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ABSTRACT. Over the last decade, archaeologists have turned to large radiocarbon (14C) data sets to infer prehistoric
population size and change. An outstanding question concerns just how direct of an estimate 14C dates are for human
populations. In this paper we propose that 14C dates are a better estimate of energy consumption, rather than an
unmediated, proportional estimate of population size. We use a parametric model to describe the relationship
between population size, economic complexity and energy consumption in human societies, and then parametrize the
model using data from modern contexts. Our results suggest that energy consumption scales sub-linearly with popula-
tion size, which means that the analysis of a large 14C time-series has the potential to misestimate rates of population
change and absolute population size. Energy consumption is also an exponential function of economic complexity.
Thus, the 14C record could change semi-independent of population as complexity grows or declines. Scaling models
are an important tool for stimulating future research to tease apart the different effects of population and social
complexity on energy consumption, and explain variation in the forms of 14C date time-series in different regions.
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INTRODUCTION

The objective of this paper is to critically discuss how to learn about prehistoric social and
demographic processes from large samples of radiocarbon (14C) dates. Archaeologists
increasingly use large samples of 14C dates to estimate human population sizes, long-term
population growth rates, and other demographic processes (e.g., Pettitt et al. 2003; Shennan
2008; Peros et al. 2010; Williams 2012, 2013; Kelly et al. 2013; Shennan et al. 2013; Contreras
and Meadows 2014; Wang et al. 2014; Crema et al. 2016; Zahid et al. 2016). Making inferences
from these data sets about demography, however, is not without challenges (Williams 2012;
Downey et al. 2014; Attenbrow and Hiscock 2015; Brown 2015, 2017). The issues stem from
processes external and internal to prehistoric human populations. The majority of archae-
ological studies focus on external processes that may bias inferences about population from
14C date time-series, such as the effects of site sampling, sample size, 14C date calibration
and preservation bias (e.g., Surovell et al. 2009; Williams 2012; Contreras and Meadows 2014;
Shennan 2013; Brown 2015). These studies constitute invaluable frames of reference for
making more informed inferences about demographic processes from the frequency
of 14C date time-series. However, less attention has been paid to the ways that cultural
process, internal to prehistoric populations, may affect the creation of the 14C record (but see
Downey et al. 2014).

Simply put, fundamental changes in the basic contours of a society might prompt shifts in the
relationship between population size and the datable materials that people produce. As a first
step in exploring this issue, we model the effects of population size and economic complexity on
the production of waste products that archaeologists date, and explore how it might confound
the ways we currently make inferences about demographic and other cultural dynamics from
the frequency distribution of large samples of 14C dates. We use modern data to parametrize the
model and, from our results, make two points relevant to the study of dates as data. (1) 14C date
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frequencies arrayed in a time-series, based on large samples of dates, probably misestimate rates
of population growth. This is because 14C dates, all else equal, are one measure of the energy
consumed by prehistoric populations, and the scaling relationship between population and
energy consumption is often sub-linear in human populations. (2) Understanding the previous
point permits researchers to make predictions about how the 14C record covaries with other
classes of material culture and further evaluate the importance of changes in energy
consumption in prehistoric social change.

Dates as Data and Demography

The premise behind using the frequency of 14C dates in a time-series to infer population trends
is that the number of person years a region is occupied is proportional to the production of
cultural waste that archaeologists date. As Rick (1987:54) states,

Despite intervening biases, I assume that the number of dates is related to the magnitude of occu-
pation, or to the total number of person-years of human existence in a given area. Using this
premise, it is possible to assess and compare, in a relative fashion, the occupation histories within
and between regions.

This is a reasonable starting point, but there is a basic unevaluated assumption.1 Following
Rick’s initial assumption, most studies assume that population size and the frequency of 14C
dates produced by prehistoric populations are proportional (Peros et al. 2010:659). A propor-
tional relationship simply means that the production of 14C by a population is a constant
multiple of population size. A subtle ancillary assumption of this relationship between popu-
lation size and waste production is that individuals in a population are autonomous, and their
production and consumption decisions that result in waste lack mutual interdependence.

