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The theorems given here deal with the efficiency, mutual con-
sistency, and regularity of y-transformations1.

§1. THEOREM 1. The necessary and sufficient conditions that y-
matrices are efficient for all divergent series whose partial sums are
bounded, are

(1) lim gk(a) = 0, (a fixed)

(2) lim 2 |Aflrt(o)| = 0,
a —> a> h — 1

where A gk (a) = gk(a) — gk+1 (a).

Since (gk{a)) is a y-matrix we have
00

(3) 2 | A gk (a) I ^ M independently of a,
4 = 1

(4) lim gk(a) = 1 f° r each fixed k.
a—>oo

The proof of the theorem is based on the following lemma: —
The necessary and sufficient conditions that 2 dkck may be convergent

k

whenever sk = 2 C{ is bounded are
i = l

(5) lim 4 = 0,

(6) S | A 41 is convergent.
k=l

Since
n n — 1

an= 2 dkck= 2 sk(Adk)+sndn,
k=l 4 = 1

the conditions are obviously sufficient. The necessity of (6) is
established as in Abel's Lemma2. If we take ck = (— 1)*, we see

1 All these terms and others used here are explained in P. Dienes, 27ie Taylor Sei-ies
(Oxford). 1931, Chapter 12. A knowledge of this chapter is assumed. The book will
be referied to as D.

2 See p. 394 of D.
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oo

that E dk( — \)k is divergent when lim dk=$=0. (5) is therefore
4 = 1 4->co

necessary.

Thus
CO

a = lim an = 2 [A dk~\ sk.
n—>oo 4 = 1

Hence for particular values of a we have

(7) y ( a )= S flft(o)ct= S [Agr^a)]**.
4 = 1 4 = 1

lim y (a) exists by (2), sk being bounded. The conditions are
a —>• co

therefore sufficient.

(1) is necessary in view of (5) already proved necessary. We use
(7) to prove the necessity of (2). If (2) does not hold, we can select a

00 CO

real increasing sequence {an} such that S | A g'k (an) | or S | A g"k (an) \
k=l 4=1

(or both) is greater than 4A > 0, where gk(a) = g'k(a) + ig"k(a).
Suppose the first.

00

Put A g'k (an) = ank. Then S | ank \ > 4A. Choose a value nx of n
k = \

and determine, by (3), p1 such that
1 |an,,|<A/2.

4=p, + l

We will construct a real sequence sk such that | s f t | ^ 1. Suppose
sk = sgn (an i i) , (1 ^ ft ^ i>i). Then | TBl | > 3A where Tn = R{y (aB)}.

Next choose, by (4), n2>n1 such that S ; an,k ] < A/2 and determine,
4 = 1

CO

as before, p2 > Pi such that 2 | an j. | < A/2.
4=J>,+1 "

Take sk = 0 for px < k ^ >̂2- Then [ Tnz \ < A. Next choose n3 > w2

such that

E |a f t 3 i |<A/2,
fc=i

and determine j33 > p2 such that

2 | a n . , |<A/2 .
i=P, + l ' . . .

Take sk = sgn (anxk) for ^)2 < k :g f»3. Now
J>2 Pi

| a B . t | + E
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Therefore

\Tn,\^ S \ansk | - 2 2 | a B , t | - 2 2 | et».t | > 2A.

Continuing in this way we have | TKr \ > 2A for odd r and J Tnr | < A for
even r. Therefore y (an) diverges and (2) is necessary.

THEOREM 2. Every indefinitely divergent series of complex constants
has for its generalised sum any given complex constant.

By an indefinitely divergent series we mean a series for which
there are at least 2 distinct limiting values of its partial sums sk.
Suppose L' and L" are any two limiting values of sk.

Let the given complex constant be s. Take suffixes k'n, k"n (> k'n)
such that sk,n->L' and sk"n-^ L", where %. =j=sAn, and determine the
y-matrix by putting

g«t = i (i^k^k'n)

= (« - *fn )/(Vn - **-, ) (k'n < I* ^ k"n)

= 0 {k>k"n).
Then

CO

S gnk ck = %n + {(« - sA,n )/(sfc-.o — sfc.n)} (%-„ - sk.n) = s.

