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Abstract

In this paper we survey recent developments in the classical theory of minimal surfaces in Euclidean
spaces which have been obtained as applications of both classical and modern complex analytic methods;
in particular, Oka theory, period dominating holomorphic sprays, gluing methods for holomorphic maps,
and the Riemann–Hilbert boundary value problem. Emphasis is on results pertaining to the global theory
of minimal surfaces, in particular, the Calabi–Yau problem, constructions of properly immersed and
embedded minimal surfaces in Rn and in minimally convex domains of Rn, results on the complex Gauss
map, isotopies of conformal minimal immersions, and the analysis of the homotopy type of the space of
all conformal minimal immersions from a given open Riemann surface.
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1. Introduction

An immersed surface M → Rn in the n-dimensional Euclidean space (n ≥ 3) is said to
be a minimal surface if it locally minimizes its area, meaning that sufficiently small
pieces of the surface have the smallest area among all surfaces with the same boundary.
Such surfaces were first studied by Euler in 1744 who showed that the only area
minimizing surfaces of rotation are planes and catenoids. The subject was taken up
by Lagrange in 1760 who studied the area functional and came up with the differential
equation of minimal graphs in R3. It was discovered by Meusnier in 1776 that a
surface is minimal if and only if its mean curvature vector field H : M → Rn vanishes
identically. Plateau pointed out in 1873 that minimal surfaces appear naturally as
soap films, and Douglas [39] and Radó [101] independently proved in 1932 that every
Jordan curve in Rn spans a minimal surface.
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The influence of complex analysis in the study of minimal surfaces was apparent
already in the third quarter of the 19th century when Enneper and Weierstrass provided
an analytic formula for representing any minimal surface in Rn. The so-called
Enneper–Weierstrass representation formula (2.11) relies on the fact that for an
isometric immersion X = (X1, . . . , Xn) : M → Rn from a Riemannian surface M (a
smooth surface endowed with a Riemannian metric), the metric Laplacian of the
immersion equals two times its mean curvature vector:

∆X = (∆X1, . . . ,∆Xn) = 2H.

Since the vanishing of the Laplacian depends only on the conformal class of the metric,
it follows that a conformal (angle preserving) immersion X : M→ Rn from a Riemann
surface M is minimal if and only if it is harmonic, ∆X = 0; equivalently, the (1, 0)-
derivative ∂X = (∂X1, . . . , ∂Xn) is a holomorphic Cn-valued 1-form. Furthermore, X is
conformal if and only if ∂X satisfies the null equation

(∂X1)2 + (∂X2)2 + · · · + (∂Xn)2 = 0. (1.1)

(See Section 2.4.) This reduces the construction of oriented conformal minimal
surfaces M → Rn to the construction of holomorphic maps from the Riemann surface
M to the subvariety An−1 of Cn defined by the equation z2

1 + z2
2 + · · · + z2

n = 0, the
null quadric (see (2.4)). This is the basis for the Enneper–Weierstrass formula;
see Theorem 2.4 and (2.15). The analogous formula applies to null holomorphic
immersions Z = (Z1, . . . ,Zn) : M → Cn, that is, holomorphic immersions satisfying

(dZ1)2 + (dZ2)2 + · · · + (dZn)2 = 0.

Every conformal minimal immersion M → Rn is locally (on any simply connected
subset of M) the real part of a null holomorphic immersion into Cn; conversely, the
real and the imaginary part of any null holomorphic immersion M→ Cn are conformal
minimal immersions M → Rn. See Section 2.7 for more details.

In the mid-20th century Osserman [98] renewed the interest in the theory of minimal
surfaces by showing in particular that the Enneper–Weierstrass representation formula
is very useful for the construction of complete minimal surfaces in R3 with finite
total curvature. This was the true starting point for the study of the global theory
of minimal surfaces by complex analytic methods. However, as late as in the 1980s
the prevailing thought was that hyperbolic Riemann surfaces (that is, those carrying
nonconstant negative subharmonic functions) play only a marginal role in the global
theory of minimal surfaces. This belief was partially refuted by the pioneering works
of Jorge and Xavier [75] from 1980, Nadirashvili [92] from 1996, and Morales [91]
from 2003 which combined the Enneper–Weierstrass formula with the classical Runge
approximation theorem for holomorphic functions.

Nevertheless, the true power and versatility of this approach was revealed only
in the last few years by bringing into the picture some of the more powerful
complex analytic methods originating in Oka theory (which amounts to holomorphic
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approximation techniques combined with a nonlinear version of the ∂-problem),
and by adapting the classical Riemann–Hilbert boundary value problem to the
constructions of conformal minimal surfaces in Rn and holomorphic null curves in Cn.
One of the key advantages of these stronger complex analytic methods over the
classical ones is that they allow a more precise control of the placement of the
whole surface in the space. This enabled the authors, often in collaboration with
Drinovec Drnovšek and López, to construct minimal surfaces with interesting global
properties and with complete control of the conformal structure on the surface. In
other words, not only it is now possible to find minimal surfaces with interesting global
properties and with prescribed topological type, one can also control their conformal
(holomorphic) type, a major advance in the theory.

The goal of this article is to present these recent developments in a way that is
accessible not only to researchers, but also to graduate students in both the field of
minimal surfaces and in complex analysis. What transpires from our narrative is that
these two fields are much more closely intertwined than believed up to now, with
major influences going in both directions. On the one hand, complex analytic methods
are a powerful tool in the classical minimal surface theory; on the other hand, many
questions about minimal surfaces lead to analogous questions about complex curves.
Several lines of thought have been pursued separately by researchers in these two fields
without having been aware of the analogies and synergies. Other problems have been
considered only in one field and overlooked in the other one, even though they are
perfectly natural and interesting in both fields.

Let us consider an example. It has been known since the early 1960s that every
open Riemann surface embeds properly holomorphically into C3 (see [52, Theorem
2.4.1]; this is a special case of the Bishop–Narasimhan–Remmert embedding theorem
for Stein manifolds). However, the question of whether every such surface embeds
as a smooth closed complex curve in the complex Euclidean plane C2 remains one of
the most difficult open problems of complex analysis, known as the Forster conjecture
[47] or the Bell–Narasimhan conjecture [28]. On the minimal surfaces side, there is
the equally natural problem of determining the smallest dimension d ≥ 3 for which
every open Riemann surface embeds as a proper conformal minimal surface in Rd.
Since every complex curve in Cn is also a minimal surface in R2n by Wirtinger [108],
we have that d ≤ 6. The following recent result says in particular that d ≤ 5.

Theorem 1.1. Let M be an open Riemann surface.

(a) There is a proper conformal minimal immersion M → R3. Moreover, proper
immersions are dense in the space of all conformal minimal immersions M→ R3

in the compact-open topology.
(b) There exists a proper conformal minimal immersion M → R4 with simple double

points, and such immersions are dense in the space of all conformal minimal
immersions M → R4.

(c) There is a proper conformal minimal embedding M ↪→ R5. Moreover, proper
conformal minimal embeddings are dense in the space of all conformal minimal
immersions M → Rn for any n ≥ 5.
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Part (a) is due to Alarcón and López [23, 24], while parts (b) and (c) were proved
in 2016 by the authors and López [19]. A more precise result in this direction is
Theorem 4.8 which provides conformal minimal immersions and embeddings with a
proper projection to a coordinate 2-plane, thereby giving an optimal negative answer
to both Schoen–Yau’s and Sullivan’s conjectures (see Section 4.2).

It is known that only a few open Riemann surfaces embed as proper minimal
surfaces in R3 (see, for example, [33, 34, 80, 89, 90]), so the smallest embedding
dimension for open Riemann surfaces as minimal surfaces satisfies d ≥ 4. This leaves
us with the question of whether d = 4 or d = 5. An affirmative answer to the Forster–
Bell–Narasimhan conjecture would imply d = 4.

In the last decade, powerful new methods for constructing proper holomorphic
embeddings of open Riemann surfaces into C2 have been developed by Wold and
Forstnerič, using the technique of exposing boundary points and pushing the boundary
of the surface in C2 to infinity by holomorphic automorphisms; see the recent survey in
[52, Ch. 9]. For example, every circular domain inC embeds properly holomorphically
into C2 [57]. These results, along with the absence of any conceptual obstructions,
speak in favor of the Forster–Bell–Narasimhan conjecture. Since minimal surfaces are
much more abundant than complex curves, the following conjecture has an even better
chance of being true.

Conjecture 1.2. Every open Riemann surface admits a proper conformal minimal
embedding into R4.

On the other hand, every open Riemann surface which is currently known to
properly embed as a conformal minimal surface in R4 is also known to properly embed
as a complex curve in C2, the main reason being that no automorphisms of Rn other
than the rigid motions map minimal surfaces to minimal surfaces.

Another example where the analogies between the fields of complex analysis and
minimal surfaces become even more apparent is the problem of constructing complete
bounded minimal surfaces in Rn (the Calabi–Yau problem) and complete bounded
complex submanifolds inCn (Yang’s problem). We describe this topic briefly, referring
to Section 5.3 for a more complete presentation.

Recall that an immersion X : M → Rn from an open manifold M is said to be
complete if the pullback g = X∗(ds2) of the Euclidean metric ds2 on Rn by the
immersion X is a complete Riemannian metric on M. Equivalently, given any divergent
path γ : [0, 1)→ M, meaning that the point γ(t) leaves every compact subset of M as t
approaches 1, the path t 7→ X(γ(t)) ∈ Rn has infinite Euclidean length.

The Calabi–Yau problem for minimal hypersurfaces asks whether there exist
complete bounded minimal hypersurfaces in Rn for n ≥ 3. Calabi conjectured in 1965
that such hypersurfaces do not exist (see [76, page 170]). The first counterexample to
Calabi’s conjecture was given by Nadirashvili [92] who in 1996 constructed a complete
bounded immersed minimal disc in R3. A plethora of results followed, extending
Nadirashvili’s construction to more general surfaces; see Section 5.3. However,
with the techniques available at that time it was impossible to control the conformal
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structure or the boundary behavior of the examples. The following considerably more
precise result was proved in 2015 by the authors together with Drinovec Drnovšek and
López (see [7, Theorem 1.1]).

Theorem 1.3. For every compact bordered Riemann surface M and integer n ≥
3 there is a continuous map X : M → Rn whose restriction to

◦

M = M\bM is a
complete conformal minimal immersion X :

◦

M → Rn and whose restriction to bM is
a topological embedding. If n ≥ 5 then X : M → Rn can be chosen as a topological
embedding.

If X is as in the theorem, then X(
◦

M) is a complete minimal surface in Rn bounded by
finitely many Jordan curves X(bM), and we have a control of its conformal structure.

One of the tools that made this construction possible is the adaptation of the
Riemann–Hilbert boundary value problem to null holomorphic curves and conformal
minimal immersions (see Sections 5.1 and 5.2). This topic was started by the authors
[15] in dimension n = 3. A more general result in any dimension n ≥ 3 was obtained by
the authors together with Drinovec Drnovšek and López [7]. We showed that one can
increase the intrinsic boundary distance in the Riemann surface M by an arbitrarily
large amount by changing the conformal minimal immersion M → Rn as little as
desired in the C 0-norm (see Lemma 5.5). This is achieved by applying the Riemann–
Hilbert method in a certain spiralling construction, somewhat resembling Nash’s
method [93] of constructing C 1 isometric immersions of Riemannian manifolds into
Euclidean spaces. The same technique applies to complex curves in Cn for any n ≥ 2,
to holomorphic null curves in Cn for any n ≥ 3, and to holomorphic Legendrian curves
in complex contact manifolds, thereby yielding an analogue of Theorem 1.3 in that
setting (see [17, 21]).

On the other hand, Calabi’s original conjecture holds for embedded minimal
surfaces of finite topology in R3 since these are necessarily proper in R3 according
to Colding and Minicozzi [31, Corollary 0.13]; their result was extended to surfaces
of finite genus and countably many ends by Meeks et al. [88]. Nothing seems known
about Calabi’s conjecture in dimensions n > 3.

The analogous problem in complex analysis was raised in 1977 by Yang [109]
who asked whether there exist complete bounded complex submanifolds in Cn. The
first such examples were found in 1979 by Jones [74] who showed that the unit
disc D = {z ∈ C : |z| < 1} admits a complete bounded holomorphic immersion into
C2, embedding into C3, and proper embedding into the ball of C4. Interest in this
subject was revived only recently, due mainly to the influence of the developments
in minimal surface theory. In 2013 the authors showed in [12] that every bordered
Riemann surface admits a complete proper holomorphic immersion into the ball of C2

and embedding into the ball of C3. A flurry of recent activity followed and we refer
to [52, Section 4.18] for a survey. Contrary to the case of minimal hypersurfaces in
Rn for n > 3, complete bounded complex hypersurfaces in Cn are known to exist in
arbitrary dimension n ≥ 2; see Alarcón and López [26] for n = 2 and Globevnik [61]
for any n. Indeed, Globevnik showed in [61] that the ball Bn of Cn can be foliated
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by complete closed complex hypersurfaces, and subsequently Alarcón [4] proved that
every smooth complete complex hypersurface in Bn can be embedded as a leaf into a
nonsingular holomorphic foliation of Bn all of whose leaves are complete.

Another classical topic of minimal surface theory is to understand which Riemann
surfaces properly immerse or embed as conformal minimal surfaces into a given
domain Ω ⊂ Rn. The case Ω = Rn is covered by Theorem 1.1. When considering
minimal surfaces in proper domains Ω ( Rn, especially bounded ones, one must
restrict attention to surfaces of hyperbolic conformal type. Classically this problem
was studied for convex domains (see [83]). The authors, jointly with Drinovec
Drnovšek and López, proved in [7] that every bordered Riemann surface admits a
complete proper conformal minimal immersion into any convex domain Ω ⊂ Rn, n ≥ 3,
which can be chosen as an embedding if n ≥ 5 and an immersion with simple double
points if n = 4. The Riemann–Hilbert boundary value problem for conformal minimal
immersions (see Theorem 5.1) plays a major role in the proof. It provides an inductive
construction by which all of the surface is kept in the domain Ω at every step while
pushing its boundary closer and closer to bΩ.

In the subsequent work [8] of the same authors this result was extended to the
substantially bigger class of all minimally convex (also called 2-convex) domains.
A domain Ω ⊂ Rn is minimally convex if it admits a smooth exhaustion function
ρ : Ω→ R+ such that the smallest two eigenvalues λ1(x), λ2(x) of its Hessian Hρ(x) =

(∂2ρ(x)/∂x j∂xk) at any point x ∈ Ω satisfy λ1(x) + λ2(x) > 0. If Ω is smoothly bounded
and ν1(x) ≤ ν2(x) ≤ · · · ≤ νn−1(x) are the principal curvatures of the boundary bΩ at
the point x ∈ bΩ from the inner side, then Ω is minimally convex if and only if
ν1(x) + ν2(x) ≥ 0 holds for every x ∈ bΩ. In particular, if n = 3 and S is a properly
embedded minimal surface in R3 (in which case ν1(x) + ν2(x) = 0 holds identically on
S ), then each connected component of R3\S is a 2-convex domain. The following
main result in this direction is [8, Theorem 1.1] (see Section 5.4).

Theorem 1.4. Assume that Ω is a minimally convex domain in Rn for some n ≥ 3,
M is a compact bordered Riemann surface, and X : M → Ω is a conformal minimal
immersion. Then X can be approximated uniformly on compacts in

◦

M = M\bM by
proper (and complete if so desired) conformal minimal immersions

◦

M → Ω.

Examples in [8] show that, in dimension n = 3, minimally convex domains form
the biggest class of domains for which one can expect general approximation results
for conformal minimal immersions by proper ones. This line of results is intimately
related to the construction, due to Drinovec Drnovšek and Forstnerič [40], of proper
holomorphic maps from bordered Riemann surfaces into any complex manifold Ω

admitting an exhaustion function whose Levi form has at least two positive eigenvalues
at every point (this holds in particular for any Stein manifold of dimension > 1).
Analysis of the proof in [8] reveals a deeper reason behind this connection.

Another interesting and important object in the theory is the complex Gauss map of
a conformal minimal surface X : M → Rn. This is the Kodaira-type holomorphic map
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GX : M → CPn−1, defined by

GX(p) = [∂X1(p) : · · · : ∂Xn(p)] ∈ CPn−1, p ∈ M.

In view of (1.1) the map GX assumes values in the complex hyperquadric

Qn−2 = {[z1 : . . . : zn] ∈ CPn−1 : z2
1 + · · · + z2

n = 0}.

This map is especially interesting in dimension n = 3. The quadric Q1 is the image
of a quadratically embedded rational curve CP1 ↪→ CP2, and hence we may consider
GX as a holomorphic map gX : M → CP1, that is, a meromorphic function on M. The
complex Gauss map gX of a minimal surface in R3 provides crucial information about
its geometry. Several important properties of the surface depend only on its Gauss
map, in particular, its Gauss curvature and the Jacobi operator (see, for example,
[86, 87, 97, 98]). Furthermore, it was shown by Barbosa and do Carmo [27, Theorem
1.2] that the minimal surface X(M) ⊂ R3 is stable if the spherical image gX(M) ⊂ CP1

of X(M) has an area less than 2π; this holds, for example, if gX(M) is a proper subset
of the unit disc D ⊂ C. Therefore, it is interesting to know the following recent result
[18, Corollary 1.2] of the authors with López.

Theorem 1.5. Any meromorphic function on an open Riemann surface M is the
complex Gauss map of a conformal minimal immersion X : M → R3. Furthermore,
X can be chosen as the real part of a holomorphic null curve Z = X + iY : M → C3.

The analogous result holds in higher dimensions, see [18, Theorem 1.1]. We refer
to Sections 2.6 and 4.3 for more information on this topic.

It is a natural problem to understand the homotopy type of the space CMI(M,Rn)
of all conformal minimal immersions of a given open Riemann surface M to Rn,
endowed with the compact-open topology. A conformal minimal immersion M → Rn

is called nonflat if its image is not contained in any affine plane; the space of all such
immersions is denoted by CMInf(M,Rn). Similarly, NCnf(M,Cn) denotes the space of
nonflat holomorphic null immersions M → Cn, and

<NCnf(M,Cn) = {<Z : M → Rn : Z ∈ NCnf(M,Cn)} ⊂ CMInf(M,Rn).