This may be a poor assumption. Social networks and technological differences can create
efficiencies of scale that lead to a sub-linear relationship between population and the con-
sumption of energy, materials and information in human societies (Hamilton et al. 2007;
Freeman and Anderies 2015). And, the consumption of energy, whether burning wood to stay
warm or consuming bone marrow to maintain metabolic needs, drives the accrual of datable
materials. We simply do not know whether the accumulation of cultural debris, due to the
consumption of energy, and population size are related in a proportional manner, and this may
bias our ability to make inferences about demographic processes from large samples of
14C dates. Thus, to make inferences from such data, we need to build models for understanding
how population and energy consumption are related.

An Energy Consumption Model

To build a model that scales population and the production of datable materials we assume the
following: all else equal, the frequency of 14C dates collected via unbiased sampling is one
estimate of the quantity of energy consumed by prehistoric populations, and the waste products
that result are proportional to the total amount of energy consumed. These assumptions are
simple, but, we argue, more reasonable than assuming 14C date frequencies are an unmediated
reflection of population. These assumptions simply rest on the premise that the materials we
date (bone, charred wood and seeds, etc.) are the byproducts of energy consumption events that
occur as populations live and reproduce, because biological maintenance and reproduction

1See Attenbrow and Hiscock (2015) for different critiques.
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require energy. The more of such events that take place during a given time period, the more
likely it is that organic waste products will preserve and accumulate.

Given the above assumptions, we propose a model of changes in energy consumption that
shares the same structure as a widely used macroeconomic model of human impacts on
ecosystems (York et al. 2003). Formally,

E = MP (1)

where E is total energy consumed; M describes the energy necessary for an average individual
to live and reproduce; and P is population.

We assume thatM has two components. The first is a constant metabolic rate defined by human
biology that has evolved over the last two million years. The second comportment is economic
complexity, which changes the metabolic rate that is necessary for an average individual to live
and reproduce in a given social system. Complexity is a much debated concept in anthropology
that can invoke many different ideas, such as scalar changes in political hierarchies to differences
in economies. Here, we follow the definition of Hidalgo and Hausmann (2009:10,570) and define
economic complexity as the number of capabilities and degree of integration among those
capabilities in an arbitrarily bound economy. A capability is simply the ability to make some-
thing or provide a service. The degree to which capabilities are integrated refers to how much
investment has been made to link different capabilities together via institutions and organiza-
tions. We adopt this view, in part, because the linkage between energy consumption and the
accumulation of capabilities in a socioeconomic system is intuitive. However, it is only a
starting point.

As the number of economic specialties and investments in organizations and institutions
that integrate those specialties increases, populations should consume more energy. To take
an extreme example, not only do modern post-industrial economies have steel workers, IT
specialists, farmers and engineers, but populations in such an economy also invest in creating
networks of organizations and institutions that link these specialists, such as corporations,
government bureaucracies, schools and social clubs. All of these organizations require institu-
tions to run effectively (which means energy invested in socialization) and built infrastructure,
like structures, fiber-optic lines and computers, to function (which requires energy to build and
maintain).

We assume here that biological metabolism is a constant across human populations (i.e., varies
much less than complexity). Holding biological metabolism constant, the energy necessary per
person should scale with complexity, C; where C is the number of capabilities and level of
integration of those capabilities in a system. In mathematical notation, we write the effect of
C on energy consumption as an increasing exponential function:

M = m1eβ1C (2)

where m1 is the constant biologically determinedmetabolic rate (energy per person per unit time);
and β1 is a coefficient that scales the rate of change in energy consumption per unit increase in
complexity, C. Here, C is constrained to positive integers, and β1> 0. Equation 2 and its
constraints mean that the consumption of energy compounds exponentially as the number of
capabilities and the degree those capabilities are integrated in an economy increases (Figure 1a).
Where the economy is very simple (has only one capability), then per capita energy consumption
is very near an individual’s biological metabolic rate. As C increases, however, the consumption
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of energy necessary for a given population to live and reproduce compounds exponentially
to account for all of the new specialties in an economy and the integration of those specialties.