As an example of a definitely divergent series that can be
evaluated to any complex constant s we take the series

l ' + 2 ' + 3 ' + r = 0, 1, 2, . . . .

and the y-matrix

= — (k = 7i)

w v

= 0 (jfc>%),
where S,W = lr + 2r + 3r -f . . . . + nr.

§ 2. Let G and G*' be two y-matrices which evaluate the divergent
series Ec4.

Suppose that
X

(8) yn= S gnkck->Y

(9) y ' n = 2 J?'
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Let us find conditions that y = y'.
I. If (gnK) has an inverse with respect to ck, that is, if (8) can be
solved for ck,

ck = 2 gkm ym.
772

(9) becomes

k m

If the order of summation can be changed, we have

Yn = 2 ( 2 g'nk gkm) ym,
m k

and so we have constructed a sequence transformation leading from
one of the transforms to the other. Now the necessary and sufficient
•condition that the convergent sequence {yTO} should be transformed
into another tending to the same value is that anm = 2 g'nk gkm be a

T- matrix.
We notice that (8) can be solved for ck if (gnk) is row-finite and

has a row-finite left reciprocal. If (g'nk) is also row-finite, the order
of summation in (10) can be changed. Hence

THEOREM 3. / / (i) (gnk) and (g'nk) are row-finite and (ii) (gnk) has row-
Jinite left reciprocal (gkm), then (gnk) and (g'nk) are mutually consistent

00

(for every ck) if and only if ( 2 g'nk gkm) is a T-matrix.

COROLLARY 3.1. When (g'nk) is a reciprocal of (gnk), the theorem shows
that the matrix square of (g'nk) should be a T-matrix.

•COROLLARY 3.2. The necessary and sufficient condition that G' includes
00

G is that ( 2 g'nk gkm) is a T-matrix, G' and G being subject to the con-

ditions of the theorem.

•COROLLARY 3.3. When G and G' satisfy the conditions of the theorem,
00 00

they are equivalent if and only if ( 2 g'nkgkm) and ( 2 gnk§'km) are

T-matrices.
II. Whether or not (gnk) has an inverse with respect to ck, we pro-
ceed as follows:—

We transform the sequence {y'n} by a T-matrix A. The trans-
formed sequence is

Y"«= 2anmy'm->y"
m

m k
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If the order of summation can be changed, we have

y"n = Yl(Lanmg'mk)ck.
k m

Now y" is necessarily equal to y' and y = y" if

(12) (gnk) -(Xanmg'mk).
m

The order of summation in (11) can be changed if A and G' are
row-finite and therefore, from (12), G must also be row-finite. Hence

THEOREM 4. If G, G' are row-finite, G and G' are mutually consistent
if G = AG', where the product is of the matrix kind and A is a, row-finite
Tmatrix.

<3OROLLARY 4.1. G includes G' if G = AG', G, G' and A being subject
•to the conditions of the theorem.

COROLLARY 4.2. G and G' are equivalent if G = AG' and G' = BG,
where G and G' are row-finite ^-matrices, A and, B row-finite I1-matrices.
If we transform yre and y'n by T-matrices B and B' respectively, we
easily get as in II above, the following theorem:—

THEOREM 5. If G and G' are row-finite j-matrices and B and B' are
row-finite T-matrices, G and G' are mutually consistent if BO = B' G',
•the product on each side being a matrix one.

Since {gnk — gn,k+1) and (g'nk — g'n<k+x) are T-matrices1, we have

COROLLARY 5.1. If two row-finite y-matrices (gnk) and (g'?,k) satisfy

£ (9n! — 9n, l + l) g'lk = 2 ig'nl ~ 9'n, l + l) 9lk>
I I

•they are mutually consistent for every series they evaluate.

THEOREM. 6. The necessary and sufficient conditions that a row-finite
00

y-malrix {gnk) should be regular are that (i) ( 2 gnk gk m+l), and
k = \

CO

<ii) ( S gn,k+l gk+hm+i) are T-matrices.

This follows from Corollary 3.3.
I have great pleasure in expressing my thanks to Dr P . Dienes

for his interest during the preparation of this note.

1 See VII, p. 399 of D after noting that O and (x are row-finite.
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