A continuous map φ : X → Y of topological spaces is a weak homotopy equivalence if
it induces a bijection of the path components of the two spaces and an isomorphism
πk(X, x0)

�
−→ πk(Y, φ(x0)) of their homotopy groups for each k ∈ N and x0 ∈ X. The

map φ is a homotopy equivalence if there is a continuous map ψ : Y → X such that
ψ ◦ φ : X→ X and φ ◦ ψ : Y → Y are homotopic to the identity on the respective spaces.
The following result was proved by Forstnerič and Lárusson [55] (see Section 4.4).

Theorem 1.6. Let M be an open Riemann surface, and let θ be a holomorphic 1-form
without zeros on M. The map

CMInf(M,Rn) −→ C (M,An−1
∗ ), X 7−→ ∂X/θ,
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is a weak homotopy equivalence, and is a homotopy equivalence if M has finite
topological type (that is, finite genus and number of ends). Likewise, the inclusion

<(NCnf(M,Cn)) ↪−→ CMInf(M,Rn)

is a weak homotopy equivalence, and is a homotopy equivalence (indeed, the inclusion
of a strong deformation retract) if M has finite topological type.

Besides complex analysis, the proof of Theorem 1.6 strongly relies on Gromov’s
convex integration method which originates in his paper [69] and has been fully
developed in his monograph [66] (see also Spring [105]). In the case at hand, this
technique provides families of loops with specified integrals in the null quadric. The
main interest of Theorem 1.6 is in the fact that the space C (M,An−1

∗ ) is quite easy
to understand. When M has finite topology, the second part of Theorem 1.6 may be
interpreted as follows.

We can simultaneously continuously deform all nonflat conformal minimal
immersions M → Rn to those with vanishing flux, keeping the latter ones fixed.

That a single conformal minimal immersion can be deformed to one with zero flux
was first shown by Alarcón and Forstnerič in [13]. It was later proved in [18, Corollary
1.6] that such a deformation exists through a family of conformal minimal immersions
sharing the same complex Gauss map.

In Theorem 1.6 we have excluded flat conformal minimal immersions and null
curves; these present technical difficulties in the analysis of the structure of the
respective mapping spaces. When M is a compact bordered Riemann surface, the
space CMIr

nf(M,Rn) of all nonflat conformal minimal immersions M→ Rn of class C r

(r ∈ N) is a real analytic Banach manifold (see Theorem 3.5), while flat immersions
seem to be singular points of CMIr(M,Rn). Nevertheless, in [18, Theorem 7.1] the
connected components of CMI(M,Rn) were identified as follows.

Theorem 1.7. Let M be a connected open Riemann surface. The inclusion
CMInf(M, Rn) ↪→ CMI(M, Rn) of the space of all nonflat conformal minimal
immersions M → Rn into the space of all conformal minimal immersions induces
a bijection of path components of the two spaces. In particular, the set of path
components of CMI(M,R3) is in bijective correspondence with elements of the abelian
group (Z2)l where H1(M;Z) = Zl, and CMI(M,Rn) is path connected if n > 3.

It was shown by the authors and López [20, 25] that complex analytic methods may
also be used in the construction of nonorientable minimal surfaces in Rn by working
on their oriented double-sheeted coverings. In [20, Example 6.1] the reader can find
the first known example of a properly embedded minimal Möbius strip in R4 (see also
Section 2.3). Space does not permit us to include these results. Another recently
developed topic that is not treated in this survey, but which relies on complex analytic
tools, is the theory of uniform approximation by complete minimal surfaces in R3 with
finite total curvature, due to López [77, 78].
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There are several other important aspects of the classical theory of minimal surfaces
in Euclidean spaces where substantial progress has been made in recent years but
are not covered in this paper; see in particular the survey by Pérez [100] and the
monographs by Meeks and Pérez [86, 87].

We include proofs of the main complex analytic results used in the constructions;
an exception is the Riemann–Hilbert boundary value problem for conformal minimal
surfaces and null curves (see Section 5.2) whose proofs are too complex to be included.
The inductive procedures leading to the proofs of the main results are for the most part
only sketched, referring to the original sources for further details.

2. From minimal surfaces to complex analysis and back

In this section we review those classical facts relating minimal surfaces to complex
analysis which are indispensable for the subsequent discussion. More complete
presentations are available in the books of Osserman [98], Colding and Minicozzi
[30, 32], and several others. For the geometry of surfaces we refer to do Carmo [36],
and for Riemann surfaces we refer to the monographs by Donaldson [37], Farkas and
Kra [43], and Forster [48].

Let Rn and Cn denote the real and the complex Euclidean space of dimension
n ∈ N = {1, 2, . . .}, respectively. Set R± = {x ∈ R : ±x ≥ 0}, Cn

∗ = Cn\{0}, and C∗ = C1
∗.

We denote the coordinates on Rn by (x1, . . . , xn) and those on Cn by z = (z1, . . . , zn),
where z = x + iy with x, y ∈ Rn and i =

√
−1. Maps to these spaces will be denoted

by the corresponding capital letters, for example, X : M → Rn and Z : M → Cn. We
denote the Euclidean inner product and the norm on Rn by

x · y =

n∑
j=1

x jy j, |x|2 = x · x =

n∑
j=1

x2
j .

The space Rn is endowed with the Riemannian metric ds2 = dx2
1 + · · · + dx2

n.

2.1. Riemann surfaces. A Riemann surface is a one-dimensional complex
manifold. We denote the space of all holomorphic functions on a Riemann surface
M by O(M). Since every minimal surface in Rn is parametrized by a nonconstant
harmonic map from a Riemann surface, such a surface cannot be compact and without
boundary. Hence we shall mainly consider Riemann surfaces that are either open
(that is, noncompact and without boundary) or compact with nonempty boundary. On
an open Riemann surface M we have the classical Runge–Mergelyan approximation
theorem and the Weierstrass interpolation theorem. The former says that, given a
Runge (also calledO(M)-convex) compact subset K ⊂ M (that is, such that M\K has no
relatively compact components), every continuous function K→ C that is holomorphic
on the interior

◦

K of K may be approximated uniformly on K by functions in O(M).
The latter says that every map Λ→ C on a closed discrete subset Λ ⊂ M extends to
a function in O(M). (Weierstrass’s original theorem for planar domains [107] was
extended to open Riemann surfaces by Florack [45] in 1948.) An open Riemann
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surface is the same thing as a one-dimensional Stein manifold (see Section 3.1), and the
aforementioned results extend to any Stein manifold as the Oka–Weil approximation
theorem and the Oka–Cartan extension theorem, respectively.

The following classification of open Riemann surfaces has important implications
in the theory of minimal surfaces; see Farkas and Kra [43, page 179].

Definition 2.1. An open Riemann surface is hyperbolic if it carries nonconstant
negative subharmonic functions; otherwise it is parabolic.

By Koebe’s uniformization theorem, the only simply connected open Riemann
surfaces up to biholomorphisms are C, which is parabolic by Liouville’s theorem,
and the unit disc D = {ζ ∈ C : |ζ | < 1} which is hyperbolic. Every compact Riemann
surface from which finitely many points have been removed is parabolic. We refer to
the survey by Grigor’yan [65] for further information on parabolicity and hyperbolicity
of Riemannian manifolds.

A compact bordered Riemann surface is a compact Riemann surface M with
boundary bM , ∅ consisting of finitely many pairwise disjoint Jordan curves. The
interior

◦

M = M\bM of such M is a bordered Riemann surface and is a hyperbolic
open Riemann surface. Such

◦

M is biholomorphic to a smoothly bounded domain in a
compact Riemann surface without boundary.

The only topological invariants of a connected oriented surface M are its genus
and number of ends. We say that M has finite topological type if both its genus g
and the number m of its ends are finite; such M is biholomorphic to a domain in a
compact Riemann surface R from which finitely many points and closed discs have
been removed (see Stout [106]). Its first homology group equals H1(M;Z) � Zl with
l = 2g + m − 1. There exist smooth Jordan curves C1, . . . ,Cl in M representing a basis
of H1(M; Z). If M is either open or compact with nonempty boundary, then these
curves can be chosen such that their union C =

⋃l
j=1 C j is contained in

◦

M and is Runge

in
◦

M; furthermore, C is a strong deformation retract of M.

2.2. Immersed surfaces, Riemannian metrics, and isothermal coordinates. Let
S be a smooth real surface and X = (X1, . . . , Xn) : S → Rn be a smooth immersion.
The pullback of the Euclidean metric ds2 on Rn by the immersion X is a Riemannian
metric on S :

g = X∗(ds2) = (dX1)2 + · · · + (dXn)2.

In any smooth local coordinate (u, v) on S we have that

g = A du2 + 2B du dv + C dv2, (2.1)

where A > 0, B,C > 0 are smooth functions and AC − B2 > 0; this is called the first
fundamental form of the immersed surface. If (2.1) holds in coordinates (u, v) on a
domain Ω ⊂ S , then the area of the immersed surface X : Ω→ Rn equals

Area (X(Ω)) =

∫
Ω

√
AC − B2 du dv.
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The 2-form
dAX(Ω) =

√
AC − B2 du dv (2.2)

is called the area element of the immersed surface X|Ω : Ω→ Rn.
By the celebrated isometric immersion theorem of Nash [93, 94], every smooth

Riemannian metric on S is induced by a smooth embedding X : S → Rn to a Euclidean
space. See Gromov [66, 68] for more information.

A Riemannian metric g on an orientable surface S determines an almost complex
structure operator J : TS → TS , with J2 = −Id, by the condition that for every unit
vector ξ ∈ TpS the pair (ξ, Jξ) is a positively oriented g-orthonormal basis of the
tangent space TpS . Riemannian metrics g, g̃ on S are said to be conformally equivalent
if g̃ = λg for some function λ > 0; such metrics determine the same almost complex
structure J. Conversely, a choice of J uniquely determines a conformal class of
Riemannian metrics. Around any point of S there exist smooth isothermal coordinates
(u, v) in which the Riemannian metric g has the form

g = λ(du2 + dv2)

for some positive function λ > 0. A change of coordinates which puts the metric
in this form is found by solving the Beltrami equation (see Ahlfors [3]). In such
coordinates, the associated almost complex structure J is the standard almost complex
structure on R2

(u,v) � C given by Jst (∂/∂u) = ∂/∂v, Jst (∂/∂v) = −(∂/∂u). The transition
map between any two isothermal coordinates is a conformal isomorphism, hence
holomorphic or antiholomorphic with respect to the complex coordinate ζ = u + iv.
If S is orientable, we obtain an atlas U = {(U j, φ j)} consisting of an open covering
{U j} of S and positively oriented isothermal coordinates φ j : U j → φ j(U j) ⊂ R2 � C
whose transition maps φi, j = φi ◦ φ

−1
j are biholomorphisms; that is, U is a complex

atlas determining on S the structure of a Riemann surface. If S is connected and
nonorientable, it admits a double-sheeted covering map π : S̃ → S with S̃ orientable,
and the same argument applied to the metric π∗g on S̃ shows that S̃ carries the structure
of a Riemann surface such that the projection map π is conformal.

2.3. Minimal surfaces. Assume that S is a smooth orientable surface and X : S →
Rn is a smooth immersion. Let N : S → Rn be a smooth vector field along X such that
for every p ∈ S the vector N(p) has unit length and is orthogonal to the tangent plane
dXp(TpS ) ⊂ Rn of X. Given a smooth function ψ : S → R with compact support, there
is a number ε > 0 such that the maps

Xt = X + tψN : S → Rn, t ∈ (−ε, ε),

are again smooth immersions. Such a family of immersions is called a normal
variation with compact support of X = X0. The associated area functional is

A(t) = Area (Xt(S )), t ∈ (−ε, ε). (2.3)

The first variation of area formula says that

A′(0) =
dA(t)

dt

∣∣∣∣
t=0

= −2
∫

S
H · N ψ dAX ,

https://doi.org/10.1017/S1446788718000125 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000125


298 A. Alarcón and F. Forstnerič [12]

where H and dAX are the mean curvature vector field and the area element (2.2) of X,
respectively. This leads to the following observation due to Meusnier.

Proposition 2.2. Let S be a smooth orientable surface and X : S → Rn be a smooth
immersion. The following two conditions are equivalent.

• X is a critical point of the area functional for all normal variations with compact
support.

• The mean curvature vector field H : S → Rn of X vanishes identically.

An immersed surface X : S → Rn is said to be minimal if it satisfies the equivalent
conditions in Proposition 2.2. It follows from the second variation of area formula (see
[95, page 95] or [35, pages 83–84]) that every minimal surface in Rn minimizes the
area locally. Surfaces which minimize the area globally are said to be area minimizing.
Furthermore, for a minimal surface X : S → Rn we have thatA′′(0) > 0 for all normal
variations with compact support if and only if every such variation of X strictly
increases the area; if this holds then X is said to be strongly stable. If, in contrast,
for some variation the second derivative is negative, A′′(0) < 0, then there are nearby
surfaces with a smaller area and X is called unstable. Finally, those minimal surfaces
for which A′′(0) ≥ 0 holds for all normal variations with compact support are said to
be stable. The stability property has important implications in the theory of minimal
surfaces.

The simplest example of a minimal surface in Rn is an affine plane, which is in fact
area minimizing. A classical result by Wirtinger [108] says that every holomorphic
curve in Cn = R2n (n ≥ 2) is area minimizing, and hence a minimal surface. The
following are some of the most classical examples of minimal surfaces in R3.

• The catenoids (Euler 1744) were the first minimal surfaces in R3 to be discovered,
apart from (pieces of) affine planes. Planes and catenoids are the only minimal
surfaces of revolution in R3. Here is a parametrization of a catenoid:

X(ρ, θ) =

(
c cosh

(
ρ

c

)
cos θ, c cosh

(
ρ

c

)
sin θ, ρ

)
, ρ ∈ R, θ ∈ [−π, π),

where c ∈ R\{0} is a constant. See Figure 2.1.
• The helicoids, discovered by Meusnier in 1776, are the only ruled minimal

surfaces in R3 besides planes. Here is a parametrization of a helicoid:

X(u, v) =
(
u cos(cv), u sin(cv), v

)
, (u, v) ∈ R2,

where c ∈ R\{0} is a constant. See Figure 2.1.
• The Enneper surface, which has self-intersections, was discovered by Enneper in

1864. Here is a parametrization; see Figure 2.2:

X(u, v) =

((
1 −

u2

3
+ v2

)
u,−

(
1 −

v2

3
+ u2

)
v, u2 − v2

)
, (u, v) ∈ R2.
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Figure 2.1. A catenoid (a) and a helicoid (b).

Figure 2.2. An Enneper surface (a) and a Riemann example (b).

• The Riemann minimal examples form a one-parameter family of singly periodic
minimal surfaces with infinitely many ends asymptotic to parallel planes (see
Figure 2.2). Besides planes, catenoids, and helicoids, these surfaces, described
by Riemann in a posthumous paper from 1867, are the only minimal surfaces in
R3 foliated by circles and affine lines in parallel planes.

• A properly embedded minimal Möbius strip in R4 was found by the authors and
López [20, Example 6.1]. The harmonic map X : C∗ → R4 given by

X(ζ) =<

(
i

(
ζ +

1
ζ

)
, ζ −

1
ζ
,
i

2

(
ζ2 −

1
ζ2

)
,

1
2

(
ζ2 +

1
ζ2

))
is a proper conformal minimal immersion such that X(ζ1) = X(ζ2) if and only if
ζ1 = ζ2 or ζ1 = I(ζ1), where I is the fixed-point-free antiholomorphic involution
on CP1 (and on C∗) given by I(ζ) = −1/ζ̄. Since C∗/I is a Möbius strip, the
image surface X(C∗) ⊂ R4 is a properly embedded minimal Möbius strip in R4.

Another famous example is Meeks’s immersed Möbius strip in R3 with finite total
curvature −6π (see [85, Theorem 2] and [20, Example 2.6 and Figure 2.3]).
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2.4. Conformal immersions and the null quadric. Note that vectors x, y ∈ Rn are
of the same size and orthogonal to each other if and only if the complex vector
z = x + iy ∈ Cn belongs to the null quadric

A = {z = (z1, z2, . . . , zn) ∈ Cn : z2
1 + z2

2 + · · · + z2
n = 0}. (2.4)

Indeed, we have that
∑n

j=1(x j + iy j)2 = |x|2 − |y|2 + i x · y from which the claim follows.
Elements z ∈ A are called null vectors. Note that A is a complex cone which is
nonsingular except at the vertex 0 ∈ A. The punctured null quadric

A∗ = A\{0} = Areg (2.5)

is a homogeneous space of the complex Lie group C∗ ⊕ On(C), where On(C) = {A ∈
GLn(C) : AAt = I} is the orthogonal group over C. It follows that maps M → A∗ from
any Stein manifold (in particular, from any open Riemann surface) satisfy the Oka
principle (see Theorem 3.1). This is the single most important fact in applications of
complex analysis to the theory of minimal surfaces in Rn.

Let M be a Riemann surface. Note that an immersion

X = (X1, X2, . . . , Xn) : M → Rn (2.6)

is conformal if and only if, in any local holomorphic coordinate ζ = u + iv on
M, the partial derivatives Xu = ∂X/∂u = (X1,u, . . . , Xn,u) ∈ Rn and Xv = ∂X/∂v =

(X1,v, . . . , Xn,v) ∈ Rn at any given point have the same length and are orthogonal to
each other:

|Xu| = |Xv| > 0, Xu · Xv = 0. (2.7)

Following the customary notation in complex analysis, we set

Xζ =
∂X
∂ζ

=
1
2

(Xu − iXv), Xζ̄ =
∂X
∂ζ̄

=
1
2

(Xu + iXv).

Thus, the equation Xζ̄ = 0 characterizes holomorphic functions. In view of what has
been said above, condition (2.7) is equivalent to

2Xζ = Xu − iXv ∈ A∗,

where A∗ is given by (2.5). The exterior derivative on M splits into the sum

d = ∂ + ∂

of the (1, 0)-part ∂ and the (0, 1)-part ∂, where

∂X = Xζ dζ, ∂X = Xζ̄ dζ̄.