Holding complexity equal, Equation 1 captures the basic assumption that population scales
linearly with total energy consumption, and that individuals in a population do not interact in
ways that create increasing or decreasing efficiencies in the consumption of energy. Our working
hypothesis here is that the relationship between population and energy consumption
is sub-linear rather than in proportion as Equation 1 assumes. This means that adding one more
individual to a foraging camp does not require a constant increase, but, rather, a decelerating
increase in the amount of wood needed to keep that individual warm (see Figure 1b). We suspect
that the relationship is sub-linear because of previous work on territory size in human societies.

Not unlike our assumption that the frequency of 14C dates estimates energy consumption, ecol-
ogists have long assumed that the size of an animal’s range (territory) is an estimate of the energy
that an average individual needs to consume (McNab 1963; Milton and May 1976; Lindstedt
et al. 1986; Brown et al. 2004; Jetz et al. 2004). For instance, the larger an animal’s body size, the
larger its range because big animals consume more energy than small animals (McNab 1963).
Models of animal territory size applied to hunter-gatherers and subsistence agricultural societies
also assume that the size of a group’s territory is an emergent outcome of the area needed to
consume energy by a population (Hamilton et al. 2009, 2007; Freeman and Anderies 2015;
Freeman 2016). These studies indicate that, among both hunter-gatherers and agriculturalists,
territory size is often a sub-linear function of population size (Figure 2). Why this is the case
remains an open question, but current hypotheses concur that as population size increases,
individuals become more efficient consumers of energy and information and, thus, have more
overlapping individual home-ranges (Hamilton et al. 2009; Freeman and Anderies 2015).

(a) (b)

Figure 1 (a) The proposed relationship between economic complexity and total energy consumption. (Note that we
use a continuous function simply to illustrate the shape of the relationship; C is constrained to positive integers.) (b)
Potential relationships between population and total energy consumption. The standard assumption in current
research is that the relationship is proportional (green dashed line and blue dotted line). We propose that the
relationship is sub-linear (red solid line); as population increases, the marginal increase in energy consumption
decreases. (See online version for colors.)
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A common way to model the possibility that the relationship between population and energy
consumption might be sub-linear is with a power function:

E = m2Pβ2 (3)

where E is the total energy consumed by a population; m2 is a scaling constant; and β2 is the
scaling exponent. Here, population is constrained to positive integers, and we assume that β2> 0
(see Figure 1b). Where β2 is equal to one, population scales linearly with energy consumption;
0< β2< 1 the scaling is sub-linear; and β2 >0 the scaling is super-linear.

Given Equations 2 and 3, we can combine the constants of m1 and m2 and set m1 × m2=M0,
and rewrite Equation 1 as

E = MP = M0eβ1CPβ2 : (4)

In sum, Equation 4 states that the total energy consumed by a population is biological meta-
bolism times economic complexity, which defines a cultural metabolism per person to live and
reproduce, times the total number of people in a population.

METHODS AND DATA

Equation 4 allows us to investigate the scaling relationship between population size
and energy consumption, holding economic complexity constant. We can evaluate
whether the scaling of population and energy consumption is sub-linear in contemporary
contexts by, first, taking the log of the right and left hand sides of Equation 4 to obtain a linear
model:

ln E = ln M0 + β1C + β2 ln P+ ϵ (5)
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Figure 2 Population–territory size scaling. Dots= hunter-gatherer societies; triangles= agricultural societies. The
dashed line is an OLS regression line for hunter-gatherers; the solid line is the same for agriculturalists. Reproduced
from Freeman (2016).
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where ε is the variability in the log of energy consumption not explained by population and
complexity. We use the log transformations to make Equation 4 linear because this allows us
to use well established techniques for estimating β2 using a linear regression model.

To estimate the coefficients and intercept in Equation 5, we use robust linear regression. Robust
linear regression refers to a set of regression models that are more robust to the effects of outliers
than the ordinary least-squares method. Here, we specifically use maximum likelihood type
estimation with the Huber weight function, by running theMASS package and “rlm()” function
in R. This method of regression is robust to outliers in the response variable (ln E below).
We calculate 95% confidence interval estimates for M0, β1, and β2 by bootstrapping with
replacement 2000 times.

