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On Spheroidal Harmonics and Allied Functions.

By G. B. JEFFERY.

(Received 19th May 1915. Read 11th June 1915).

In a paper recently read before this Society,* Mr E. Blades
obtained a general formula for spheroidal harmonics in the form
of the general solution of Laplace’s equation given by Professor
Whittaker,

2T
J- S(xcost+ysint+iz, ¢)dt.
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If spheroidal coordinates 7, 6, ¢ are defined by
w=c~ 7+ 1sin6cos
y=c¢ J 7P+ 1sin fsin ¢
z=crcosf

the result obtained is
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This formula gives, for real and pure imaginary values of »
respectively, all the oblate and problate spheroidal harmonics
which are finite in the finite region. It does not include the
harmonics which vanish at infinity, which are, perhaps, from the
point of view of physical application, the more interesting class.
These 'can, however, be obtained by the same method as that
employed by Mr Blades.

The addition theorem for Legendre functions of the second
kind was given by Heine.t After making some changes in the

* Proc. Edin. Math. Soc., Vol. XXXIIIL (Part L), 1915, p. 65.
t Kugelfunctionen 1, p. 333.
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numerical factors in order to conform to the now accepted
notation for the associated Legendre functions,* the theorem may
be written

Q. (cosfcos ¢ +sinfsin @ cos(p—-¢)) = P,(cos )@, (cos &)

(n—m)!
*2,?1< m)

Multiplying by sin Mt and integrating with respect to ¢ from 0 to

P7(cos 0) Qr (cos §') cosm (¢ - ¢).

2w, we have

1 Qn(cosﬂcos0’+s1n0s1n 6’ cos (¢ - t))smmtdt
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Put cos §=1ir, and this may be written

1 (" xcost sint{+i2 i
] e (FEE)

3T J, c

_(n-m)!

= nim) Pr(cos 6) Qr (i r) sin

If r is real, these solutions become infinite on the circle
z2=0, #+y*=c*; if r is a pure imaginary, they become infinite on
that part of the axis of z between the points z= +¢; in either case
they have infinities inside every spheroid of the family r = const.
On the other hand they tend to zero for large values of 7, i.e. at
points at a great distance from the origin.

The only other class of spheroidal harmonic consists of the
product of two Legendre functions, both of which are of the second
kind. These solutions become infinite either at all points on the
axis of z or at all points on the plane z=0. These solutions have
not as yet been used to any great extent in mathematical physies,
but, from the point of view of the theory of the solution of
Laplace’s equation, it would be interesting to see the form of the
function f in Whittaker’s solution which gives rise to them.

* e.g. That employed in Whittaker’s Modern Analysis.
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The analogous theorems for Bessel functions also give solutions
of Laplace’s equation. Neuman’s generalised addition theorem
may be written *

Jo B = 2bc cos (¢ —t) + )

=4 (8) /o () + 2 2 T, (8) o (¢) cos m (- 1)

and there is a corresponding theorem for functions of the second
kind

Y, (V8*=2bccos (¢~ t)+¢)
=Y, () Jy(c) +2 3 ¥, (b) J,r (c) cos m (¢ — ).

sin

Multiplying by cos

mt and integrating from 0 to 2= we have

_1 = sin
o), Jo (N6 —2bc cos (¢ — )+ %)  mtdt

=T (5) T (0) 1B m s

and

L PR 7y S 4 dy
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_ sin
- Ym (b) Jm (C) cos m¢'
Take coordinates £, 7, ¢ defined by

=2fmncos ¢
2&7nsin ¢
-

x
Y
%

* Gray and Mathew’s Bessel’s Functions, p. 27 and p. 92. We have
followed the notation there used for the second solution of Bessel’s equation,
but it is clear that in this case ¥,, may be taken as any lincar combination of
the two solutions in which the coefficients are independent of m.
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The surfaces & 7 =const. are a double orthogonal system of
confocal paraboloids of revolution, having for a common axis the
axis of 2. Writing b=n¢§, c=1in, we have
sin

1" -
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These solutions of Laplace’s equation are suitable for the
investigation of problems in which the boundary conditions are
given over paraboloids of revolution. The former remains finite
when either ¢ or % vanishes, i.e. at all points on the axis of 2.
This then is the solution which must be employed for the interior
of a paraboloid of revolution. The second solution becomes infinite
when § =0, and therefore it may be employed for the field exterior
to one of the paraboloids, £ =const. The first solution is also finite
throughout the region exterior to this paraboloid, and hence in
this case we must employ a linear combination of the two solutions
determined by the conditions at infinity.
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