Hence, an immersion (2.6) is conformal if and only if its (1, 0)-differential ∂X =

(∂X1, . . . , ∂Xn) satisfies the nullity condition

(∂X1)2 + (∂X2)2 + · · · + (∂Xn)2 = 0. (2.8)
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2.5. The Enneper–Weierstrass representation formula. Assume now that M is
an open Riemann surface and X : M → Rn is a conformal immersion. In any local
holomorphic coordinate ζ = u + iv on M the Laplacian equals

∆ =

(
∂

∂u

)2
+

(
∂

∂v

)2
= 4

∂2

∂ζ̄ ∂ζ
.

In particular, X is harmonic if and only if the 1-form ∂X is holomorphic. It is classical
(see Osserman [98]) that

∆X = 2µH (2.9)

where H is the mean curvature vector field of X and µ = |Xu|
2 = |Xv|

2. Taking into
account also (2.9) gives the following classical result.

Theorem 2.3. Let M be an open Riemann surface and X : M → Rn be a smooth
conformal immersion for some n ≥ 3. Then the following conditions are pairwise
equivalent.

• X is minimal (a stationary point of the area functional (2.3)).
• X has vanishing mean curvature vector field: H = 0.
• X is harmonic: ∆X = 0.
• The Cn-valued 1-form ∂X = (∂X1, . . . , ∂Xn) is nowhere vanishing on M,

holomorphic, and satisfies the nullity condition (2.8).
• Let θ be a nowhere vanishing holomorphic 1-form on M. The map f = 2∂X/θ :

M → Cn is holomorphic and assumes values in A∗ (2.5).

If these conditions hold then the induced Riemannian metric on M equals

X∗(ds2) = 2
(
|∂X1|

2 + · · · + |∂Xn|
2). (2.10)

Every open Riemann surface M admits a nowhere vanishing holomorphic 1-form
θ by the Oka–Grauert principle (see [52, Theorem 5.3.1(iii)]). If X : M → Rn is a
conformal minimal immersion then the 1-form 2∂X = f θ with values in A∗ has exact
real part since dX = ∂X + ∂X = 2<(∂X); equivalently,

∮
C<( f θ) = 0 for every closed

curve C ⊂ M. Conversely, every holomorphic 1-form f θ with values in A∗ and exact
real part<( f θ) determines a conformal minimal immersion by integration. We record
this observation in the following corollary to Theorem 2.3.

Theorem 2.4 (The Enneper–Weierstrass representation formula). Let M be a
connected open Riemann surface, θ be a nowhere vanishing holomorphic 1-form on M,
and p0 ∈ M be an arbitrary point. Every conformal minimal immersion X : M → Rn

(n ≥ 3) is of the form

X(p) = X(p0) +

∫ p

p0

<( f θ), p ∈ M, (2.11)

where f : M→ A∗ is a holomorphic map into the punctured null quadric such that the
Rn-valued 1-form<( f θ) is exact. We have that 2∂X = f θ.
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2.6. The complex Gauss map. Let X = (X1, . . . , Xn) : M → Rn be a conformal
minimal immersion. Its differential ∂X = (∂X1, . . . , ∂Xn) determines the Kodaira type
holomorphic map

GX : M → CPn−1, GX(p) = [∂X1(p) : · · · : ∂Xn(p)], p ∈ M, (2.12)

called the generalized Gauss map of X. In view of Equation (2.8), GX assumes values
in the complex hyperquadric

Qn−2 =
{
[z1 : . . . : zn] ∈ CPn−1 : z2

1 + · · · + z2
n = 0

}
. (2.13)

In the case n = 3, the quadric Q1 ⊂ CP
2 is the image of a quadratically embedded

Riemann sphere CP1 ↪→ CP2, and the complex Gauss map of a conformal minimal
immersion X = (X1, X2, X3) : M → R3 is defined to be the holomorphic map

gX =
∂X3

∂X1 − i ∂X2
=
∂X2 − i ∂X1

i ∂X3
: M −→ CP1. (2.14)

The function gX equals the stereographic projection of the real Gauss map N =

(N1,N2,N3) : M → S2 ⊂ R3 to the Riemann sphere CP1; explicitly,

gX =
N1 + iN2

1 − N3
: M −→ C ∪ {∞} = CP1.

We can recover the differential ∂X = (∂X1, ∂X2, ∂X3) from the pair (gX , φ3), with
φ3 = ∂X3, by the classical Weierstrass formula:

∂X = Φ = (φ1, φ2, φ3) =

(1
2

( 1
gX
− gX

)
,
i

2

( 1
gX

+ gX

)
, 1

)
φ3. (2.15)

(See [98, Lemma 8.1, page 63].) Conversely, given a pair (g, φ3) consisting of a
holomorphic map g : M→ CP1 and a holomorphic 1-form φ3 on M, the meromorphic
1-form Φ = (φ1, φ2, φ3) defined by (2.15) satisfies

∑3
j=1 φ

2
j = 0; it is the differential

∂X of a conformal minimal immersion X : M → R3 if and only if it is holomorphic,
nowhere vanishing, and its real periods vanish. If this holds then the map X is obtained
from Φ (2.15) by integration:

X(p) = X(p0) + 2
∫ p

p0

<(Φ), p ∈ M.

The generalized Gauss map GX is of great importance in the theory of minimal
surfaces; see Osserman [98] and the papers [18, 58, 60, 72, 79, 99, 102, 103], among
many others. In particular, the complex Gauss map gX : M→ CP1 (2.14) of a minimal
surface in R3 provides crucial information about its geometry since the key quantities
such as the Gauss curvature and the Jacobi operator depend only on gX (see, for
example, [86, 87, 97, 98]).

The authors together with López have recently shown in [18, Corollary 1.2] that
every meromorphic function on an open Riemann surface M is the complex Gauss
map of a conformal minimal immersion X : M→ R3; furthermore, X can be chosen as
the real part of a holomorphic null curve Z = X + iY : M → C3.
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2.7. Flux, period map, conjugate surfaces, and null curves. The conjugate
differential of a smooth map X : M → Rn is defined by

dcX = i(∂X − ∂X) = 2=(∂X).

Recall that d = ∂ + ∂. Hence we get

2∂X = dX + i dcX, ddcX = 2i ∂∂X = ∆ζX · du ∧ dv,

where the last equation holds in any local holomorphic coordinate ζ = u + iv. Thus,
X is harmonic if and only if dcX is a closed Rn-valued 1-form on M, and in this case
dcX = dY holds for any local harmonic conjugate Y of X.

The flux map of a harmonic map X : M → Rn is the group homomorphism
FluxX : H1(M;Z)→ Rn given by

FluxX([C]) =

∮
C

dcX =

∮
C

2=(∂X), [C] ∈ H1(M;Z).

The integral is independent of the choice of the path in a given homology class, and
we shall write FluxX(C) for FluxX([C]) in the sequel.

Fix a nowhere vanishing holomorphic 1-form θ on M. Associated to any
holomorphic map f : M → Cn is the period homomorphism

P( f ) : H1(M;Z)→ Cn,

defined on any closed oriented curve C ⊂ M by

P( f )(C) =

∮
C

f θ.

The map f corresponds to a conformal minimal immersion X : M→ Rn as in (2.11) if
and only if f (M) ⊂ A∗ and<(P( f )) = 0; in this case, X is given by (2.11) and

FluxX = =(P( f )) : H1(M;Z)→ Rn.

We have FluxX = 0 if and only if X admits a harmonic conjugate Y : M → Rn (the
conjugate conformal minimal surface), and in this case the holomorphic immersion
Z = (Z1, . . . ,Zn) = X + iY : M → Cn satisfies

(dZ1)2 + (dZ2)2 + · · · + (dZn)2 = 0.

Such Z is called a null holomorphic immersion of M into Cn. We see as in Theorem 2.4
that every null holomorphic immersion is of the form

Z(p) = Z(p0) +

∫ p

p0

f θ, p ∈ M,

where f : M → A∗ is a holomorphic map into the punctured null quadric such that the
Cn-valued 1-form f θ is exact. The minimal surfaces

Xt =<(eitZ) : M → Rn, t ∈ R

are called the associated minimal surfaces of the null curve Z.
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Example 2.5. The catenoid and the helicoid (see Figure 2.1) are conjugate minimal
surfaces: the real and the imaginary part of the null curve Z : C→ C3 given by

Z(ζ) = (cos ζ, sin ζ,−iζ), ζ = x + iy ∈ C.

Consider the family of minimal surfaces (t ∈ R):

Xt(ζ) =<(eitZ(ζ))

= cos t

cos x · cosh y
sin x · cosh y

y

 + sin t

 sin x · sinh y
−cosx · sinh y

x

 .
At t = 0 we have a parametrization of a catenoid, and at t = ±π/2 we have a (left- or
right-handed) helicoid.

2.8. Spaces of mappings. If M is an open Riemann surface, then O(M) denotes the
algebra of holomorphic functions M → C, O(M, X) is the space of all holomorphic
mappings M → X to a complex manifold X,

CMI(M,Rn)

is the space of all conformal minimal immersions M → Rn, and

NC(M,Cn)

is the space of all null holomorphic immersions M → Cn. These spaces are endowed
with the compact-open topology.

Assume now that M is a compact bordered Riemann surface (see Section 2.1).
Given r ∈ Z+ = {0, 1, 2, . . .}, we denote by A r(M) the space of all functions M → C
of class C r(M) that are holomorphic in

◦

M = M\bM. More generally, for any complex
manifold X we let A r(M, X) denote the space of maps M → X of class C r which are
holomorphic in

◦

M. We write A 0(M) = A (M) and A 0(M, X) = A (M, X). Note that
A r(M,Cn) is a complex Banach space, and for any complex manifold X the space
A r(M, X) is a complex Banach manifold modeled on the Banach space A r(M,Cn)
with n = dim X (see [52, Theorem 8.13.1] or [49, Theorem 1.1]). A compact bordered
Riemann surface M can be considered as a smoothly bounded compact domain in
an open Riemann surface R. It is classical that each function in A r(M) can be
approximated in the C r(M) norm by functions in O(M), that is, functions holomorphic
in a neighborhood of M in R. The same holds for maps to an arbitrary complex
manifold (see [40, Theorem 5.1]). For any r ∈ N we denote by

CMIr(M,Rn)

the set of all conformal minimal immersions M→ Rn of class C r(M). More precisely,
an immersion F : M → Rn of class C r belongs to CMIr(M,Rn) if and only if ∂F
is a (1, 0)-form of class C r−1(M) that satisfies the nullity condition (2.8) and is
holomorphic on the interior

◦

M. Similarly,

NCr(M,Cn)

denotes the space of all null holomorphic immersions M → Cn of class A r(M).
The following notions will play an important role in our analysis.
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Definition 2.6. Let M be a connected open or bordered Riemann surface, let θ be a
nowhere vanishing holomorphic 1-form on M, and let A be the null quadric (2.4).

(1) A holomorphic map f : M → A∗ is flat if the image f (M) is contained in a
complex ray Cν ⊂ A (ν ∈ A∗) of the null quadric, and is nonflat otherwise.

(2) A conformal minimal immersion X : M → Rn is nonflat if the map f = ∂X/θ :
M → A∗ is nonflat; equivalently, if the image X(M) ⊂ Rn is not contained in an
affine plane. A null holomorphic immersion Z : M → Cn is nonflat if the map
f = dZ/θ : M → A∗ is nonflat.

(3) A holomorphic map f : M→ A∗ is full if the image f (M) is not contained in any
complex hyperplane of Cn. A conformal minimal immersion X : M → Rn is full
if the image X(M) is not contained in any affine hyperplane of Rn.

For a conformal minimal immersion M → R3, nonflat and full are equivalent
conditions. However, in dimensions n > 3 we clearly have that full =⇒ nonflat, but
the converse is false. If M is an open Riemann surface, we denote by CMInf(M,Rn)
the open subset of CMI(M,Rn) consisting of all immersions which are nonflat on every
connected component of M. The analogous notation

CMIr
nf(M,Rn) ⊂ CMIr(M,Rn)

is used for a compact bordered Riemann surface M. Likewise, NCnf(M,Cn) is the
space of all nonflat holomorphic null curves.

The tangent space TzA is the kernel at z of the (1, 0)-form
∑n

j=1 z j dz j; hence
TzA = TwA for z,w ∈ Cn\{0} if and only if z and w are colinear. This implies the
following lemma.

Lemma 2.7. A holomorphic map f : M→ A∗ is nonflat if and only if the linear span of
the tangent spaces T f (p)A ⊂ T f (p)C

n � Cn over all points p ∈ M equals Cn.

We now introduce sets in Riemann surfaces that are used in Mergelyan
approximation theorems for conformal minimal immersions, and the notion of a
generalized conformal minimal immersion on them. Such sets appear naturally in
the constructions of conformal minimal immersions.

Definition 2.8. Let M be an open Riemann surface. A compact set S ⊂ M is
admissible if it is Runge in M and of the form S = K ∪ Γ, where K is a finite union
of pairwise disjoint smoothly bounded compact domains in M and Γ = S \

◦

K is a finite
union of pairwise disjoint smooth Jordan arcs and closed Jordan curves meeting K only
in their endpoints (or not at all) and such that their intersections with the boundary bK
of K are transverse.

Definition 2.9. Let S = K ∪ Γ be an admissible set in an open Riemann surface M
and let θ be a nowhere vanishing holomorphic 1-form on M. A generalized conformal
minimal immersion S → Rn is a pair (X, f θ), where X : S → Rn is a smooth map that
is a conformal minimal immersion on an open neighborhood of K and f : S → A∗ is
a smooth map that is holomorphic on a neighborhood of K, such that the following
conditions are satisfied:
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• f θ = 2∂X holds on an open neighborhood of K; and
• for any smooth path α in M parametrizing a connected component of Γ we have
<(α∗( f θ)) = α∗(dX) = d(X ◦ α).

The space of all generalized conformal minimal immersions S → Rn is denoted by

GCMI(S ,Rn).

3. Oka theory, period dominating sprays, and loops with given periods in the
null quadric

Oka theory concerns the existence, approximation, and extension theorems for
holomorphic maps f : S → O from Stein manifolds S to Oka manifolds O. In this
section we recall the main results of Oka theory which are used in the study of minimal
surfaces. For Stein manifolds, see any of the monographs [64, 70, 73] or [52, Ch. 2].
For Oka theory, see [52, Chs 5–7] and the surveys [50, 54]. A recent survey of
holomorphic approximation theory is available in [46].

3.1. Stein manifolds. A complex manifold S is said to be a Stein manifold (named
after Karl Stein who introduced this important class of complex manifolds in 1951) if
it satisfies the following two conditions:

(1) holomorphic functions on S separate any pair of distinct points;
(2) if K is a compact subset of S , then so is its O(S )-convex hull

K̂ =
{
x ∈ S : | f (x)| ≤ sup

K
| f | ∀ f ∈ O(S )

}
.

A compact set K ⊂ S is called O(S )-convex if K = K̂. If S = Cn then K̂ is
the polynomial hull of K. Clearly, no manifold containing a compact complex
submanifold of positive dimension is Stein.

The main example for the purposes of this paper is when dim S = 1, that is, S is
a Riemann surface. Every open Riemann surface is a Stein manifold according to
Behnke and Stein (1949), and in this case the hull K̂ of any compact set K ⊂ S is the
union of K with all relatively compact connected components of its complement S \K.
Furthermore, the Cartesian product S 1 × S 2 of a pair of Stein manifolds is Stein, and
the total space E of any holomorphic vector bundle E→ S over a Stein base S is Stein.
A domain Ω ⊂ Cn is Stein if and only if it is a domain of holomorphy, which holds if
and only if it is pseudoconvex. In particular, every domain in C is Stein, and every
convex domain in Cn for any n ≥ 1 is Stein.

There are several other characterizations of the class of Stein manifolds. One is
that a Stein n-manifold S embeds properly holomorphically into the Euclidean space
C2n+1 (Remmert 1956, Bishop 1960, Narasimhan 1961; see [52, Theorem 2.4.1]);
the converse is easily seen by restricting holomorphic polynomials to the embedded
submanifold. Another characterization of Stein manifolds is by the existence of
strongly plurisubharmonic exhaustion functions (see [52, Section 2.5]).
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Axioms (1) and (2) say that a Stein manifold admits many holomorphic functions.
More explicit manifestations of this phenomenon are the Oka–Weil approximation
theorem and the Oka–Cartan extension theorem. The first one says that, given an
O(S )-convex compact set K in a Stein manifold S and a holomorphic function f on
a neighborhood of K, we can approximate f as closely as desired uniformly on K by
global holomorphic functions on S . This generalizes the classical Runge theorem for
functions on C. (See the survey [46] for more information.) The second one says
that for any closed complex subvariety S ′ of a Stein manifold S and holomorphic
function f : S ′ → C there exists a holomorphic function F : S → C extending f , that
is, F|S ′ = f . If S is an open Riemann surface and S ′ is a discrete subset of S , this is the
classical Weierstrass interpolation theorem [107] (see also [45]). One may combine
the approximation and the interpolation statement, including also jet interpolation on
a subvariety and continuous dependence on parameters; see [52, Theorem 2.8.4]. The
same results hold for sections of any holomorphic vector bundle over a Stein manifold.
These classical results, along with Cartan’s theorems A and B (see [52, Section 2.6]),
form the basis for analysis on Stein manifolds.

3.2. Oka theory. We may consider holomorphic functions on Stein manifolds
as holomorphic maps S → C. Applying the above mentioned approximation and
interpolation results componentwise, we can extend them to maps S → CN for any
N ∈ N. A completely different picture emerges for maps S → X to more general
complex manifolds. For example, Picard’s theorem says that there are no nonconstant
holomorphic maps C→ C\{0, 1}. On the other hand, Grauert proved in 1957–58
[62, 63] that the approximation and interpolation results still hold in the absence of
topological obstructions for maps to complex homogeneous manifolds; the case when
X = C∗ is Oka’s theorem from 1939.

Theorem 3.1 (The Oka–Grauert theorem). Assume that S is a Stein manifold, K is
an O(S )-convex compact subset of S , S ′ is a closed complex subvariety of S , X
is a complex homogeneous manifold, and f : S → X is a continuous map that is
holomorphic on an open neighborhood of K and whose restriction f |S ′ : S ′ → X is
holomorphic. Then, f can be approximated uniformly on K by holomorphic maps
F : S → X satisfying F|S ′ = f . If in addition f is holomorphic on a neighborhood
of S ′, then F can be chosen to agree with f to any given finite order along S ′. The
analogous result holds for sections S → E of any principal fiber bundle π : E → S
over a Stein manifold S .