To evaluate the relationship between population and energy consumption, we use four
data sets that document the relationship in contemporary societies. In the first, we use Interna-
tional Energy Agency estimates of total energy consumption (IEA 2016) in 146 countries
in 2013 and population estimates for each country from theWorld Bank in 2013 (TWB 2016). The
energy consumption data are self reported by each of the countries in the data set. The data, thus,
come from countries with mainly subsistence economies to countries with post-industrial knowl-
edge economies (e.g., Tanzania versus Japan), and the data vary in accuracy, which is a source of
measurement error. We have made an attempt to control for variability in the consumption of
energy driven by big differences in economic complexity by collecting data from Hausmann et al.
(2014) on economic complexity. The data are available for 117 countries that also have population
and energy consumption data. Hausmann et al. (2014) measure economic complexity using an
index that captures the diversity and ubiquity of products in an economy to create an export
network, and they argue that these networks reflect the capabilities and degree of capability
integration in an economy. The larger the number of products and the more unique, the more
organizationally complex the economy. This, of course, assumes that the index of economic
complexity is positively and linearly related to the true level of complexity in an economy. There
are other ways one might estimate complexity, but this is a point of departure that might be useful
for archaeologists since we can observe the diversity and ubiquity of material products in the
record (though understanding export and import dynamics is highly constrained). Using these
data, we can examine the scaling relationship between population and energy consumption
holding economic complexity constant.

In the second data set, we use estimates of total energy consumption in U.S. states in 2014
obtained from the United States Energy Information Administration (EIA) (EIA 2016) and
estimates of population in 2014 obtained from the U.S. Census (Census 2016). These data are
standardized estimates of energy consumption collected by energy professionals at the EIA.
We treat economic complexity among U.S. states as a constant because the variation in com-
plexity is less than the global sample. This means that all U.S. states are similar in economic
complexity to say France, but no state approaches the lower 1/2 of the economic complexity
distribution observed at a global scale. In the global and U.S. data sets we combine all forms of
energy consumption (e.g., wind, solar, nuclear, coal) and sectors (e.g., transportation, indus-
trial, residential). We are not concerned that many of these energy sources would not result the
production of datable materials, but, rather, with describing the general scaling relationship
between population and energy consumption.

In the third data set, we look at the relationship between the number of families in villages and
wood-fuel consumption in Bangladesh (Miah et al. 2009:Table 2). This data set has a sample
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size well below 30 and, thus, standard errors are likely inflated. Yet, the data set is instructive
because we can observe energy consumption at a much smaller scale and level of analysis than
in the first two data sets. These data were collected among subsistence farmers as part of an
ethnographic study on fuel consumption and deforestation. Again, economic complexity varies
little from village-to-village in this data set, so we treat complexity as a constant.

Finally, in the fourth data set we observe the relationship between the population size of
Kalahari Bushman camps and the number of hearths in each camp.We assume that the number
of hearths is a proxy for the amount of fuel-wood and other organics consumed by the
population of each camp to cook, stay warm, etc. Thus, we treat the number of hearths in a
camp as an estimate of energy consumption among these hunter-gatherers. All data come from
Yellen’s (1977) ethnoarchaeological study of Kalahari Bushman. We tabulated the data from
Yellen’s camp descriptions. We estimated the total number of hearths in a camp by adding the
formal hearths described for each camp with informal hearths. We estimated the number of
informal hearths using Yellen’s feature list for each camp site and by tabulating the number of
small one-time or special-purpose roasting pits, scatters or mounds of charcoal and ash that
might be fire hearths. We avoided any that he specifically listed as hearth clean-outs, but it is
possible that some informal hearths are clean-outs. This gave us a data set of 15 camps. As
above, the caveat about small sample size applies, and economic complexity varies little from
camp-to-camp, so we treat complexity as a constant.

We would like to emphasize that we are using data from three different scales (global,
national, and local), and these data come from a wide variety of economies. One might worry
that differences in economic complexity might change the population-energy consumption
relationship; this is why we have taken the time and care to build data sets at very different
scales and from a range of economic contexts. Convergent results might suggest that population
has a widespread effect on energy consumption that transcends types of economies.

