS# be the underlying space of 9. By Berberian's extension, we can extend
each A € B () to A° € B (°°). Thus A,° isa Hermitian operator and hasa
non-trivial eigenspace .’ corresponding to a non-zero eigenvalue \. 4:° re-
stricted to .% is a non-zero scalar operator, and hence cannot be of the form
XY — YX for X, Yy € .@(5’) [3, p. 126] From Alo = i(A2°A3° - A3°A2°)
we derive that ¥ is not a common invariant subspace under 4,° and 4;°.
Without loss of generality, we assume 4.°% € .¥; i.e., there exist non-zero
vectors x, y in#°, such that

A°—=Nx =0, (A:.°—NA4°x =y,
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Define ¥: % — M, by

_ (4, 0)(4%, x)
¥ = [<on,y><Aoy,y>]-

Let © be the transpose map: I; — M,. Obviously, © o ¥ is positive. It is not
2-positive because

o e[ 2
1= N A=A | 0 *i0 *

(90‘1’)®12'[ A2 ]—LO 0* * ’
l[yl]2 *i*  *

Ax(dy = \) |
of which the associated quadratic form applied to the column vector
a = [lyOyOy —6],
(- (a), @) = —2¢[]y|]* + &,

is non-positive if ¢ is a sufficiently small positive number.
LEMMA 3. If B is not commutative, then
P,[M,, B] 2 P,[M., B].

Proof. Let ¥ be the underlying space of 8. By Berberian’s extension, we can
extend each B € Z (') to B®° € X (4°).

By the same manner as in the first paragraph of the proof of Lemma 2, we
get Hermitian operators B;, B; in 9B, non-zero vectors %, v in.#°, and a real
number p such that

B® — pu =0, (B°— u)B,°u = v.
Define ®: M, — B by

& - [‘; g] = aB,* 4 BB1(B; — 1) + v(Bs — p)B1 + §(By — u).

It is evident that & is positive. Let © be the transpose map: M, — M,. Then
® 0 O is not 2-positive because

(4) o 9) ® 12 . O ...... o O ..... 0 — I:Bl(Bz_'u)(Bz~#)2 ]
1 0:0 1

which is not positive, since

(B:°) (B2® — w)B:® | _ _ — &l|BCollz — 2
<|:Blo(Bzo —u) (B — p)? ]( @ Qu), —e ®u> =€ HBI 2}|| 261|v”

is not positive when e is a sufficiently small positive number.
TureoreM 4. If Pi[ U, B] = Py[ A, B), then either A or B is commutative.

Proof. Assume U, B are not commutative. We use the same notations as in
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Lemma 2 and Lemma 3. It is evident that ® 0 © 0 ¥ is positive. It is not
2-positive because
(A1 — \)? (A1 — N4
Az(Al — )\) A22
_ [ p(By — u)? ¢(B: — w)? — ||y][*B1(B> — u)]
F*(By — w)? + |[y][2(B2 — )B4 T
(T is an operator in B, p is a real number, { is a complex number) which is not
positive, since Berberian’s extension applied to
(- (u® — @), u® — @) = —2[[y[[*[[o]|* + (T, v)
is not positive if e is a sufficiently small positive number.
Therefore Py[ 2, 8] 2 P,[ A, B]. This leads to a contradiction.

(<I>060\If)®12-[

From Theorem 1, we see that for linear maps on M, (» — 1)-positivity is
different from complete positivity. It will not be surprising that z-positivity
coincides with complete positivity.

TueOrREM 5. P,[U, M,] = P [A, M,].
Proof. We will first establish that
PLA, M) = Prpa[ A, M.
Assume ® € P,[U, M,]. Let (4,,) be a positive element in IN,,1(A). We wish

to prove that if x4, . . . x,41 are vectors in #-dimensional complex space, then
21200201 1{ B (Apg)%g, %,) = 0.