In the theory of minimal surfaces, Theorem 3.1 is mainly used with X either
the punctured null quadric A∗ ⊂ Cn, the intersection of A∗ with an affine complex
hyperplane in Cn, the punctured Euclidean space Cn

∗, or a projective space CPn. All
these manifolds are complex homogeneous.

A complex manifold X satisfying the conclusion of Theorem 3.1 is called an
Oka manifold. The class of Oka manifolds also contains many nonhomogeneous
manifolds; see [52, Section 5.6 and Ch. 7]. The most general Oka principle for maps
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from Stein manifolds to Oka manifolds is given by [52, Theorem 5.4.4] which also
includes the parametric case, that is, families of maps depending continuously on a
parameter in a compact Hausdorff space. It follows in particular that for every Stein
manifold S and Oka manifold O, the natural inclusion O(S ,O) ↪→ C (S ,O) is a weak
homotopy equivalence (see [52, Corollary 5.5.6]), and is the inclusion of a strong
deformation retract (hence a homotopy equivalence) if S is of finite analytic type in
the sense that it admits a strongly plurisubharmonic exhaustion function with only
finitely many critical points (see [52, Theorem 5.5.9] due to Lárusson). Note that an
open Riemann surface S is of finite analytic type if and only if it is of finite topological
type, that is, the homology group H1(S ;Z) is finitely generated.

Theorem 3.1 and its extension to Oka manifolds also hold with Mergelyan type
approximation; see [52, Corollaries 5.4.6 and 5.4.7] and [46].

A useful sufficient condition for a manifold X to be Oka is the existence of finitely
many C-complete holomorphic vector fields V1, . . . ,VN on X which span the tangent
space of X at any point. (If X = G/H is a homogeneous manifold of a complex Lie
group G, this holds for G-invariant holomorphic vector fields on X which are always
complete.) The composition of their flows φ j

t for complex values of t gives the map
σ : X × CN → X, defined by

σ(x, t1, . . . , tN) = φ1
t1 ◦ · · · ◦ φ

N
tN

(x) ∈ X (3.1)

for x ∈ X and t = (t1, . . . , tN) ∈ CN , satisfying the domination condition

∂σ(x, t)
∂t

∣∣∣∣∣
t=0

: CN → TxX is surjective for every x ∈ X. (3.2)

A holomorphic map σ : X × CN → X satisfying σ(x, 0) = x for all x ∈ X and the
domination condition (3.2) is called a dominating spray on X. More generally, we
may take as the domain of the spray the total space E of any holomorphic vector
bundle π : E → X. Gromov proved in [67] that every complex manifold admitting a
dominating spray is an Oka manifold. For more on this subject see [52, Ch. 6].

A (holomorphic) dominating spray of maps S → X is a holomorphic map F : S ×
V → X, where V ⊂ CN is an open neighborhood of the origin in a complex Euclidean
space, such that

∂F(s, t)
∂t

∣∣∣∣∣
t=0

: CN −→ TF(s,0)X is surjective for every s ∈ S .

The map F0 = F(· , 0) : S → X is called the core map, or simply the core, of F. If X
admits a dominating spray σ : X × CN → X, then for any holomorphic map f : S → X,
the map F : S × CN → X given by

F(s, t) = σ( f (s), t) ∈ X, s ∈ S , t ∈ CN ,

is a dominating spray of maps with the core F0 = f . For instance, if σ is of the type
(3.1) defined by flows φ j

t of complete holomorphic vector fields, then

F(s, t1, . . . , tN) = φ1
t1 ◦ · · · ◦ φ

N
tN

( f (s)) ∈ X, s ∈ S , t ∈ CN . (3.3)
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In general, globally defined dominating sprays with a given core do not exist unless
X is an Oka manifold. However, for every holomorphic map f : S → X from a Stein
manifold S to an arbitrary complex manifold X and for any compact subset K ⊂ S
there exist a Stein neighborhood U b S of K and a dominating spray F : U × V → X
of the form (3.3) with F(· , 0) = f |U , where V is a neighborhood of the origin in
some CN . Such F is obtained by composing flows of (not necessarily complete)
holomorphic vector fields on X defined on a neighborhood Ω ⊂ S × X of the graph
G f (U) = {(s, f (s)) : s ∈ U} ⊂ S × X of f |U . Note that G f (U) admits an open Stein
neighborhood in S × X by Siu’s theorem (see [52, Theorem 3.1.1]), and the rest follows
from Cartan’s theorem A on Stein manifolds.

3.3. Period dominating sprays of maps into the null quadric. Let M be a compact
connected bordered Riemann surface with boundary bM. Denote by g ≥ 0 the genus
of M and by m ≥ 1 the number of its boundary components; hence H1(M;Z) � Zl with
l = 2g + m − 1. We may assume that M is a smoothly bounded domain in an open
Riemann surface R. For a fixed choice of a nowhere vanishing holomorphic 1-form θ
on R and of a basis {C j}

l
j=1 of H1(M;Z) we let

P = (P1, . . . ,Pl) : A (M,Cn)→ (Cn)l = Cln (3.4)

be the period map whose jth component equals

P j( f ) =

∮
C j

f θ ∈ Cn, f ∈A (M,Cn). (3.5)

Note that the holomorphic 1-form f θ on M is exact if and only if P( f ) = 0; this
condition is clearly independent of the choice of a period basis.

Recall that A∗ denotes the punctured null quadric (2.5). The following lemma
provides one of our main technical tools (see [14, Lemma 5.1] and [19, Lemma 3.2]).

Lemma 3.2. Given a nonflat map f ∈A (M,A∗) (see Definition 2.6), there exist an open
neighborhood V of the origin inCln and a map Φ f : M × V → A∗ of classA(M × V,A∗)
such that Φ f (· , 0) = f and

∂

∂t

∣∣∣∣∣
t=0
P(Φ f (· , t)) : (Cn)l → (Cn)l is an isomorphism. (3.6)

Furthermore, given a finite set P ⊂ M and an integer r ∈ N, we may choose Φ f such
that

Φ f (· , t) : M → A∗ agrees with f to order r at each p ∈ P for all t ∈ V. (3.7)

Furthermore, there is a neighborhood Ω f of f in A (M, A∗) such that the map
Ω f 3 g 7→ Φg depends holomorphically on g.

A map Φ f satisfying Lemma 3.2 is called a period dominating spray of maps
M → A∗ with the core Φ f (· , 0) = f .
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Proof. We first consider the case without paying attention to (3.7); the modification to
ensure this matching condition will be explained at the end.

Let C1, . . . ,Cl ⊂
◦

M be smooth oriented Jordan curves providing a homology basis
for H1(M;Z) such that C =

⋃l
j=1 C j is Runge in M (see Section 2.1). We may assume

that the curves C j have a single common point p0 ∈ M, that is, Ci ∩C j = {p0} for any
i , j. Let P = (P1, . . . ,Pl) be the associated period map (3.4), (3.5). Since f is nonflat,
Lemma 2.7 and the identity principle show that for every j = 1, . . . , l there are points
p j,k ∈ C j\{p0} and holomorphic vector fields V j,k (k = 1, . . . , n) on Cn, tangent to the
null quadric A, such that

span
{
V j,k(x j,k) : k = 1, . . . , n

}
= Cn where x j,k = f (p j,k). (3.8)

Let φ j,k
t denote the local holomorphic flow of V j,k for a complex time variable t.

Write t = (t1, . . . , tl) ∈ (Cn)l where t j = (t j,1, . . . , t j,n) ∈ Cn. For every j = 1, . . . , l and
k = 1, . . . , n we pick a smooth function h j,k : C → C, supported on a short arc around
the point p j,k ∈ C j, and consider the map

Φ(p, t) = φ1,1
h1,1(p)t1,1

◦ · · · ◦ φl,n
hl,n(p)tl,n

( f (p)) ∈ A∗, p ∈ C. (3.9)

(We take the composition of flows φ j,k
h j,k(p)t j,k

for all j = 1, . . . , l and k = 1, . . . , n.) Note
that Φ is well-defined for all t ∈ Cln sufficiently close to the origin and Φ(· , 0) = f .
Clearly we have that

∂Φ(p, t)
∂t j,k

∣∣∣∣∣
t=0

= h j,k(p)V j,k( f (p)), p ∈ C,

and hence
∂Pi(Φ(· , t))

∂t j,k

∣∣∣∣∣
t=0

=

∮
Ci

h j,k(V j,k ◦ f )θ

for all i, j = 1, . . . , l and k = 1, . . . , n. A suitable choice of the functions h j,k ensures
that the above expression is as close as desired to V j,k(x j,k) if i = j, and it equals zero
otherwise. In view of (3.8) it follows that the differential ∂/∂t|t=0P(Φ(· , t)) : Cln → Cln

has a block structure with vanishing off-diagonal n × n blocks and with invertible
diagonal blocks; hence it is invertible. By Mergelyan’s theorem we can approximate
each function h j,k uniformly on C by a holomorphic function h̃ j,k ∈ O(M). Inserting
these new functions into the definition of Φ (3.9) we obtain a spray Φ f of maps
M → A∗ satisfying the conclusion of the lemma. Indeed, (3.6) holds provided that
the approximation of the functions h j,k by h̃ j,k is close enough, and the other properties
are obvious.

In order to ensure the condition (3.7), we choose the curves Ci in the homology
basis such that they do not intersect the finite set P. Choose a funtion g ∈ O(M) that
vanishes to order r + 1 at each of the points in P and has no other zeros. We replace
each of the functions h j,k in the spray (3.9) by the product gh j,k. Proceeding as before,
we obtain a new spray of the same type with h j,k ∈ O(M). It is elementary to see that
the map (p, t)→ φ

j,k
g(p)h j,k(p)t( f (p)) is tangent to f to order r at every point p ∈ P (see [5,

Lemma 2.2]); hence the same holds for their composition Φ f . �
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Remark 3.3. By using additional flows in the definition of Φ f (3.9) we can ensure
that the spray Φ fq is period dominating for a given continuous family { fq : q ∈ Q} of
holomorphic maps fq : M→ A∗ with the parameter in a compact Hausdorff space Q. In
this case, condition (3.6) is replaced by asking that the t-differential of the period map
is surjective at t = 0. On the other hand, we are unable to find a period dominating
spray whose core is a flat map since the tangent spaces to A∗ are constant along a
complex ray of A∗, and hence they do not span Cn.

Remark 3.4. Proofs of Lemmas 3.2 and 3.7 extend in an obvious way to the case when
M = K ∪ Γ is an admissible set in an open Riemann surface R; see Definition 2.8.
A map f : M → A∗ of class A (M) is said to be nonflat or full if the restriction of f
to K and to each connected component of Γ is nonflat or full, respectively. Such f
typically arises as the derivative map f = 2∂Φ/θ : M→ A∗ of a generalized conformal
minimal immersion on an admissible set; see Definition 2.9.

The following result (see [19, Theorem 3.1]) is a straightforward application of
Lemma 3.2. The notation has been established in Section 2.8.

Theorem 3.5. Let M be a compact bordered Riemann surface with nonempty boundary
bM, and let n ≥ 3 and r ≥ 1 be integers. Then the following hold.

(a) The space CMIr
nf(M,Rn) is a real analytic Banach manifold.

(b) The space NCr
nf(M,Cn) is a complex Banach manifold.

We do not know whether the spaces CMIr(M,Rn) and NCr(M,Cn) are also Banach
manifolds. In fact, it seems that flat conformal minimal immersions and holomorphic
null curves are singular points of these spaces.

Proof. By [49, Theorem 1.1] the space A r−1(M,A∗) is a complex Banach manifold
modeled on the complex Banach space A r−1(M,Cn−1), where dimA∗ = n − 1. Let
P : A r−1(M,Cn)→ (Cn)l denote the holomorphic period map (3.4). Set

A r−1
0 (M,A∗) = { f ∈A r−1(M,A∗) :<(P( f )) = 0},

and let A r−1
0,nf (M,A∗) denote the open subset of A r−1

0 (M,A∗) consisting of all nonflat
maps (see Definition 2.6). Lemma 3.2 implies that the differential dP f0 at any point
f0 ∈ A r−1

0,nf (M,A∗) has maximal rank equal to ln. By the implicit function theorem,
f0 admits an open neighborhood Ω ⊂ A r−1(M, A∗) such that Ω ∩ A r−1

0 (M, A∗) =

Ω ∩A r−1
0,nf (M,A∗) is a real analytic Banach submanifold of Ω, parametrized by the

kernel of the real part<(dP f0 ) of the differential of P at f0; this is a real codimension
ln subspace of the complex Banach space A r−1(M,Cn−1) (the tangent space of the
complex Banach manifold A r−1(M, A∗)). This shows that A r−1

0,nf (M, A∗) is a real
analytic Banach manifold. The integration p 7→ v +

∫ p
p0
<( f θ) (p ∈ M), with an

arbitrary choice of the value v ∈ Rn at a base point p0 ∈ M, provides an isomorphism
between the Banach manifold A r−1

0,nf (M,A∗) × Rn and CMIr
nf(M,Rn), so the latter is

also a real analytic Banach manifold. This proves (a). Essentially the same argument
applies in case (b). �
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We now give another version of Lemma 3.2 in which a period dominating spray
is obtained by multiplying the given core map f : M → A∗ by a nonvanishing
holomorphic function, called a multiplier.

A path f : I = [0, 1]→ Cn is said to be full if the C-linear span of its image equals
Cn. Let P : C (I,Cn)→ Cn denote the map

P( f ) =

∫ 1

0
f (s) ds ∈ Cn, f ∈ C (I,Cn).

The following result is [18, Lemma 2.1].

Lemma 3.6. Assume that I′ is a nontrivial closed subinterval of I = [0, 1] and Q
is a compact Hausdorff space. Given a continuous map f : I × Q→ Cn such that
f (·, q) is full on I′ for every q ∈ Q, there exist finitely many continuous functions
g1, . . . , gN : I → C, supported on I′, such that the function h : I × CN → C given by

h(s, t) = 1 +

N∑
i=1

tigi(s), s ∈ I, t = (t1, . . . , tN) ∈ CN , (3.10)

is a period dominating multiplier of f , in the sense that

∂

∂t
P(h(·, t) f (·, q))

∣∣∣
t=0 : CN → Cn is surjective for every q ∈ Q. (3.11)

Proof. Let N ≥ n be an integer and, for each i ∈ {1, . . . , N}, let gi : I → C be a
continuous function; both the number N and the functions gi will be specified later.
Let h be defined by (3.10). Note that ∂h(s, t)/∂ti

∣∣∣
t=0 = gi(s) and hence

∂

∂ti
P(h(·, t) f (·.q))

∣∣∣∣∣
t=0

=

∫ 1

0

∂h(s, t)
∂ti

∣∣∣∣∣
t=0

f (s, q) ds =

∫ 1

0
gi(s) f (s, q) ds. (3.12)

Since f (·, q) is full on I′ for every q ∈ Q, compactness of Q and continuity of f ensure
that there are points s1, . . . , sN ∈

◦

I′ for a big N ∈ N such that

span
{
f (s1, q), . . . , f (sN , q)

}
= Cn for all q ∈ Q. (3.13)

Pick a small ε > 0 and for every i = 1, . . . ,N a continuous function gi : I→ C supported
on (si − ε, si + ε) ⊂ I such that∫ 1

0
gi(s) ds =

∫ si+ε

si−ε

gi(s) ds = 1. (3.14)

For small ε > 0 we have in view of (3.12) and (3.14) that

∂P(h(·, t) f (·.q))
∂ti

∣∣∣∣∣
t=0

=

∫ 1

0
gi(s) f (s, q) ds ≈ f (si, q)

for all q ∈ Q and i ∈ {1, . . . ,N}. Assuming as we may that the approximations are close
enough, it follows from (3.13) that (3.11) holds. �
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By using Lemma 3.6 we easily obtain the following result which is essentially [18,
Lemma 3.2]. Here, P : A (M,Cn)→ (Cn)l again denotes the period map (3.4), (3.5).
The same result holds if M is a compact admissible subset of an open Riemann surface;
see Definition 2.8 and Remark 3.4.

Lemma 3.7. Let M be a compact bordered Riemann surface with the homology group
H1(M; Z) = Zl, let θ be a nowhere vanishing holomorphic 1-form on M, and let Q
be a compact Hausdorff space. Given a continuous map f : M × Q→ Cn such that
f (·, q) : M→ Cn is a full map of class A (M) for every q ∈ Q, there exist finitely many
holomorphic functions g1, . . . , gN ∈ O(M) such that the function h : M × CN → C,
given by

h(p, t) = 1 +

N∑
i=1

tigi(p), t = (t1, . . . , tN) ∈ CN , p ∈ M,

is a period dominating multiplier of f , meaning that

∂

∂t
P(h(·, t) f (·, q))

∣∣∣∣∣
t=0

: CN → (Cn)l is surjective for every q ∈ Q. (3.15)

3.4. Paths with prescribed periods in the null quadric. In this section we present
a construction of paths with prescribed integrals in the punctured null quadric. An
elementary result concerning a single path is [14, Lemma 7.3]. The parametric version
[55, Lemma 3.1] is needed in the investigation of the homotopy structure of the spaces
CMI(M, Rn) and NC(M, Cn); see Section 4.4. Here we present a one-parametric
version, [18, Lemma 2.3], which has the advantage of preserving the Gauss map, so
it can be used to construct conformal minimal immersions with prescribed complex
Gauss map (see Section 2.6).

Lemma 3.8. Set I = [0, 1]. Given continuous maps α : I → Cn and f : I × I → Cn such
that the path ft := f (· , t) : I → Cn is full for every t ∈ I, there exists a continuous
function h : I × I → C∗ such that h(s, t) = 1 for all t ∈ I and s ∈ {0, 1}, and∫ 1

0
h(s, t) f (s, t) ds = α(t), t ∈ [0, 1]. (3.16)

If in addition we have that
∫ 1

0 f (s, 0) ds = α(0), then h can be chosen such that
h(s, 0) = 1 for all s ∈ [0, 1].