RESULTS

In sum, our results indicate that, at a global scale of analysis, population size and
economic complexity both have effects on the total energy consumed by a population. Further,
at a global scale, the scaling relationship between population and energy consumption, holding
economic complexity equal, is sub-linear. The sub-linear scaling of population and energy
consumption is replicated at finer scales of analysis where economic complexity varies much less
than at a global scale. The scaling of population and energy consumption is sub-linear among
U.S. states, Bangladesh villages and Kalahari Bushman camps. Remarkably, the scaling
coefficients identified in our analysis are similar to the population–fuel-wood consumption
(energy consumption) coefficient of 0.79 (s.e.= 0.04), controlling for forest cover and GDP,
found by Knight and Rosa (2012:Table 2) in their study of wood consumption in 87 developing
economies. This means that a sub-linear scaling of population and energy consumption,
holding other factors equal, occurs across five different data sets collected at different scales of
analysis and with very different levels of technological variation.

Table 1 illustrates that the scaling relationship between population and energy
consumption is sub-linear, even after controlling for economic complexity, at the global scale.
As expected, population has a positive effect on energy consumption, with a sub-linear coeffi-
cient of β2 = 0.85. Also, as expected, economic complexity has a positive effect on energy
consumption. The more complex a country’s economy, the more energy the population
of a country consumes. Finally, although both population size and economic complexity have
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effects on energy consumption consistent with theory; population size explains more
of the variability in energy consumption than economic complexity. This is intuitively
illustrated by Figure 3. Note that the points are a much tighter fit around the best fit line in
Figure 3a versus 3b.

Table 1 also illustrates that the scaling of population size and energy consumption is sub-linear
at finer scales of analysis where economic complexity is much less variable among U.S. states,
Bangladesh villages and Bushman camps. Among U.S. states, the scaling of population and
energy consumption is sub-linear at β2 = 0.86. Among Bangladesh villages the scaling of

Table 1 Parameter estimates, standard errors and confidence intervals for the regression analysis
of each dataset: (a) global country level data, (b) U.S. state data, (c) Bangladesh villages, and
(d) Kalahari camps. Note that the estimated y-intercepts (ln M0) in regressions b–d should be
interpreted as the sum of the log-linear model’s ln M0 and β1C term because these respective
parameters are not statistically identifiable when we assume that the variable C is constant.

Parameter Coefficient Std. error 95% C.I.

(a) Global regression
ln M0 –11.33 0.80 –12.84, –9.67
β1 0.48 0.05 0.37, 0.59
β2 0.85 0.04 0.76, 0.94
(b) U.S. state regression
ln M0 –5.91 0.99 –7.85, –4.02
β2 0.86 0.06 0.73, 0.98
(c) Bangladesh regression
ln M0 1.66 1.20 –8.61, 2.15
β2 0.89 0.49 0.55, 2.00
(d) Kalahari regression
ln M0 –0.64 1.33 –3.16, 1.91
β2 0.89 0.46 0.02, 1.78
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Figure 3 (a) The relationship between population and total energy consumption among world countries. (b) The
relationship between the economic complexity index and total energy consumption among world countries.
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population and fuel-wood consumption is again sub-linear, at β2 = 0.89. However, due to the
very small sample size, the standard error of β2 in this case is quite large, and β2 = 1, as well as
β2 > 1 are within the 95 % confidence interval for the scaling exponent. Among Bushman camps
the scaling of population and number of hearths is sub-linear, at β2 = 0.89. As with the
Bangladesh villages, the sample size and standard error caveats apply.

DISCUSSION

So far, we have proposed a model that scales population against the production of datable
materials in social-ecological systems, and we have parametrized the model using modern data
on population size and energy consumption. We assume that a given unit of increase in the
energy consumed by a prehistoric population results in a proportionate increase in the accrual
of materials that archaeologists ultimately date. Contemporary data sets demonstrate a
sub-linear scaling relationship between population size and total energy consumption, and do
so at three different levels of analysis and in five different data sets (Table 1). Further, at a global
scale, where variation in economic complexity is widest, economic complexity has a positive
effect on the consumption of energy (Table 1, Figure 3).