Since {xi,...%,+1} are vectors in n-dimensional complex space, they are

linearly dependent. We may assume that x,;1 is linearly dependent on

X1, . .. Xp i€,

Xpt1 = @1X1 + . . . T o,
for some complex numbers a;. From
_I al*l‘——Au e e e e e Al,n+1 _—] ]
I o,*I | . . I

| Ol dnt1r + « o« Auvrana el . . . L ad 0
[Cii . . . . C1, O
Cnl . e e . Cnn .
| 0 0

https://doi.org/10.4153/CJM-1972-044-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1972-044-5

526 MAN-DUEN CHOI

where
— *
Cp = An+ aniap + axd jupr + o dpit ng,

we know (Cj)is<;x<n is positive. As & is n-positive,
21 z{ P (Ca)wr ;) Z 0.
Substitute the definition of Cj and rearrange terms. We get

Zlép,qén-{-l(cb(qu)xav %) 20

as required. So P,[ A, M,] = Pt A, M,].

Replacing # by 7 4+ 1, Pout[ U, Muta1] = Popo[ A, Myra]. Now, we regard
M, as a subalgebra of M,1 naturally and obtain P, [ A, M,] = P,ro[ A, IM,].
Repeating the argument, P,in[ 2, M,] = Popmst[A, M,] m =0, 1, 2, ...)
and we conclude that P,[, M,] = P, [, M,].

Tueorem 6. P,[I,, B] = P [M,, B].

Proof. We will establish P,[I,, B] = P, [M,, B] first.
Let & € P,[IM,, B]; we wish to prove that for any positive

(Ape) € D1 (D),

(®(A4p))12p,05n+1 1s positive. We may assume that (4,,) is a rank-1 positive
nn+ 1) X n(n 4+ 1) matrix. Hence, Q, = (4p1, Ape, . . . Apny1) is an
n X n(n + 1) matrix with pairwise dependent rows. So {Q1, . . . Q,41} must be
linearly dependent. Without loss of generality, we let

Qi1 = aiQ1 + ... + ;0
for certain complex numbers a;; i.e.,
Appr1 =1y + .o . + a4y,
for all ¢. Consequently,
Apnr1 = a®4p1 + ... + ¥4,
for all p. Therefore

(<I> (qu))lép,q§n+l

I [ ®(A4y) . . . . ®(d,) O[I ail
I ®(Ap1) . . . . B(Ap) . Il
lar*T. . . . e*T O O . ... . 0 0|

The middle matrix is positive since ® is #-positive. Therefore (®(4,,))1p,<nt1
is positive. So P,[IM,, B] = P, [M,, B].
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Replacing # by # + 1, P,ia Myi1, B] = Pryol Murs, B]. Now, we regard
I, as a quotient space of M,1 naturally and obtain

Popa[ M, B] = Puse Mo, B].

Repeating the argument, P, [, B] = Primea[ D, B] w =0, 1, 2, ...)
and we conclude that P,[I,, B] = P [M,, B].

The generalizations of the above theorems are valid for matrices over a
commutative C*-algebra. These can also be viewed as direct generalizations of
Stinespring and Stgrmer’s results.

THEOREM 7. If € is commutative, then P,[ A, M, (C)] = P [A, M,(C)].

Proof. We may take € as the set of all continuous functions defined on a
compact Hausdorff space . Let & € P,[A, M,(C)]. If (4,,)12p,¢<m is pOsitive
in M,,(A) and

®(Ape) = (fpem)issesn

we wish to prove that

(fmik) 1=p,¢=m
1=j,k=n

is positive. For any s € .%, define ¥;: IM,(€) — M, by
Y ((fa)) = (f#(5)).

Obviously, ¥, is completely positive. Hence ¥;0 ®: A — M, is n-positive,
and thus completely positive by Theorem 5. So

(foam () )p.acse = (W50 @) @ Lu((Apg)ne)

is positive. Since s is arbitrary in %, (fpei)p.0:5.% 1S POSitive as required.

THEOREM 8. If G is commutative, then P,[ I, (C), B] = P [M,(E), B].