Remark 3.9. If the map f in Lemma 3.8 has a range in the punctured null quadric
A∗, then the same holds for the map h f for any nowhere vanishing function h. The
analogous conclusion holds when f has a range in any conical complex subvariety
of Cn.

Proof. We begin by explaining a reduction to the case when the exact condition (3.16)
is replaced by an approximate condition∣∣∣∣∣ ∫ 1

0
h(s, t) f (s, t) ds − α(t)

∣∣∣∣∣ < ε, t ∈ [0, 1], (3.17)
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where ε > 0 is any given number. Indeed, since the path ft is full for every t ∈ I, we
can divide the t-interval I into finitely many subintervals I1, . . . , Im such that for every
i = 1, . . . ,m there is a closed subinterval Ji ⊂ I such that the restricted path ft : Ji→ C

n

is full for every t ∈ Ii. Clearly it suffices to consider the problem separately on each Ii.
Hence, replacing I by Ii, we may assume that there is a closed subinterval J ⊂ I such
that ft : J→ Cn is full for every t ∈ I. Choose nontrivial disjoint subintervals J1, J2 ⊂ J.
Replacing the s-interval I by J1, it suffices to prove that for any given ε > 0 there is
a function h : I × I → C∗ satisfying (3.17). Choosing ε small enough, we can then
correct the small error and obtain (3.16) by applying the period dominating argument,
furnished by Lemma 3.6, on the subinterval J2.

It remains to explain the construction of a function h satisfying (3.17). Since ft is
full for each t ∈ I, there is a division 0 = s0 < s1 < · · · < sN = 1 of I such that

span{ ft(s1), . . . , ft(sN)} = Cn for all t ∈ I.

Set

V j(t) =

∫ s j

s j−1

ft(s) ds, j = 1, . . . ,N.

Note that V j(t) is close to ft(s j)(s j − s j−1) if the intervals [s j−1, s j] are short. Passing
to a finer division if necessary we may therefore assume that

span
{
V1(t), . . . ,VN(t)

}
= Cn, t ∈ I.

For each t ∈ I let Σt ⊂ C
N denote the affine complex hyperplane defined by

Σt =

{
(g1, . . . , gN) ∈ CN :

N∑
j=1

g jV j(t) = α(t)
}
.

Clearly, there exists a continuous map g = (g1, . . . , gN) : I → CN such that g(t) ∈ Σt for
every t ∈ I. (We may view g as a section of the affine bundle over I whose fiber over
the point t equals Σt.) This can be written as follows:

N∑
j=1

∫ s j

s j−1

g j(t) ft(s) ds = α(t), t ∈ I. (3.18)

Note that
∑N

j=1 V j(t) =
∫ 1

0 ft(s) ds. Hence, if
∫ 1

0 f (0, s) ds = α(0) then g can be chosen
such that g(0) = (1, . . . , 1) ∈ CN . We assume in the following that this holds since the
proof is even simpler otherwise.

By a small perturbation we may assume that g j(t) ∈ C∗ for every t ∈ I and j =

1, . . . ,N. This changes the exact condition (3.18) to the approximate condition∣∣∣∣∣ N∑
j=1

∫ s j

s j−1

g j(t) ft(s) ds − α(t)
∣∣∣∣∣ < ε

2
, t ∈ I. (3.19)
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For a fixed t ∈ I we consider the vector g(t) = (g j(t)) j ∈ C
N as a step function of

s ∈ I which equals the constant g j(t) on s ∈ [s j−1, s j) for every j = 1, . . . ,N. We now
approximate this step function by a continuous function ht = h(· , t) : I → C∗ which
agrees with the step function, except near the points s0, s1, . . . , sN , ensuring also that
ht(0) = ht(1) = 1. Here are the details. Let C > 1 be chosen such that

max
(s,t)∈I×I

| f (s, t)| ≤ C, max
t∈I, j=1,...,N

|g j(t)| ≤ C.

Pick a number η > 0 such that

4C(C + 1)Nη < ε. (3.20)

For each t ∈ I and j = 1, . . .N we define the function h(· , t) : [s j−1, s j]→ C∗ by

h(s, t) =


g j((s − s j−1)t/η), s ∈ [s j−1, s j−1 + η],
g j(t), s ∈ [s j−1 + η, s j − η],
g j((s j − s)t/η), s ∈ [s j − η, s j].

Thus, h(s, t) spends most of its time (for s ∈ [s j−1 + η, s j − η]) at the point g j(t), and it
travels between the point 1 ∈ C∗ (where it is at the endpoints s = s j−1 and s = s j) and
the point g j(t) along the trace of the path τ 7→ g j(τt) ∈ C∗. This defines a continuous
function h : I × I → C∗ satisfying

|h(s, t)| ≤ C for all (s, t) ∈ I × I. (3.21)

It follows easily from (3.19), (3.20), and (3.21) that the replacement of the step
function g(t) = (g j(t)) j by h(s, t) causes an error of size < ε/2. This yields the estimate
(3.17). �

3.5. Transversality methods for conformal minimal surfaces. In this section we
indicate how the techniques of Section 3.3, especially Lemma 3.2, can be used to prove
the following general position theorem for conformal minimal immersions of bordered
Riemann surfaces. The original reference is [19, Theorem 4.1].

Theorem 3.10. Let M be a compact bordered Riemann surface and r ∈ N. Every
conformal minimal immersion X ∈ CMIr(M, Rn) for n ≥ 5 can be approximated
arbitrarily closely in the C r(M) norm by a conformal minimal embedding X̃ ∈
CMIr(M, Rn) satisfying FluxX̃ = FluxX . If n = 4 then X can be approximated by
conformal minimal immersions with simple (transverse) double points.

Since the set of embeddings M → Rn is clearly open in the set of immersions of
class C r(M) for any r ≥ 1 and CMIr(M,Rn) is a closed subset of the Banach space
C r(M,Rn) (hence a Baire space), the following corollary is immediate.

Corollary 3.11. Let M be a compact bordered Riemann surface. For every pair of
integers n ≥ 5 and r ≥ 1 the set of conformal minimal embeddings M ↪→ Rn of class
C r(M) is residual (of the second category) in the Baire space CMIr(M,Rn). The same
holds for the set of conformal minimal immersions M→ R4 with simple double points.

https://doi.org/10.1017/S1446788718000125 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000125


316 A. Alarcón and F. Forstnerič [30]

Sketch of proof of Theorem 3.10. We may assume that M is a smoothly bounded
domain in an open Riemann surface R and X is a nonflat conformal minimal immersion
in an open neighborhood of M in R. We associate to X the difference map δX : M ×
M → Rn, defined by

δX(p, q) = X(q) − X(p), p, q ∈ M.

Clearly, X is injective if and only if (δX)−1(0) = DM := {(p, p) : p ∈ M}. Since X is an
immersion, it is locally injective, and hence there is an open neighborhood U ⊂ M × M
of the diagonal DM such that δX does not assume the value 0 ∈ Rn on U\DM . To prove
the theorem, it suffices to find arbitrarily close to X a conformal minimal immersion
X̃ : M→ Rn whose difference map δX̃ is transverse to the origin 0 ∈ Rn on M × M\U.
(Since dimR M × M = 4 < n, this will imply that δX̃ does not assume the value zero on
M × M\U, so X̃(p) , X̃(q) if (p, q) ∈ M × M\U. If on the other hand (p, q) ∈ U\DM

then X̃(p) , X̃(q) provided that X̃ is close enough to X, so X̃ is an embedding.) To
obtain such X̃, we find a neighborhood Ω ⊂ RN of the origin in a Euclidean space and
a real analytic map H : Ω × M → Rn satisfying the following conditions:

(a) H(0, · ) = X;
(b) H(ξ, · ) ∈ CMIr(M,Rn) for every ξ ∈ Ω; and
(c) the difference map δH : Ω × M × M → Rn, defined by

δH(ξ, p, q) = H(ξ, q) − H(ξ, p), ξ ∈ Ω, p, q ∈ M,

is a submersive family on M × M\U, in the sense that the partial differential

∂ξ |ξ=0 δH(ξ, p, q) : RN → Rn (3.22)

is surjective for every (p, q) ∈ M × M\U.

For the details of the construction of H, see [19, Theorem 4.1]; one uses Lemma 3.2
and the implicit function theorem. Assume now that such H exists. By compactness of
M ×M\U, the partial differential ∂ξ(δH) (3.22) is surjective for all ξ in a neighborhood
Ω′ ⊂ Ω of the origin in RN . Hence, the map δH : M × M\U → Rn is transverse to any
submanifold of Rn, in particular, to the origin 0 ∈ Rn. The transversality argument due
to Abraham [1] (see also [52, Section 8.8]) shows that for a generic choice of ξ ∈ Ω′,
the difference map δH(ξ, · , · ) is transverse to 0 ∈ Rn on M × M\U, and hence it omits
the value 0 by dimension reasons. Choosing ξ close enough to 0 ∈ RN we thus obtain a
conformal minimal embedding X̃ = H(ξ, · ) : M → Rn close to X, thereby proving the
theorem. �

4. Conformal minimal immersions: approximation, interpolation, embeddings,
and isotopies

At the dawn of the 21st century, not much was known about how to deform a given
minimal surface in Rn into another one with more desirable properties. At that time
we only counted on a few techniques which had been created ad hoc in order to settle
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specific problems. This is the case for instance of the López–Ros deformation for
minimal surfaces X : M → R3 (see [80]) which amounts to multiplying the complex
Gauss map gX by a nowhere vanishing holomorphic function, subject to suitable period
vanishing conditions on the Weierstrass data. Its main shortcoming is that one needs
the initial conformal minimal immersion X already defined everywhere on M; let
us point out that, at that time, few open Riemann surfaces were known to be the
underlying complex structure of a minimal surface in R3.

The implementation of the complex analytic tools from Sections 3.2–3.5, and also
those to be explained in Section 5, gave rise to the birth and development of the theories
of approximation, interpolation, and isotopies for conformal minimal immersions
M → Rn from any given open Riemann surface M, leading to an array of new results.
In this section we discuss both the foundations of the aforementioned theories and
some of their applications. Results depending on the Riemann–Hilbert boundary value
problem (see, for example, Theorem 1.3) are treated in the following section.

4.1. Runge approximation with jet interpolation for conformal minimal
immersions. The following is one of the main new tools for the construction of
minimal surfaces in Rn for any n ≥ 3 with interesting global properties and arbitrary
conformal structure. It is analogous in spirit to the combination of the Runge
approximation theorem and the Weierstrass interpolation theorem for holomorphic
maps from open Riemann surfaces to Cn.

Theorem 4.1 (Runge approximation with jet interpolation for conformal minimal
surfaces). Let M be an open Riemann surface, Λ ⊂ M be a closed discrete subset,
and K ⊂ M be a smoothly bounded compact Runge domain. For each p ∈ Λ let
Ωp ⊂ M be a neighborhood of p such that Ωp ∩ Ωq = ∅ for all p , q ∈ Λ, and set
Ω :=

⋃
p∈Λ Ωp. Given a function r : Λ→ N, every conformal minimal immersion

X : K ∪ Ω→ Rn (n ≥ 3) can be approximated uniformly on K by conformal minimal
immersions X̃ : M → Rn having a contact of order r(p) with X at every point p ∈ Λ.

Remark 4.2. In fact, more is true: the conformal minimal immersions X̃ : M → Rn in
Theorem 4.1 can be chosen complete (see Theorem 4.5), and if the map X : Λ→ Rn

is proper (this holds in particular if Λ is finite) then X̃ can also be chosen proper (see
Theorems 4.8 and 4.9). As we shall see in the proof, one can also obtain Mergelyan
approximation on admissible sets (see Definition 2.8). By using the general position
argument in Theorem 3.10, one easily sees that the immersions X̃ ∈ CMI(M,Rn) can
be chosen embeddings if n ≥ 5, immersions with simple double points if n = 4, and to
have prescribed flux compatible with the flux of the initial immersion X for any loop
in K.

Remark 4.3. The analogous Runge approximation theorems with jet interpolation
holds for holomorphic null curves and, more generally, for holomorphic immersions
M → Cn directed by any conical complex subvariety A ⊂ Cn such that A\{0} is an
Oka manifold (see [14, Theorems 7.2 and 7.7] and [5, Theorem 1.3]). Here we say
that a holomorphic immersion Z : M → Cn is directed by A, or an A-immersion, if
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(dZ/θ)(M) ⊂ A\{0}, where θ is any nowhere vanishing holomorphic 1-form on M. Null
holomorphic immersions correspond to the case when A = A (2.4).

Theorem 4.1 is a compilation of results from the paper [23] by Alarcón and López
where the existence and approximation was proved for conformal minimal immersions
into R3, the paper [19] by the authors and López where the same was done in any
dimension n ≥ 3, and the paper [5] by Alarcón and Castro-Infantes where interpolation
was added.

Sketch of proof of Theorem 4.1. We assume that the function r : Λ→ N is constant;
the general case is obtained by an obvious modification. Pick a smooth strongly
subharmonic Morse exhaustion function ρ : M → R and exhaust M by an increasing
sequence

K = M1 b M2 b · · · b
∞⋃

i=1

Mi = M (4.1)

of compact smoothly bounded domains Mi = {p ∈ M : ρ(p) ≤ ci}, where c1 < c2 < · · ·
is an increasing sequence of regular values of ρ with limi→∞ ci = +∞. Thus, each Mi

is a possibly disconnected compact bordered Riemann surface. For convenience of
exposition we also assume that ρ has at most one critical point pi in each difference
◦

Mi+1\Mi and no point of Λ is a critical point of ρ. It follows that Mi is Runge in M for
every i ∈ N. Set Λi = Λ ∩ Mi for i ∈ N; this is a finite set since Λ ⊂ M is closed and
discrete. Up to enlarging K and Λ if necessary, we may assume that ρ is chosen such
that Λ ∩ bMi = ∅ and Λi+1\Λi consists of a single point for all i ∈ N.

Set X1 = X|M1 and assume as we may that X1 is nonflat. We shall inductively
construct a sequence of nonflat conformal minimal immersions {Xi ∈ CMI(Mi)}i≥2

satisfying the following conditions.

(a) Xi is as close to Xi−1 as desired in the C 1(Mi−1) topology for all i ≥ 2.
(b) Xi and X have a contact of order r at every point in Λi.

It is clear that if the approximations in (a) are close enough then the limit X̃ =

limi→∞ Xi : M → Rn satisfies the conclusion of the theorem.
The basis of the induction is given by the map X1. Assume that we already have

the immersion Xi for some i ∈ N. We consider two different cases depending on the
topology of Mi+1\Mi.

The noncritical case: ρ has no critical value in [ci, ci+1]. In this case Mi is a strong
deformation retract of Mi+1. We may assume that Mi is connected; otherwise we apply
the same argument in each connected component. Set fi = 2∂Xi/θ : Mi → A∗, write
Λi = {q1, . . . , qk}, and denote by q0 the only point in Λi+1\Λi. Pick a point p0 ∈

◦

Mi\Λ

and choose a family of smooth Jordan arcs α0, α1, . . . , αk in
◦

Mi+1 and smooth Jordan
curves αk+1, . . . , αk+l in

◦

Mi (l = dim H1(Mi;Z)) satisfying the following conditions.

• αa ∩ αb = {p0} for all a , b ∈ {0, . . . , k + l}.
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• The endpoints of αa are p0 and qa for all a ∈ {0, . . . , k}. We orient each αa so that
p0 is its initial point and qa is its final point.

• The curves αk+1, . . . , αk+l determine a homology basis of Mi.
• Υ =

⋃k+l
a=0 αa is a Runge set in M.

• The set S = Mi ∪ Υ = Mi ∪ Γ, where Γ =
⋃k

a=0 αa, is admissible in M (see
Definition 2.8).

By Lemma 3.8 we can extend Xi : Mi → R
n to a generalized conformal minimal

immersion (X̃i, fiθ) : S → Rn (see Definition 2.9) such that X̃i = X on Λi+1 and on a
neighborhood of q0; this is possible by condition (b) for the index i. (Here, θ is a
nowhere vanishing holomorphic 1-form on M.) Consider the period map

P( f ) =

( ∫
αa

f θ
)k+l

a=0
, f ∈ A(S ,Cn).

Lemma 3.2 and Remark 3.4 furnish a period dominating spray of maps fi;w : S → A∗ of
class A (S ) with core fi;0 = fi, depending holomorphically on a parameter w in a ball
B ⊂ CN for some N ∈ N, such that fi;w and fi have a contact of order r at every point
in Λi+1. Since A∗ is a complex homogeneous manifold and S is Runge in M and a
deformation retract of Mi+1, we may apply Theorem 3.1 to approximate fi;w uniformly
on Mi and uniformly with respect to w ∈ B (shrinking B slightly if necessary) by a
holomorphic spray of holomorphic maps gw : Mi+1 → A∗ having a contact of order
r with fi at every point in Λi+1. Assuming that the approximation is close enough,
the period domination condition of fi;w and the implicit function theorem give a point
w0 ∈ B close to 0 ∈ CN such that P(gw0 ) = P( fi). The conformal minimal immersion
defined by

Xi+1(p) = Xi(p0) +

∫ p

p0

<(gw0θ), p ∈ Mi+1,

then satisfies conditions (a) and (b) for the index i + 1.
The critical case: ρ has a unique (Morse) critical point pi+1 ∈ Mi+1\Mi. Since ρ is
strongly subharmonic, pi+1 has Morse index either 0 or 1.

If the Morse index is 0, a new simply connected component of the sublevel set
{ρ ≤ c} appears at pi+1 when c passes the value ρ(pi+1). We define Xi+1 on this new
component as any conformal minimal immersion, thereby reducing the proof to the
noncritical case.