The model proposed by Equation 4 and the results of our analysis, which are consistent with
Equation 4, suggest two points relevant to the study of dates as data. (1) 14C date frequencies
arrayed in a time-series, based on large samples of dates, as currently constructed, probably
misestimate rates of population growth. This is because 14C dates, all else equal, are one
estimate of the energy consumed in prehistoric social-ecological systems, and the scaling
relationship between population and energy consumption is often sub-linear in human popu-
lations. (2) Equation 4 provides a framework to make predictions about how the 14C record
should covary with other classes of archaeological material culture and further evaluate the
importance of changes in energy consumption in prehistoric social change.

Estimating Population Size and Growth

The sub-linear scaling of population size with energy consumption documented above suggests
that current approaches to interpreting 14C date frequencies systematically misestimate
population size over a given interval of time and growth rates. This is not a concern if we don’t
care about absolute population sizes and growth rates. For example, some researchers pool
together dates that are associated with the same context/site (e.g., Downey et al. 2014; Shennan
et al. 2013; Timpson et al. 2014). This is done to control for sampling bias by archaeaologists,
and shifts the frequency of 14C dates from an estimate of the number of individuals to an
estimate of the number of sites or number of phases of occupation. Counting sites is a classic
method that archaeologists use to estimate changes in population. This method is probably
pretty good for understanding relative changes in population over time. Indeed, Downey et al.
(2014) have conducted work that parallels our own in certain respects. They recognize that the
population of settlements varies with subsistence technology, and that there is a scaling between
settlement population and settlement area. Thus, they adjust their estimates of population from
site counts by these factors to obtain more informed estimates of prehistoric population sizes
and rates of change. This is valuable work relevant to making inferences about prehistoric
population parameters.

However, the method of pooling together dates that are associated with the same context/site
degrades the information contained within the 14C record. The model we develop is about the
factors that create variation in the 14C record itself. With such a model, one can adjust the 14C
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record to make more informed estimates of population, but the underlying model is about the
factors (internal to prehistoric systems) that create this variation in the first place. We may want
to use the 14C record for more than just estimating relative demographic parameters. We may
want to estimate changes in the production of waste more generally, or we may want to know
about absolute values of population size and change. In this case, we need to think about how to
adjust frequencies of 14C dates to account for the non-linear relationship between population
and energy consumption, without simply using them to count sites, which has the benefit of
controlling for sampling intensity but also has the cost of lost information.

Given our model and results, we propose, as a thought experiment, a method for rescaling 14C
datasets to estimate relative population sizes that accounts for a sub-linear relationship between
population size and the evidence for energy consumption. To conduct this thought experiment
we hold economic complexity constant because this factor appears to determine less variation
in energy consumption than population size. It is the evidence of energy consumption events,
not population size, that archaeologists analyze, and the available data suggest a sub-linear
relationship between population size and the consumption of energy. Starting with Equation 4,
sinceM0 is a constant, we can letM0 = 1, hold C= 1, and solve for P at a given time t by raising
each side of the equation to a power of 1/β:

Pt = E
ð1βÞ
t : (6)

Taking our contemporary data as a starting point, we could rescale the frequency of dates in
any given time period by a scaling factor between 1.12–1.26, (i.e., 1/β) for the range of values
derived above from the modern data sets (Knight and Rosa 2012:Table 2; Table 1 in this study).
It is important to note that by doing this we assume that the sub-linear scaling of population and
energy consumption (and, inversely, the super-linear scaling of energy consumption and
population) is an invariant law of human social-ecological dynamics. This is a strong
assumption, and one we make with caution. For now, however, a hypothetical scaling exponent
of 1.15 recognizes the sub-linear relationship between population and the production of datable
material. Doing this does two things: It raises estimates of population size in any given time
interval, and it increases estimates of population growth.