We may assume# = 2,and € = C(¥’) = the set of all continuous tunctions

defined on a compact Hausdorff space .. Denote by E;;(f) € M,(C(¥)) the
matrix with f € C(¥’) at the j, & component and zeros elsewhere, and by
L(f) € M. (C(F)) the diagonal matrix with f along the diagonal. As in the
special case proved by Stinespring, we must use integral representations.

LeEMMA. If ¥ € P,[M,(C(F)), Mu), then there exist a regular positive Borel
measure M on S and m-measurable matrix-valued functions Gz € My (L))
(1 =34,k = n), such that

(i) for all f in C(%),
YE(f) = fnyjk dm,

(i1) (G (s))jx s positive in M, (My) a.e. (m).

Proof. Let {xi1,...xn} be the canonical orthonormal basis of the under-
lying space of I,,. By the Riesz-Markoff theorem, there exists a regular positive
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Borel measure m on % such that for all f in C(¥)
2 (VL (f )%y, ) = fyf dm.

[Ejj(lfb Eu(f) ]
E,(f* Eu(fD

is positive, its image under ¥ ® 1, is positive, too; thus

[(‘I’Efj(lﬂ)xm %) (VE;(f)xg, %) ]
(WE;(f*)xp, %) (VEw(| f )54, %)

is positive. From the elementary tact

Since

[Zi 8 ] positive in Mo = 8] < (a1 + @),

we derive that
[VE 5 (f )xg20)| S 3{CVE ([ f Do 20) + (YEw (| f [)xq, %)}
= Yo(VL (| f )%, %)
= fylf| dm.

By the Riesz and Radon-Nikodym theorems, there exists an m-measurable
function gz, such that for all f in C(¥)

<\I/E]k<f )x(IV xl’) = fyf * Zikpq dm.

G = (irva)oa € Emm(m(y))

Then it is immediate that

Q
©

Let

\I/E]k(f ) = fnyjk dm.
Let & € C(¥) be positive. Then (E;;(h)) z is positive in M, (M, (€)), so its
image under ¥ ® 1, is positive; i.e.,
(YE;(h)) e = (fthjk dm); = 0.
By varying the positive function %, we get
(ij(s))jk é O a.e. (m)
Proof of Theorem 8. Assume ® € P,[IN,(C€), B]. We wish to prove that for

any positive integer m, if yy, . . . ¥,, are vectors in the underlying space of 8 and

(fjkzzq) 1=j,k=n
1=p,q=m

is positive in M, (M, (C)), then

qu(q)(fjkpq)jkyqy ¥p) = 0.

Let? be the space spanned by {yi, . .. yn}. Let ¥ be the effect of & followed
by the compression of B into % (#') and then the imbedding into M,,. It is
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evident that ¥ is n-positive. By the Lemma, there exist m and G with the
prescribed properties. Let

Gipg =G (1 = p,q < m).

Then
(G e (s)) jipe = 0 a.e. (m).

Hence

(firpa(s) * G (5))ikoe = (Fir0a(8) * Gipa (S)) jrne

=0 ae (m).
So
(X xfir0a(s) - Gz (s))pe 2 0 a.e. (m).

Therefore

(\I’(fjkpq)jk)pq = (fijkfjkw ' ij dm)w = 0.
It follows that

20l ®(firpa) 5V Y0) = 20a{¥ (fir90) #V0» ¥o) = 0
as required. Thus Theorem 8 is established.

Referring to Theorems 5-8, P, = P,.1 = P, = P_ naturally. In the general
case, we pose

Conjecture 1. P,[ U, B] = P,1[ A, B] = P,[Y, B] = P_[ ¥, B].

Hopefully, the above conjecture will be a corollary of a ‘generalization of
Theorem 4’ which we state as

Conjecture 2. 1f P,[ A, B] = P, A, B], then, either A is a quotient space
or B is a subalgebra of M, (C) for certain commutative €.

We remark that in the finite-dimensional case, every C*-algebra is of the
form M, @V, ... DM,,.; hence Conjecture 2 in this case is valid by
virtue of Theorem 1.
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