If the Morse index of pi+1 is 1, the change of topology at pi+1 is described by
attaching to Mi a smooth arc E ⊂

◦

Mi+1\(Mi ∪ Λ) such that Mi ∪ E is a compact
admissible Runge set (see Definition 2.8) which is a strong deformation retract of
Mi+1. Let θ be a nowhere vanishing holomorphic 1-form on M. Consider the smooth
map fi = 2∂Xi/θ : Mi → A∗ which is holomorphic in

◦

Mi. We can extend fi to a smooth
map f̃i : Mi ∪ E → A∗. We orient E and let p, q ∈ bMi denote the beginning and the
endpoint of E, respectively. Lemma 3.8 applied on E furnishes a smooth function
h : E → C∗ which equals 1 near both endpoints such that∫

E
h f̃iθ = Xi(q) − Xi(p).
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We extend h to a smooth function on Mi ∪ E by setting h|Mi = 1. Let f̂i = h f̃i. By
integrating f̂iθ from any initial point p0 ∈ Mi we obtain a generalized conformal
minimal immersion (X̂i, f̂iθ) ∈ GCMI(Mi ∪ E,Rn) (see Definition 2.9) such that X̂i = Xi
on Mi. We finish as in the noncritical case considered above, applying the method of
period dominating sprays on the admissible set Mi ∪ E. �

The López–Ros deformation [80] for minimal surfaces in R3 enables one to perturb
a given conformal minimal immersion by preserving one of its component functions;
this is crucial in all applications of this technique in the literature. Theorem 4.1 also
admits the following version in which all but two components of the initial immersion
are preserved; this is a compilation of results from [5, 11, 19, 23].

Theorem 4.4 (Assumptions as in Theorem 4.1). If in addition X = (X1, . . . , Xn) is
nonflat and X3, . . . ,Xn extend to harmonic functions on M, then the conformal minimal
immersions X̃ = (X̃1, . . . , X̃n) ∈ CMI(M,Rn) in Theorem 4.1 can be chosen such that
X̃k = Xk for k = 3, . . . , n.

The following extension of Theorem 4.1 requires some additional work.

Theorem 4.5. The conformal minimal immersions X̃ : M → Rn in Theorem 4.1 can be
chosen complete.

If one ignores the interpolation, then Theorem 4.5 follows from Theorem 4.8 to the
effect that a conformal minimal immersion X : K → Rn for n ≥ 3 from a Runge set
K in an open Riemann surface M can be approximated by proper (hence complete)
conformal minimal immersions X̃ : M→ Rn. Assuming in addition that X : Λ→ Rn is
a proper map, it is also possible to match the interpolation condition in Theorem 4.1
by a proper conformal minimal immersions X̃ : M → Rn (see Theorem 4.9).

Sketch of proof of Theorem 4.5. Following the noncritical case in the proof of
Theorem 4.1, we assume without loss of generality that Mi is connected and,
for simplicity of exposition, that bMi is connected as well; hence A = Mi+1\

◦

Mi
is a smoothly bounded compact annulus with bA = bMi+1 ∪ bMi. Write Xi =

(Xi,1, . . . , Xi,n). We split A into two annuli A0 and A1 such that A0 ∩ A1 is a boundary
component of both A0 and A1, bMi ⊂ bA0, bMi+1 ⊂ bA1, and the only point q0 in
Λi+1\Λi lies in

◦

A0. By the proof of Theorem 4.1 we may assume that Xi extends to
Mi+1 having a contact of order k with X at every point in Λi+1, and that ∂Xi,1 does not
vanish anywhere on A1. We then consider a labyrinth of compact sets Υ in

◦

A1 as in
Jorge–Xavier [75], that is, Υ is a finite union of pairwise disjoint compact sets in

◦

A1
such that, if γ : [0, 1]→ A1\Υ is any path connecting the two boundary components of
A1, then ∫

γ

|∂Xi,1| > τ (4.2)

for a given number τ > 0. By Theorem 4.4 we obtain an immersion Xi+1 =

(Xi+1,1, . . . , Xi+1,n) ∈ CMI(Mi+1,R
n) which is close to Xi in C 1(Mi ∪ A0), has a contact

of order k with X at every point of Λi+1 ⊂ Mi ∪ A0, it satisfies Xi+1,1 = Xi,1 on Mi+1,

https://doi.org/10.1017/S1446788718000125 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000125


[35] New complex analytic methods in the theory of minimal surfaces: a survey 321

and |Xi+1,2(p) − Xi,2(q)| > τ holds for all points p ∈ Υ and q ∈ A0. Together with (2.10),
this and (4.2) guarantee that, if the approximation of Xi by Xi+1 is close enough, the
intrinsic distance between the two boundary curves of the annulus A1 with respect to
the metric X∗i+1(ds2) on Mi+1 is greater than τ. Since τ > 0 is arbitrary, this shows that
we may arbitrarily enlarge the intrinsic diameter of the surface in every step of the
inductive construction in the proof of Theorem 4.1, thereby ensuring completeness of
the limit map. �

4.2. On Sullivan’s and Schoen–Yau’s conjectures and the embedding problem.
As mentioned in the introduction, as late as in the 1990s hyperbolic Riemann surfaces
were thought to play only a marginal role in the global theory of minimal surfaces as
seen from the following well-known conjectures.

Conjecture 4.6 (Sullivan). Every properly immersed minimal surface in R3 with finite
topology is parabolic.

Conjecture 4.7 (Schoen–Yau [104, page 18]). No hyperbolic open Riemann surface
M carries a proper harmonic map M → R2. In particular, every minimal surface in
R3 with a proper projection to R2 is parabolic.

The first and more ambitious part of Schoen–Yau’s conjecture was refuted in 1999
by Božin [29] who constructed in a very explicit manner a proper harmonic map
D→ R2. Another counterexample was given in 2001 by Forstnerič and Globevnik [53]
who constructed a proper holomorphic map f = ( f1, f2) : D→ C2 with f (D) ⊂ (C∗)2;
hence, (log | f1|, log | f2|) : D→ R2 is a proper harmonic map. However, the second part
of the conjecture concerning minimal surfaces remained open at that time.

Sullivan’s conjecture was refuted in 2003 by Morales [91] who constructed a proper
conformal minimal immersion D→ R3 by using the López–Ros deformation and the
Runge theorem in a highly intricate way. Morales’ result was later extended to the
existence of proper hyperbolic minimal surfaces in R3 with arbitrary topology; see
Ferrer et al. [44].

Finally, Alarcón and López [23] proved in 2012 that every open Riemann surface
admits a conformal minimal immersion into R3 properly projecting to a plane; this
gave a counterexample to the second part of Schoen–Yau’s conjecture and provided
an optimal solution to the two problems. The following more precise result in this
direction is due to the authors and López (see [19, Theorem 7.1]).

Theorem 4.8 (Conformal minimal immersions with proper projections to R2). Let M
be an open Riemann surface and K ⊂ M be a Runge compact set. Every conformal
minimal immersion U → Rn (n ≥ 3) from an open neighborhood U ⊂ M of K can be
approximated uniformly on K by proper conformal minimal immersions M → Rn =

R2 × Rn−2 properly projecting into R2 × {0}n−2 � R2. The approximating immersions
can be chosen with prescribed flux compatible with the flux of the initial immersion,
with simple double points if n = 4, and embeddings if n ≥ 5.
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Concerning the analogue of the Schoen–Yau conjecture in higher dimension, it
was recently shown by Forstnerič [51, Corollary 3.5] that every Stein manifold X of
complex dimension n ≥ 1 admits a proper pluriharmonic map into R2n.

Although Theorem 4.8 contributes to the aforementioned conjectures, its main
relevance concerns the problem of determining the minimal dimension d for which
every open Riemann surface properly embeds into Rd as a conformal minimal surface;
compare with Theorem 1.1 and Conjecture 1.2 in the introduction.

Sketch of proof of Theorem 4.8. We may assume that K is a smoothly bounded
compact Runge domain in M. Let X0 ∈ CMI(K, Rn). Choose an exhaustion
K = M0 b M1 b · · · of M as in (4.1) and inductively construct a sequence Xi =

(Xi,1, Xi,2, . . . , Xi,n) ∈ CMI(Mi,R
n) (i ∈ N) satisfying the following conditions:

(a) max{Xi,1, Xi,2} > i everywhere on bMi;
(b) max{Xi,1, Xi,2} > i − 1 everywhere on Mi\

◦

Mi−1;
(c) Xi is as close to Xi−1 as desired in the C 1(Mi−1) norm;
(d) Xi has simple double points if n = 4 and is an embedding if n ≥ 5.

The way to prescribe the flux map is the standard one; we shall omit it. If the
approximation in (c) is close enough then the limit conformal minimal immersion
limi→∞ Xi : M → Rn satisfies the conclusion of the theorem.

We begin the induction with X0 ∈ CMI(K, Rn) which, up to composing with a
translation and using Theorem 3.10, satisfies (a) and (d), while conditions (b) and
(c) are vacuous.

We now explain the noncritical case in the inductive step. Assume that Mi−1
is a strong deformation retract of Mi for some i ≥ 1 and that we already have
Xi−1 ∈ CMI(Mi−1,R

n) with the desired properties. Note that Mi\
◦

Mi−1 is a union of
finitely many pairwise disjoint compact annuli. For simplicity of exposition we assume
that there is only one annulus A = Mi\

◦

Mi−1 since the same argument can be applied
separately to each of them. Note that bA = bMi ∪ bMi−1. By Theorem 3.10 it suffices
to find Xi ∈ CMI(Mi,R

n) satisfying (a), (b), and (c). In view of condition (a) for the
index i − 1, bMi−1 splits into l ≥ 3 compact subarcs αk, k ∈ Zl = Z/lZ, lying end to
end, for which there are complementary subsets I1 and I2 = Zl\I1 of Zl satisfying that
Xi−1,σ > i − 1 everywhere on αk for all k ∈ Iσ, σ = 1, 2. For every k ∈ Zl we denote
by pk ∈ bMi−1 the only point in αk ∩ αk+1. Choose a family γk (k ∈ Zl) of pairwise
disjoint smooth Jordan arcs in A such that γk connects pk with a point qk ∈ bMi and
is otherwise disjoint from bA, and the set S = Mi−1 ∪

⋃
k∈Zl

γk ⊂ M is admissible (see
Definition 2.8). Denote by βk the Jordan arc in bMi connecting qk−1 and qk, and let
Ωk ⊂ A be the closed disc bounded by γk−1 ∪ αk ∪ γk ∪ βk for k ∈ Zl. Theorem 4.1,
applied to a suitable generalized conformal minimal immersion on S extending Xi−1,
furnishes Y = (Y1,Y2, . . . ,Yn) ∈ CMI(Mi,R

n) as close as desired to Xi−1 in the C 1(Mi−1)
norm and smoothly bounded compact discs Dk ⊂ Ωk\(γk−1 ∪ αk ∪ γk), k ∈ Zl, such that
Dk ∩ βk , ∅ is a Jordan arc in βk\{qk−1, qk}:

(P1) Yσ > i everywhere on βk\Dk for all k ∈ Iσ, σ = 1, 2; and
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Figure 4.1. Sets in the proof of Theorem 4.8.

(P2) Yσ > i − 1 everywhere on Ωk\Dk for all k ∈ Iσ, σ = 1, 2.

(See Figure 4.1.)
Note that Y already satisfies conditions (a) and (b) but only on

⋃
k∈Zl

Ωk\Dk. Now,
since Y is defined everywhere on Mi and it may be assumed nonflat in view of
Theorem 4.1, by Theorem 4.4 (the Mergelyan approximation with fixed components)
we may approximate Y on Mi−1 ∪

⋃
k∈I2

Ωk by a conformal minimal immersion
Y ′ = (Y ′1,Y

′
2, . . . ,Y

′
n) ∈ CMI(Mi,R

n) such that the following hold:

(P3) Y ′1 = Y1 everywhere on Mi; and
(P4) Y ′2 > i everywhere on

⋃
k∈I1

Dk.

Indeed, it suffices to apply Theorem 4.4, keeping the first component fixed, with a
conformal minimal immersion Ỹ ∈ CMI(Mi−1 ∪

⋃
k∈I2

Ωk ∪
⋃

k∈I1
Dk) of the form

Ỹ =

{
Y on Mi−1 ∪

⋃
k∈I2

Ωk,
(0,C, 0, . . . , 0) + Y on

⋃
k∈I1

Dk,

where C > 0 is a large enough constant.
Note that, by (P3), if the approximation of Y by Y ′ is close enough then (P1) and

(P2) hold with Y ′ in place of Y . Observe that Y ′ already satisfies conditions (a) and (b)
on

⋃
k∈Zl

Ωk\Dk ∪
⋃

k∈I1
Dk; we will now deform it to meet these requirements also on⋃

k∈I2
Dk and this will finish the proof. Indeed, proceeding in a symmetric way, we may

approximate Y ′ on Mi−1 ∪
⋃

k∈I1
Ωk by a conformal minimal Y ′′ = (Y ′′1 , Y

′′
2 , . . . , Y

′′
n ) ∈

CMI(Mi,R
n) such that the following hold:

(P5) Y ′′2 = Y ′1 everywhere on Mi; and
(P6) Y ′′2 > i everywhere on

⋃
k∈I2

Dk.

As above, by (P5), if the approximation of Y ′ by Y ′′ is close enough then Y ′′ formally
satisfies (P1), (P2), and (P4). This and (P6) shows that Xi := Y ′′ meets conditions (a)
and (b). Finally, (c) also holds provided that the approximations of Xi−1 by Y , of Y by
Y ′, and of Y ′ by Y ′′ are sufficiently close. This concludes the proof. �

By joining the ideas in the above proof with those in Theorem 4.1 we obtain the
following extension of Theorem 4.1, due to Alarcón and Castro-Infantes [5].
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Theorem 4.9 [5, Theorem 1.2]. In the assumptions of Theorem 4.1, if in addition
X|Λ : Λ→ Rn is a proper map then the conformal minimal immersions X̃ : M → Rn

in Theorem 4.1 can be chosen proper.

4.3. On the Gauss map. The Gauss map of a minimal surface in R3 and, more
generally, the generalized Gauss map GX : M → CPn−1 (see (2.12)) of a conformal
minimal immersion X : M → Rn (n ≥ 3), is a fundamental object in the theory. It
is classical that GX is a holomorphic map assuming values in the null quadric (see
Section 2.6). Somewhat surprisingly, the following converse was proved only very
recently by the authors and López (see [18, Theorem 1.1 and Corollary 1.2]).

Theorem 4.10. Let M be an open Riemann surface and n ≥ 3 be an integer. For
any holomorphic map G : M → Qn−2 ⊂ CP

n−1 into the quadric (2.13) there is a
conformal minimal immersion X : M → Rn with the generalized Gauss map GX = G
and vanishing flux. If in addition the map G is full (that is, its image is not contained
in any proper projective subspace), then X can be chosen to have arbitrary flux and to
be an immersion with simple double points if n = 4 and an embedding if n ≥ 5.

In particular, every holomorphic map g : M→ CP1 is the complex Gauss map (2.14)
of a conformal minimal immersion X : M→ R3 with vanishing flux. If g is nonconstant,
we can find X with arbitrary given flux.

Sketch of proof. By the Oka–Grauert principle (see Theorem 3.1) we can lift the
map G : M → CPn−1 to a holomorphic map G : M → Cn

∗ such that π ◦G = G , where
π : Cn

∗ → CP
n−1 is the canonical projection. Obviously, G assumes values in the

punctured null quadric A∗ ⊂ Cn (2.4), (2.5). Fix a nowhere vanishing holomorphic 1-
form θ on M. To complete the proof of the first part of the theorem, it then suffices to
find a holomorphic function ϕ : M→ C∗ such that the real part of the 1-form Φ = ϕGθ
is exact on M. If such ϕ exists then given p0 ∈ M the Enneper–Weierstrass formula
(Theorem 2.4) shows that the map X : M → Rn given by X(p) =

∫ p
p0
<(Φ), p ∈ M, is

a conformal minimal immersion with the generalized Gauss map GX = [∂X] = [Φ] =

π ◦ (ϕG) = π ◦G = G .
The construction of the function ϕ follows the proof of Theorem 4.1, but using

Lemma 3.7 instead of Lemma 3.2. Let us focus on the case of vanishing flux, that
is, we look for ϕ such that ϕGθ is exact. Choose an exhaustion M1 b M2 b · · · of M
as in (4.1) such that M1 is simply connected. We inductively construct a sequence of
holomorphic functions ϕi : Mi → C∗ (i ∈ N) such that the following hold:

(a) ϕiGθ is exact on Mi; and
(b) ϕi is as close to ϕi−1 as desired in the C (Mi−1) norm for all i ≥ 2.

The limit function ϕ = limi→∞ ϕi : M → C∗ clearly meets the requirements if all
approximations in (b) are close enough.

Since M1 is simply connected, the basis of the induction is given by any
holomorphic function ϕ1 : M1 → C∗. For the inductive step we assume that we already
have ϕi−1 for some i ≥ 2. For simplicity of exposition we assume that Mi−1 is connected
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and a strong deformation retract of Mi (that is, we only discuss the noncritical case).
Lemma 3.7 provides a period dominating multiplier h : Mi−1 × C

N → C of ϕi−1. Next,
we approximate ϕi−1 and h on Mi−1 by a holomorphic function f : Mi → C∗ and
a spray of holomorphic functions h′ : Mi × C

N → C, respectively, such that h′ is a
period dominating multiplier of f . If the approximations of ϕi−1 by f , and of h by h′,
are close enough, there is a point ζ0 ∈ C

N close to the origin such that the function
ϕi(p) = f (p)h(p, ζ0), p ∈ Mi, does not vanish anywhere and it meets conditions
(a) and (b).

For the second assertion concerning the cases n = 4 and n ≥ 5, we adapt the
transversality method, described in Section 3.5, to the current framework. By using
period dominating multipliers, given by Lemma 3.7, we may improve Theorem 3.10
by ensuring that the approximating immersion X̃ has the same generalized Gauss
map as X. (See [18, Proof of Theorem 1.1] for the details.) This enables us to
find the function ϕi in the inductive step such that the conformal minimal immersion
Xi : Mi → R

n given by Xi(p) =
∫ p

p0
<(ϕiGθ), p ∈ Mi, has simple double points if n = 4,

and is an embedding if n ≥ 5. The same holds for the limit X = limi→∞ Xi : M → Rn

provided the approximations in (b) are sufficiently close. �

The size of the spherical image of the Gauss map of a minimal surface in R3 has
important implications. For instance, Barbosa and do Carmo [27] proved that if the
area of the spherical image is smaller than 2π (half of the area of the sphere) then the
surface is stable. Thus, Theorem 4.10 leads to the following corollary.