In this case, the rate of change in the scaled summed probability distribution (SPD) is 15%
faster, and, thus, the estimated growth rate 15% faster than an un-scaled SPD of 14C dates (the
dashed curve increases faster than the solid curve in Figure 4). In terms of real numbers, Zahid
et al. (2016:934) estimate the annual population growth rate of SW Wyoming and Colorado,
using an SPD uncorrected for taphonomic loss, as 0.053%. Our results suggest that this
underestimates population growth from between 12% to 26%, which yields growth rates from
0.05936% to 0.0667%. Simply put, an unscaled SPD underestimates population size, and,
because the relationship between energy consumption and population may be sub-linear, an
unscaled SPD will also underestimate rates of population growth.

For context, Zahid et al. (2016:932) correct their raw growth rate of 0.053% for taphonomic loss to
obtain a growth rate of 0.041%during the period from13,000 to 6000 cal BP. Thus, in absolute terms,
the energy scaling adjustment is comparable to the taphonomic adjustment. In fact, deep in time both
adjustments cancel each other out. However, as one moves closer to the present, taphonomic loss is
less important and an adjustment for population–energy scaling would have more of an effect. In
relative terms, at low population sizes, neither adjustment probably matters all that much.

However, the energy scaling adjustment applies through a whole time-series at a constant rate;
and a change of 15% in growth rate may be more meaningful for larger populations, and over
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time periods in which populations were growing at faster rates. For example, if a population of
1000 experienced a period of exponential growth at 1% versus 1.15% over 200 years, the
population growing at 1% would have a population of approximately 7316 people and the
population growing at 1.15% a population of approximately 9844 people (about a 35% differ-
ence). Keep in mind also that the energy scaling adjustment factor also changes absolute
population sizes and, holding space constant, population density. Theory suggests that critical
population density thresholds fundamentally change the selective pressures put on individuals
(Winterhalder et al. 1988; Binford 1999; Freeman andAnderies 2012; Freeman et al. 2015). If we
are systemically underestimating population densities, we may be missing evidence that such
thresholds were approached and crossed.

In sum, if the goal of a project is to reconstruct absolute population densities or growth rates, then an
informed researcher might transform their 14C date curve to account for the non-linear scaling of
energy consumption and population size, as documented here. To be clear, we are not suggesting
that all SPDs need to be adjusted to account for the sub-linear scaling of population and energy
consumption. Rather, if absolute growth rates are important, then we need to build frames of
reference useful for estimating absolute growth rates from SPDdata. Conceptualizing 14C date time-
series as estimates of energy consumption, thus, does not preclude using SPDs to estimate demo-
graphic parameters, but rather, gives us a more informed way to do so. This is just one advantage of
developing a model framework, from the factors that should drive energy consumption in human
societies, for predicting variation 14C date frequencies. In fact, our workmay be useful to incorporate
into dynamic growth models that take into account changes in competition and exogenous factors,
like fluctuations in climate (Brown 2017).

Predicting Covariates in the Archaeological Record

We know from previous research that archaeologists must control for the effects of calibration,
over sampling of single features or sites (sampling intensity), under certain circumstances,
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Figure 4 Raw and transformed SPDs. Dashed blue curve is the best fit for the transformed SPD; the solid red curve
is the best fit for the raw SPD. (See online version for colors.)
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taphonomic processes, and even must be cognizant of the assumptions of different growth
models before inferring population parameters from large 14C time-series (Surovell et al. 2009;
Williams 2012; Contreras and Meadows 2014; Brown 2015, 2017). Proper 14C hygiene
limits over-sampling induced bias, and recent research has shown that large sample sizes
(1000+ assays) are more robust to the effects of preservation bias (Williams 2012). Much work
has gone into these issues. Intuition probably tells most archaeologists that these issues are more
important than the social dynamics of prehistoric populations that created the 14C record
through energy consumption events. This, however, is an empirical question, and our approach
does not reject the importance of sampling bias and taphonomic processes. Our approach
simply puts processes external and internal to prehistoric systems on a more equal empirical
footing so that we can begin to tease apart the most important factors.