Corollary 4.11. If M is an open Riemann surface and g : M→ CP1 is a holomorphic
map whose image g(M) has a spherical area less than 2π, then there is a stable
conformal minimal immersion M → R3 with the complex Gauss map g.

Another important direction in the study of the Gauss map of conformal minimal
surfaces in R3 is to understand how many points it can omit when the surface is
complete. A seminal result of Fujimoto [59] says that the Gauss map of a complete
nonflat minimal surface in R3 can omit at most four points of CP1; there are examples
with four omitted points, for instance, the classical Sherk’s doubly periodic surface. In
higher dimensions, Ru [103] proved that if X : M→ Rn is a complete nonflat conformal
minimal immersion then its generalized Gauss map GX can omit at most 1

2 n(n + 1)
hyperplanes in general position in CPn−1. (As pointed out in [58, page 280], this is
equivalent to Fujimoto’s theorem for n = 3.) However, the number of exceptional
hyperplanes depends on the complex structure of the surface. Ahlfors [2] proved that
any holomorphic map C→ CPn−1 avoiding n + 1 hyperplanes of CPn−1 in general
position is degenerate (for n = 2 this is Picard’s theorem). This shows that the
following result of Alarcón et al. [10, 11] is the best possible for all minimal surfaces
with a nondegenerate Gauss map.

Theorem 4.12. Let M be an open Riemann surface. For any group homomorphism
p : H1(M;Z)→ Rn (n ≥ 3) there is a complete conformal minimal immersion M→ Rn

with the flux map p whose generalized Gauss map is nondegenerate and omits n
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hyperplanes of CPn−1 in general position. In particular, every open Riemann surface
admits a complete nonflat conformal minimal immersion intoR3 whose complex Gauss
map omits two points of CP1.

On the other hand, Osserman proved in 1964 [96] that the Gauss map of a complete
nonflat minimal surface with finite total curvature in R3 can omit at most three points
of CP1 (see also [98, page 89]). His question, whether there is an example of this kind
whose Gauss map omits three points, is still open.

Sketch of proof. We explain the case n = 3 without taking care of the flux. It suffices
to find a complete nonflat conformal minimal immersion X = (X1, X2, X3) : M → R3

such that ∂X3 does not vanish anywhere on M. Indeed, by (2.14), this implies that
the complex Gauss map gX : M→ C of X is holomorphic and nowhere vanishing, and
hence the Gauss map of X assumes neither the north nor the south poles of S2. Note
that Theorem 4.4 (the Runge theorem with fixed components for minimal surfaces)
ensures that every nonconstant harmonic function X3 : M→ R is a component function
of a nonflat conformal minimal immersion X = (X1, X2, X3) : M → R3; choosing X3
with no critical points we have that ∂X3 vanishes nowhere on M. To complete the
proof, it remains to show that such an immersion X may be chosen to be complete.
As in the proof of Theorem 4.1, the map (X1, X2) : M→ R2 is constructed inductively:
(X1, X2) = limi→∞(X̃i,1, X̃i,2) for suitable harmonic maps (X̃i,1, X̃i,2) : Mi → R

2. (Here
M1 b M2 b · · · is an exhaustion of M as in (4.1).) To ensure completeness of
X = limi→∞ X̃i = (X̃i,1, X̃i,2, X3) : M → R3 we suitably enlarge the intrinsic diameter
of each immersion X̃i : Mi → R

3 by using a Jorge–Xavier type labyrinth of compact
sets in

◦

Mi\Mi−1 as in the proof of Theorem 4.5. �

4.4. Rough shape of the space of conformal minimal immersions. Several of the
results already stated in the paper may be extended to continuous families of conformal
minimal immersions by exploiting the parametric Oka property of the punctured null
quadric A∗ ⊂ Cn. For instance, for an open Riemann surface M, every conformal
minimal immersion X0 : M → Rn is isotopic through conformal minimal immersions
Xt : M → Rn (t ∈ [0, 1]) to the following:

(a) a complete conformal minimal immersion [13];
(b) a complete conformal minimal immersion with arbitrary flux if the generalized

Gauss map of X0 is nondegenerate [13]; and
(c) a complete conformal minimal immersion with vanishing flux such that all maps

Xt have the same generalized Gauss map M → CPn−1 (see [18, Corollary 1.4]).

Fix a nowhere vanishing holomorphic 1-form θ on M and consider the following
commuting diagram of spaces and maps:

NCnf(M,Cn)
φ //

<

��

Onf(M,A∗)
� � i // O(M,A∗)

� � j // C (M,A∗)

<NCnf(M,Cn) �
� α // CMInf(M,Rn)

ψ

OO

� � β // CMI(M,Rn)
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The left-hand side map < (the real part projection) is a homotopy equivalence by
continuity of the conjugate map transform. Here,<NCnf(M,Cn) denotes the space of
conformal minimal immersions M→ Rn with zero flux. The maps φ and ψ are defined
by φ(Z) = dZ/θ and ψ(X) = 2∂X/θ, respectively. The space Onf(M,A∗) consists of all
nonflat holomorphic maps M → A∗ (see Definition 2.6).

Forstnerič and Lárusson proved in [55] that all maps in the above diagram, with
the only possible exception of the inclusion CMInf(M,Rn) ↪→ CMI(M,Rn), are weak
homotopy equivalences, and are homotopy equivalences if M has finite topological
type. (See [55, Theorem 1.1] for the inclusion α : <NCnf(M,Cn) ↪→ CMInf(M,Rn),
[55, Theorem 1.2] for maps φ and ψ, and [55, Theorem 5.4] for the inclusion
i : Onf(M,A∗) ↪→ O(M,A∗). The natural inclusion O(M,A∗) ↪→ C (M,A∗) is a weak
homotopy equivalence by the Oka–Grauert Theorem 3.1. For the proof of strong
homotopy equivalences, see [55, Section 6].) Subsequently, Alarcón and Lárusson
[22] used the methods from [55] to show that the map π : Onf(M,A∗)→ H1(M;Cn),
sending a nonflat holomorphic map g : M → A∗ to the cohomology class of gθ, is a
Serre fibration; this also implies the aforementioned results from [55].

The only map in the above diagram which is not completely understood is the
inclusion CMInf(M,Rn) ↪→ CMI(M,Rn) of the space of nonflat conformal minimal
immersions into the space of all conformal minimal immersions. The authors together
with López showed in [18, Theorem 7.1] that this inclusion induces a bijection of path
components of the two spaces. In particular, we have the following result.

Corollary 4.13. Let M be an open Riemann surface. If n > 3 then the space
CMI(M,Rn) is path connected, whereas the set of path components of CMI(M,R3)
is in bijective correspondence with the elements of the abelian group (Z2)l where
H1(M;Z) = Zl.

5. The Riemann–Hilbert method for minimal surfaces

The Riemann–Hilbert problem is a classical boundary value problem for
holomorphic functions and maps. Its basic form was mentioned by Riemann in his
dissertation in 1851. A brief history, references, and a partial list of applications can
be found in [16, Section 3]. In Section 5.1 we describe the original complex analytic
setting. In Section 5.2 we state without proof a version of the Riemann–Hilbert
problem for conformal minimal immersions from bordered Riemann surfaces to Rn.
This serves as the basis for the construction of complete conformal minimal surfaces in
Rn bounded by Jordan curves and normalized by any given bordered Riemann surface
(see Theorems 1.3 and 5.4), the construction of proper complete conformal minimal
immersions of such surfaces to minimally convex domains in Rn (see Section 5.4), and
the description of the minimal hull of a compact set in Rn by sequences of minimal
discs (see [42] for n = 3 and [8] for n > 3). Due to space limitations we shall not
discuss minimal hulls in this survey.
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5.1. The Riemann–Hilbert problem in complex analysis. Let X be a complex
manifold. We are given a holomorphic map f : D→ X (an analytic disc in X) and for
each point z ∈ T = bD a holomorphic map gz : D→ X with gz(0) = f (z) and depending
continuously on z ∈ T. Set Tz = gz(T) ⊂ X and S z = gz(D) ⊂ X for z ∈ T. Fix a distance
function dist on X. Given numbers 0 < r < 1 and ε > 0, the approximate Riemann–
Hilbert problem asks for a holomorphic map F : D→ X satisfying the following
conditions for some r′ ∈ [r, 1):

(a) dist(F(z),Tz) < ε for z ∈ T;
(b) dist(F(ρz), S z) < ε for z ∈ T and r′ ≤ ρ ≤ 1; and
(c) dist(F(z), f (z)) < ε for |z| ≤ r′.

(The domain of f may in fact be any bordered Riemann surface M, but the domain of
the maps gz is always the closed disc D.) This implies the following:

• F(D) lies in the ε-neighborhood of the set Σ = f (D) ∪
⋃

z∈T gz(D); and
• its boundary F(T) is contained in the ε-neighborhood of the torus T =

⋃
z∈T gz(T).

This shows that the placement of the image curve F(D) in X is well-controlled, a very
important point in most applications. (The exact problem, asking for F satisfying
F(z) ∈ Tz for every z ∈ bD, is only rarely solvable.)

For X = Cn the problem is solved as follows (see [41] for the details). The map

T × D 3 (z,w) 7→ gz(w) − f (z) ∈ Cn

is continuous in z, holomorphic in w, and it vanishes at w = 0 for any z ∈ T. We can
approximate it arbitrarily closely by a rational map

G(z,w) = z−m
N∑

j=1

A j(z)w j ∈ Cn,

where the A j’s are Cn-valued holomorphic polynomials. Pick k ∈ N and set

F(z) = f (z) + G(z, zk) = f (z) + zk−m
N∑

j=1

A j(z)zk( j−1), z ∈ D. (5.1)

The pole at z = 0 cancels if k > m, and one easily verifies that F satisfies conditions
(a)–(c) if the integer k is chosen big enough.

Consider now the case when the domain of f is a bordered Riemann surface M
and the target manifold X is arbitrary. In most applications it suffices to solve the
following restricted problem. Pick a pair of arcs I0, I1 ⊂ bM with I0 contained in
the relative interior of I1, and a smooth function χ : bM → [0, 1] such that χ = 1 on
I0 and χ = 0 on bM\I1. Set g̃z(w) = gz(χ(z)w) for z ∈ bM and w ∈ D. Note that g̃z

agrees with gz for z ∈ I0 and is the constant disc w→ f (z) for any point z ∈ bM\I1.
Let D ⊂ M be a smoothly bounded simply connected domain (a disc) such that I1 is
contained in the relative interior of bD ∩ bM. We define g̃z as the constant dics f (z)
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for points z ∈ bD\I1 (this is consistent with the previous choices). Let F̃ : D→ X be
an approximate solution of the Riemann–Hilbert problem with the data f |D and g̃z,
z ∈ bD. (Such F̃ is found by reducing this local problem to the Euclidean case via
suitable Stein neighborhoods of the graphs of our maps.) By choosing the integer k in
(5.1) big enough, F̃ satisfies condition (a) for z ∈ I0, it satisfies (b) for z ∈ bD, and is
uniformly close to f on D\U where U ⊂ M is any given neighborhood of the arc I1.
Write M = A ∪ B where A, B ⊂ M are smoothly bounded compact domains such that
A is the complement of a small neighborhood of the arc I1, B ⊂ D contains a relative
neighborhood of I1, and we have that A\B ∩ B\A = ∅. By what has been said above,
the map F̃ can then be chosen uniformly as close as desired to f on C = A ∩ B. Next,
we glue f and F̃ into a solution F : M → X with the desired properties by the method
of gluing holomorphic sprays. An outline of this gluing technique can be found in
[16, Section 3], and it is fully explained in [52, Ch. 5]. This method lies at the heart
of the proof of the Oka principle for maps from Stein manifolds to Oka manifolds (see
[52, Theorem 5.4.4]).

5.2. The Riemann–Hilbert method for null curves and minimal surfaces. The
Riemann–Hilbert boundary value problem has been adapted to null holomorphic
curves in Cn and conformal minimal surfaces in Rn for any n ≥ 3 in the papers [7, 15].
A special case for null curves in C3 was first obtained by the authors in [15] by using
the double sheeted spinor parametrization π : C2

∗ → A
2
∗ of the null quadric, lifting the

derivative maps from A2
∗ to C2

∗, applying the Riemann–Hilbert method in C2
∗ and then

pushing the resulting maps back to A2
∗.

When replacing the disc by a bordered Riemann surface M, one must glue local
solutions on small discs abutting bM by using the method of gluing sprays as described
in the previous subsection. Since the Riemann–Hilbert problem is not used directly
for null curves but for their derivatives, one must pay attention to the period vanishing
conditions to ensure that the approximating maps integrate to null curves. The results
from [15] were extended to any dimension n ≥ 3 and adapted to conformal minimal
immersions by the authors together with Drinovec Drnovšek and López [7]. The
following result is [7, Theorem 3.6].

Theorem 5.1 (Riemann–Hilbert method for conformal minimal surfaces in Rn). Let M
be a compact bordered Riemann surface with boundary bM , ∅, and let I1, . . . , Ik be
pairwise disjoint compact arcs in bM which are not connected components of bM.
Let r : bM → R+ be a continuous nonnegative function supported on I :=

⋃k
i=1 Ii.

Also, let σ : I × D → C be a function of class C 1 such that for every ζ ∈ I the
function D 3 ξ 7→ σ(ζ, ξ) is holomorphic on D, σ(ζ, 0) = 0, and the partial derivative
∂σ(ζ, ξ)/∂ξ is nonvanishing on I × D. Choose a thin annular neighborhood A ⊂ M of
bM and a smooth retraction ρ : A→ bM. For each i = 1, . . . , k let ui, vi ∈ R

n be a pair
of orthogonal vectors satisfying |ui| = |vi| > 0. Given a conformal minimal immersion
X ∈ CMI1(M,Rn) (n ≥ 3), consider the continuous map κ : bM × D→ Rn given by

κ(ζ, ξ) =

{
X(ζ), ζ ∈ bM\I,
X(ζ) + r(ζ)

(
<σ(ζ, ξ)ui + =σ(ζ, ξ)vi

)
, ζ ∈ Ii, i ∈ {1, . . . , k}. (5.2)
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Given ε > 0 there exist an arbitrarily small open neighborhood Ω ⊂ M of I and a
conformal minimal immersion Y ∈ CMI1(M,Rn) satisfying the following conditions:

(i) dist(Y(ζ), κ(ζ,T)) < ε for all ζ ∈ bM;
(ii) dist(Y(ζ), κ(ρ(ζ),D)) < ε for all ζ ∈ Ω;
(iii) Y is ε-close to X in the C 1 norm on M\Ω;
(iv) Flux(Y) = Flux(X).

The proof will not be reproduced here due to its complexity and space limitations.
Note that the boundary discs κ(ζ, · ) (ζ ∈ bM) lie in affine 2-planes. A more precise
result is available in dimension n = 3; see [8, Theorem 3.2]. In that case, the map κ
(5.2) may be chosen of the form

κ(ζ, ξ) = X(ζ) + α
(
ζ, r(ζ) ξ

)
, (5.3)

where α : I × D → R3 is a map of class C 1 such that for every ζ ∈ I the map
D 3 ξ 7→ α(ζ, ξ) ∈ R3 is a conformal minimal immersion with α(ζ, 0) = 0 and we take
α
(
ζ, r(ζ) ξ

)
= 0 for ζ ∈ bM\I. The advantage is that the conformal minimal discs

D 3 ξ 7→ α
(
ζ, r(ζ) ξ

)
∈ R3 are now arbitrary, and not necessarily flat as before.

The Riemann–Hilbert method has also been adapted by the authors and López
[21] to the construction of bounded complete holomorphic Legendrian curves in
the standard complex contact structure on C2n+1 (n ∈ N). Combining this result
with the Darboux-type holomorphic contact neighborhood theorem, proved by
the authors in [17, Theorem 1.1], it follows that every holomorphic Legendrian
immersion from a compact bordered Riemann surface to an arbitrary complex contact
manifold can be uniformly approximated by complete holomorphic Legendrian curves
[17, Theorem 1.3].

5.3. On the Calabi–Yau problem. The Calabi–Yau problem for minimal surfaces
originates in the following conjecture of Calabi from 1965.

Conjecture 5.2 (Calabi [76, page 170]). A complete minimal hypersurface in Rn for
n ≥ 3 is unbounded. Even more, its projection to every (n − 2)-dimensional affine
subspace of Rn is unbounded.

Nothing seems known about this problem for n ≥ 4. For n = 3, the latter assertion
in Calabi’s conjecture was refuted by Jorge and Xavier [75] in 1980, and the former by
Nadirashvili [92] in 1996. In both cases there is a counterexample normalized by the
disc, and the proof combines the López–Ros deformation for minimal surfaces [80]
with an inventive use of the Runge approximation theorem for holomorphic functions.

In his 2000 Millennium Lecture [110], Yau revisited Calabi’s conjectures and
proposed several questions concerning topology, complex structure, and asymptotic
behavior of complete bounded minimal surfaces in R3. Ferrer et al. [44] showed
in 2012 that there are no restrictions on their topological type. On the other hand,
controlling the complex structure is a much more challenging task. The second part
of Conjecture 5.2 was settled in 2012 by Alarcón et al. [10] who proved the following
result. (A special case was obtained beforehand in [9].)
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Theorem 5.3. Given an open Riemann surface M and a nonconstant harmonic
function h : M → R, there is a complete conformal minimal immersion X : M → R3

whose third coordinate function equals h. In particular, M admits a complete nonflat
conformal minimal immersion M → R3 with a bounded component function if and
only if there exists a bounded nonconstant harmonic function M → R.

In the subsequent paper [11] of the same authors this result was extended to
conformal minimal surfaces in Rn for n > 3, where now n − 2 of the coordinate
functions can be prescribed.

On the other hand, open Riemann surfaces normalizing complete bounded minimal
surfaces in R3 are far from classified. By introducing the Riemann–Hilbert method
into the picture (see Theorem 5.1), the authors with Drinovec Drnovšek and López [7]
proved that every bordered Riemann surface normalizes a complete bounded minimal
surface with Jordan boundary.

Theorem 5.4. Let M be a compact bordered Riemann surface. Every conformal
minimal immersion X : M → Rn (n ≥ 3) of class C 1(M) may be approximated
uniformly on M by continuous maps X̃ : M → Rn such that X̃|bM : bM ↪→ Rn is
a topological embedding and X̃| ◦

M
:

◦

M → Rn is a complete conformal minimal
immersion. If n ≥ 5 there are embeddings X̃ : M ↪→ Rn with these properties. The
flux map of X̃ can also be prescribed.