As a final discussion point, the theoretical framework developed above provides a starting point
to observe the relationships between 14C date frequencies and other classes of phenomena
related to energy consumption in the archaeological record. We do not argue that 14C date
frequencies are a sufficient measure of energy consumption. Rather, the 14C record is one
estimate of energy consumption. We can correlate the 14C record with other estimates of energy
consumption using other classes of material culture to evaluate this idea further. For example,
if the 14C curve is an estimate of total energy consumption, we would expect to see spikes in the
14C curve correlate with the use of more energy dense biomass, like grass seeds and nuts, as
opposed to less energy dense resources on the landscape. Hence macrobotanical evidence of
seed use should spike or evidence of agricultural intensification should spike as the 14C record
spikes, depending on the region and economic context. The model we have proposed is not an
end product, but is a beginning theory, justified by basic relationships between population and
energy consumption in modern contexts, and these modern relationships suggest that the model
may prove useful in archaeological contexts as well.

CONCLUSION

The purpose of this paper has been to critically discuss how to observe prehistoric social and
demographic processes from large samples of 14C dates. While much research has been con-
ducted to model and investigate non-cultural biasing agents, less attention has been given to
modeling how prehistoric culture process may affect the accumulation of datable materials
in prehistoric social-ecological systems and, thus, the amount of material available for
archaeologists to date. Consequently, we suggest that understanding the energy consumption
dynamics of human societies represents both a critical and logical step to make predictions that
explain variation in 14C date time-series.

We propose that large, regional-scale samples of 14C dates estimate changes in the consumption
of energy in prehistoric populations rather than population per se. It is important to note that
this is just one estimate. If this approach has validity, then future research will show clear
positive covariation between frequencies of 14C dates and other material estimates of energy
consumption, like the frequency of ground stone or the size of middens. Our results suggest that
energy consumption is a sub-linear function of population size and is positively related to
economic complexity, at a global scale. Given these relationships, if one is interested in using
14C data to estimate population growth rates, it may be productive to adjust a resultant time-
series to estimate population sizes and changes in population over time. This adjustment should
not be viewed as a “correction” of a 14C curve. Correction implies that a given curve is wrong.
Rather, the adjustment represents an informed judgment that should be made if one’s research
goal is to estimate absolute population growth rates, and if future research supports the
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hypothesis that the scaling of population size and energy consumption is sub-linear. We have
presented this correction example as a thought experiment; as a challenge to make us think
about what kind of correction we might need and when.

Large samples of 14C dates are a potentially informative way to measure prehistoric culture
process. More work is needed, however. We suggest three lines of research that may comple-
ment the already vigorous research into how best to make inferences from 14C time-series.

∙ Collect more data on contemporary or ethnographically recorded economies to empirically
investigate the scaling relationship between population and energy consumption. If the
scaling of population and energy consumption is an invariant law driven by basic metabolic
processes (Brown et al. 2004; Hamilton et al. 2007), this would be incredibly convenient
for archaeologists interested in making inferences from large 14C data sets. However, the
scaling may vary with technology or social institutions over time and space (DeLong and
Burger 2015; Freeman and Anderies 2015), which would mean that different parts of the 14C
date time-series would need to be rescaled, from the perspective of estimating population size
and growth rates, by different scaling factors over different segments of time.

∙ Evaluate the scaling of 14C time-series and time series of other classes of archaeological
material culture. For instance, the 14C record should scale sub-linearly with alternative
estimates of population, such as structure counts.

∙ Study further the effects of economic and political complexity on energy consumption.
Fluctuations in 14C date time-series curves, holding all else equal, also result from changes
is social and economic organization (Crombé and Robinson 2014). Holding population
constant, changes in economic organization, as well as complexity, should affect howmuch
energy an average individual consumes.

To end, we would like to emphasize again that our contribution is theoretical. We have pro-
posed a quantitative model to describe the relationship between the production of 14C dates and
human population. The practical relevance is twofold. First, the model we have specified allows
us to predict how 14C dates should covary with other classes of archaeological material culture.
Second, and the nominal focus of our paper, the model allows us to make better judgments
about how to infer prehistoric population parameters from large samples of 14C dates. Our
approach is not a finished product, but it is a step toward a more mature, deductive approach
to learning about social and demographic processes from large samples of 14C dates.
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