Theorem 5.4 follows by an inductive application of the following approximation
result (see [7, Lemma 4.1]), together with Theorem 3.10 and a transversality argument
which provides injectivity on the boundary.

Lemma 5.5. In the assumptions of Theorem 5.4, given a point p0 ∈
◦

M and a number
λ > 0, X may be approximated arbitrarily closely uniformly on M by a conformal
minimal immersion Y : M → Rn of class C 1(M) such that distY (p0, bM) > λ.

Lemma 5.5 in turn follows from the maximum principle, the divergence of
the sequence d j = d j−1 + (1/ j)(d0 > 0), the convergence of the sequence δ j =√
δ2

j−1 + (1/ j)2 (δ0 > 0), and an inductive application of the following result (see [7,
Lemma 4.2]).

Lemma 5.6. In the assumptions of Theorem 5.4, let Y : bM→ Rn be a smooth map and
choose δ > 0 such that |X(p) − Y(p)| < δ for all p ∈ bM. Also let p0 ∈

◦

M and choose
d > 0 such that 0 < d < distX(p0, bM). For any η > 0 the map X may be approximated
uniformly on compacts in

◦

M by conformal minimal immersions Y : M → Rn of class
C 1(M) satisfying distY (p0, bM) > d + η and |Y(p) − Y(p)| <

√
δ2 + η2 for all p ∈ bM.

Sketch of proof of Lemma 5.6. We assume that M is a smoothly bounded compact
domain in an open Riemann surface M̃ and, for simplicity of exposition, that bM is
connected. Choose a smoothly bounded compact domain K ⊂

◦

M which is a strong
deformation retract of M and such that distX(p0, bK) > d. We assume without loss
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of generality that X − Y , 0 on bM. Given ε > 0 we look for a conformal minimal
immersion Y : M → Rn with |Y − X| < ε on K and satisfying the lemma.

Fix a number ε0 > 0 to be specified later. By continuity of X and Y, bM splits
into l ≥ 3 compact arcs αk, k ∈ Zl, lying end to end and such that for all pairs of
points p, q ∈ αk we have |Y(p) − Y(q)| < ε0, |X(p) − Y(q)| < δ, and |X(p) − X(q)| < ε0.
Denote by pk the only point in αk ∩ αk+1 and by πk : Rn → span

{
X(pk) − Y(pk)

}
⊂ Rn

the orthogonal projection onto the real line span{X(pk) −Y(pk)}. The first step consists
of perturbing X near the points {pk : k ∈ Zl} in order to find a conformal minimal
immersion X0 : M → Rn of class C 1(M) which is close to X in the C 1(K) norm and
such that the distance between p0 and {pk : k ∈ Zl} in the induced metric X∗0(ds2) is
large in a suitable way. To be precise, we ask X0 to keep satisfying

(i) |X0(p) − Y(q)| < δ and |X0(p) − X(q)| < ε0 for all {p, q} ∈ αk, k ∈ Zl,

and to meet also the following condition:

(ii) for each k ∈ Zl there is a small open neighborhood Uk of pk in M, with Uk ∩

K = ∅, such that if γ ⊂ M is an arc with the initial point in K and the final
point in Uk and {Ja}a∈Zl is a partition of γ by Borel measurable subsets, then∑

a∈Zl
length πa(X0(Ja)) > η.

To find X0, choose pairwise disjoint Jordan arcs {γk ⊂ M̃ : k ∈ Zl} such that each γk
contains pk as an endpoint, is attached transversely to M at pk and is otherwise disjoint
from M, and the set S := M ∪

⋃
k∈Zl

γk ⊂ M̃ is admissible (see Definition 2.8). We then
extend X to a generalized conformal minimal immersion (X, f θ) ∈ GCMI(S ,Rn) such
that the following analogues to conditions (i) and (ii) hold.

• |X(x) − Y(q)| < δ and |X(x) − X(q)| < ε0 for all (x, q) ∈ (γk−1 ∪ αk ∪ γk) × αk.
• If {Ja}a∈Zl is a partition of γk by Borel measurable subsets, then

∑
a∈Zl

length
πa(X(Ja)) > 2η.

This means that on each arc γk, X is highly oscillating in the direction of F(pa) −Y(pa)
for all a ∈ Zl, but with very small extrinsic diameter. By Theorem 4.1 we can
approximate (X, f θ) uniformly on S by a conformal minimal immersion X̃ : M̃→ Rn of
class C 1(M). Let qk denote the endpoint of γk different from pk. If the approximation
is close enough then [56, Theorem 2.3] provides a smooth diffeomorphism φ : M →
φ(M) satisfying the following:

• φ :
◦

M → φ(
◦

M) is a biholomorphism;
• φ is as close as desired to the identity in the C 1 norm on the complement in M of

a small neighborhood of {pk : k ∈ Zl}; and
• φ(pk) = qk ∈ b φ(M) and φ maps a suitably chosen neighborhood of {pk : k ∈ Zl}

in M to a small neighborhood of
⋃

k∈Zl
γk in M̃.

Thus, doing things in the right way, when composing φ with X̃ we are merging the
arcs X(γk) into X̃(M) without modifying M itself. It follows that the C 1(M) conformal
minimal immersion X0 = X̃ ◦ φ : M → Rn satisfies conditions (i) and (ii).
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We may assume that the sets Uk, k ∈ Zl, are simply connected, smoothly bounded,
and pairwise disjoint. Roughly speaking, X0 meets the requirements in the lemma,
except that distX0 (p0, p) > d + δ only holds for the points p ∈ bM which lie in one of
the sets Uk. To conclude the proof, we perturb X0 outside

⋃
k∈Zl

Uk, preserving what
has already been achieved. At this point the Riemann–Hilbert method is invoked. Fix
ε1 > 0 to be specified later, choose an annular neighborhood A ⊂ M\K of bM and a
smooth retraction ρ : A→ bM. By (i) there is a family of pairwise disjoint, smoothly
bounded closed discs Dk in M\K, k ∈ Zl, such that

⋃
k∈Zl

Dk ⊂ A, Dk ∩ bM is a compact
connected Jordan arc in αk\{pk−1, pk} with an endpoint in Uk−1 and the other endpoint
in Uk, and the following conditions hold:

(iii) |X0(p) − Y(q)| < δ for all (p, q) ∈ Dk × αk; and
(iv) ρ(Dk) ⊂ αk\{pk−1, pk} and |X0(ρ(x)) − X0(x)| < ε1 for all x ∈ Dk, k ∈ Zl.

For each k ∈ Zl we choose a pair of compact Jordan arcs βk b Ik b Dk ∩ αk with an
endpoint in Uk−1 and the other endpoint in Uk, and a pair of vectors uk, vk ∈ R

n, such
that |uk| = 1 = |vk| and uk, vk, and X(pk) − Y(pk) are pairwise orthogonal. Choose a
continuous function µ : bM → R+ such that

0 ≤ µ ≤ η, µ = η on
⋃
k∈Zl

βk, µ = 0 on bM
∖ ⋃

k∈Zl

Ik.

Consider the continuous map κ : bM × D→ Rn given by

κ(x, ξ) =


X0(x), x ∈ bM

∖ ⋃
k∈Zl

Ik,

X0(x) + µ(x)(<ξuk + =ξvk), x ∈ Ik, k ∈ Zl.

These are the boundary data of a Riemann–Hilbert problem on X0 for which the
boundary disc κ(x, · ) at each point x ∈ βk is a round planar disc of radius η that is
orthogonal to X(pk) − Y(pk). Theorem 5.1 provides for every k ∈ Zl an arbitrarily
small open neighborhood Ωk ⊂ Dk of Ik and a conformal minimal immersion Y : M→
Rn of class C 1(M) satisfying the following conditions:

(v) dist(Y(x), κ(x,T)) < ε1 for all x ∈ bM;
(vi) dist(Y(x), κ(ρ(x),D)) < ε1 for all x ∈ Ω :=

⋃
k∈Zl

Ωk;
(vii) Y is ε1-close to X0 in the C 1 norm on M\Ω.

Using conditions (i)–(vii) and Pythagoras’ theorem, it is not hard to see that Y
satisfies the conclusion of the lemma provided that ε0 > 0 and ε1 > 0 are chosen
sufficiently small. Very briefly, by (vi), (iv), and the definition of κ we have that πk ◦ Y
is 2ε1-close to πk ◦ X0 in the C 0(Ωk) topology for all k ∈ Zl, and so a weaker version
of condition (ii) is preserved by the second deformation procedure. This enables us to
ensure that distY (p0, p) > d + η for all p ∈ bM ∩

⋃
k∈Zl

Uk. Taking into account (i), (v),
and that µ = η on

⋃
k∈Zl

βk, we infer the same inequality for all points p ∈ bM\
⋃

k∈Zl
Uk.

On the other hand, (i), (v), (vii), the facts that µ = η on
⋃

k∈Zl
βk and that uk, vk,
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and X(pk) − Y(pk) are pairwise orthogonal, and Pythagoras’ theorem guarantee that
|Y(p) − Y(p)| <

√
δ2 + η2 for all p ∈ bM. �

Another recent application of the Riemann–Hilbert method is the construction of
complete minimal surfaces lying densely in arbitrary domains of Rn. The following
result is due to Alarcón and Castro-Infantes [6].

Theorem 5.7. Let D ⊂ Rn (n ≥ 3) be an open connected set. Every bordered Riemann
surface M admits a complete conformal minimal immersion X : M → Rn such that
X(M) is a dense subset of D. If n ≥ 5 then X may be chosen injective.

5.4. Proper conformal minimal surfaces in minimally convex domains. A major
problem in minimal surface theory is to understand which domains in Rn admit
complete properly immersed minimal surfaces, and how the geometry of the domain
influences the conformal properties of such surfaces. For a background on this topic
we refer to Meeks and Perez [86, Section 3]. In dimension n = 3 this subject is
connected with the Calabi–Yau problem. In view of Nadirashvili’s example [92], Yau
[110] asked whether there exist complete minimal surfaces properly immersed in the
ball of R3. An affirmative answer for any either convex or bounded and smoothly
bounded domain in R3 was given by Martı́n and Morales in [82–84]. In the opposite
direction, Martı́n et al. [81] provided examples of bounded domains in R3 which do
not admit any complete proper minimal surfaces of finite topology.

If M is a bordered Riemann surface for which one is able to construct in a standard
inductive way a proper conformal minimal immersion into a given domain D ⊂ Rn,
then one can also construct a complete proper one by using the procedure in Lemma 5.5
which enlarges the intrinsic boundary distance within the surface as much as desired
by an arbitrarily uniformly small displacement of the surface in D. Hence it suffices to
focus on the existence of proper conformal minimal immersions.

Recent examples by Alarcón et al. [8] show that some geometric assumptions on
the domain are necessary to obtain positive results. Indeed, there is a bounded simply
connected domain D ⊂ R3 carrying no proper conformal minimal disc D→ D passing
through a certain point in D, and a bounded domain D ⊂ R3 admitting no proper
minimal surfaces with finite topology and a single end (see [8, Examples 1.13 and
1.14]). Much earlier, Dor [38] found a bounded domain Ω ⊂ Cm for any m ≥ 2 which
does not admit any proper holomorphic discs D→ Ω. It remains an open problem
whether there is a domain D ⊂ Rn for n > 3 without any proper minimal discs.

A C 2 function ρ : D→ R on a domain D ⊂ Rn is said to be strongly minimal
plurisubharmonic if trLHessρ(x) > 0 for every affine two-dimensional linear subspace
L and every point x ∈ D ∩ L; equivalently, if λ1(x) + λ2(x) > 0 for all x ∈ D where
λ1(x) ≤ λ2(x) are the two smallest eigenvalues of the Hessian Hessρ(x). The domain
D is said to be minimally convex if it admits a strongly minimal plurisubharmonic
exhaustion function (see [8, Section 2]). The following result was obtained as an
application of Theorem 5.1 (the Riemann–Hilbert method) with functions κ of the
form (5.3); see [8, Theorem 1.1 and Remark 3.8].
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Theorem 5.8. Let D ⊂ Rn (n ≥ 3) be a minimally convex domain and M be a compact
bordered Riemann surface. Every conformal minimal immersion M → D may be
approximated uniformly on compacts in

◦

M = M\bM by proper (and complete if so
desired) conformal minimal immersions

◦

M → D (embeddings if n ≥ 5).

In particular, every mean-convex domain in R3 admits complete proper minimal
surfaces normalized by any bordered Riemann surface. We refer to [7, 8] for
more precise results including infinite topologies, control of the flux, and continuous
extendibility up to the boundary.

Since the complement of a properly embedded minimal surface in R3 is a minimally
convex domain [8, Corollary 1.3], we have the following corollary to Theorem 5.8.

Corollary 5.9. Let S ⊂ R3 be a properly embedded minimal surface and D be a
connected component of R3\S . Every bordered Riemann surface admits a proper
conformal minimal immersion into D.

Sketch of proof of Theorem 5.8. We discuss the case n = 3. Let ρ : D→ R+ be a
smooth strongly minimally plurisubharmonic Morse exhaustion function with the
(discrete) critical locus P. We extend ρ to a function on the tube D × iR3 ⊂ C3 which
is independent of the imaginary coordinates. A simple calculation shows that ρ is
strongly minimally plurisubharmonic if and only if the Levi form of the extended
function at any point of D × iR3 is positive on every null vector w ∈ A∗ (see [42,
Lemma 4.3]; such functions are called strongly null plurisubharmonic). It is then not
hard to see (see [8, Lemma 3.1]) that for any compact set L ⊂ D\P there are a constant
c = cL > 0 and families of embedded null holomorphic discs σ j

x = α
j
x + iβ

j
x : D→ C3

(x ∈ L, j = 1, 2), depending locally C 1 smoothly on the point x ∈ L and satisfying the
following conditions:

(a) σ
j
x(0) = 0;

(b) {x + α
j
x(ξ) : ξ ∈ D} ⊂ D;

(c) the function D 3 ξ 7→ ρ
(
x + α

j
x(ξ)

)
is strongly convex and satisfies ρ

(
x + α

j
x(ξ)

)
≥

ρ(x) + c|ξ|2 for ξ ∈ D.

Indeed, it suffices to choose σ j
x in the quadratic complex hypersurface

Σx =

{
w = (w1,w2,w3) ∈ C3 :

3∑
j=1

∂ρ

∂x j
(x)w j +

3∑
j,k=1

∂2ρ

∂z j∂z̄k
(x)w jwk = 0

}
.

The tangent plane T0Σx ⊂ C
3 contains precisely two null directions, which leads to two

families of null discs as above. The restriction of ρ to the affine hypersurface x + Σx

has the Taylor expansion

ρ(x + w) = ρ(x) +Lρ(x; w) + o(|w|2),

where Lρ denotes the Levi form of ρ. Since Lρ(x; w) > 0 on null vectors w ∈ A∗, we
get the estimates in condition (c).
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Using the conformal minimal discs α j
x as above and a conformal minimal immersion

X : M → D, we consider the Riemann–Hilbert problem in Theorem 5.1, but with the
function κ of the form (5.3). This shows that for any compact set L ⊂ D\P there
are constants ε0 > 0 and C0 > 0 such that the following holds. Let M be a compact
bordered Riemann surface and X : M→ D be a conformal minimal immersion of class
C 1(M) with X(bM) ⊂ L. Given a continuous function ε : bM → [0, ε0] supported on
the set J = {ζ ∈ bM : X(ζ) ∈ L}, an open set U ⊂ M containing supp(ε) in its relative
interior, and a constant δ > 0, there exists a conformal minimal immersion Y : M→ D
satisfying the following conditions:

(i) |ρ(Y(ζ)) − ρ(X(ζ)) − ε(ζ)| < δ for every ζ ∈ bM;
(ii) ρ(Y(ζ)) ≥ ρ(X(ζ)) − δ for every ζ ∈ M;
(iii) Y is δ-close to X in the C 1 norm in M\U;
(iv) Y is C0

√
ε0-close to X in the C 0 norm in M.

The theorem is proved by a inductive application of this procedure, together with a
well-known method of avoiding critical points of ρ. By using also Lemma 5.5 we can
obtain complete proper conformal minimal immersions

◦

M → D. �

There is a variety of results and open questions in the literature as to which domains
in R3 may or may not contain minimal surfaces (possibly with additional properties)
which are proper in R3. One of the main examples is the theorem of Hoffman
and Meeks from 1990 [71] to the effect that a properly immersed minimal surface
M ⊂ R3 is never contained in a half space, unless M is a plane. Since minimally
convex domains are not necessarily convex and they may be quite big, it is a natural
question whether they may contain nonflat minimal surfaces which are proper in R3.
Although we do not know a definitive answer to this question, we have the following
rigidity result [8, Theorem 1.16] for properly immersed minimal surfaces of finite total
curvature in R3 lying in minimally convex domains.

Theorem 5.10. Let S be a complete connected properly immersed minimal surface
with finite total curvature in R3, possibly with (compact) boundary, and let D ⊂ R3 be
a connected minimally convex domain containing S . If S is not a plane then D = R3. If
S is a plane then D is a slab (a domain bounded by two parallel planes), a halfspace,
or R3.
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[12] A. Alarcón and F. Forstnerič, ‘Every bordered Riemann surface is a complete proper curve in a
ball’, Math. Ann. 357(3) (2013), 1049–1070.
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[35] U. Dierkes, S. Hildebrandt, A. Küster and O. Wohlrab, Minimal Surfaces. II Boundary
Regularity, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], 296 (Springer, Berlin, 1992).

[36] M. P. do Carmo, Differential Geometry of Curves and Surfaces (Prentice-Hall, Englewood Cliffs,
NJ, 1976).

[37] S. Donaldson, Riemann Surfaces, Oxford Graduate Texts in Mathematics, 22 (Oxford University
Press, Oxford, 2011).

[38] A. Dor, ‘A domain in Cm not containing any proper image of the unit disc’, Math. Z. 222(4)
(1996), 615–625.

[39] J. Douglas, ‘One-sided minimal surfaces with a given boundary’, Trans. Amer. Math. Soc. 34(4)
(1932), 731–756.
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