On y-transformations of series
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The theorems given here deal with the efficiency, mutual con-
sistency, and regularity of y-transformations!.

§1. TaeEorREM 1. The necessary and sufficient conditions that -
matrices are efficient for all divergent series whose partial sums are
bounded, are

(1) lim g;(a) =0, (a fixed)
k—> w0

(2) im £ |Ag(a)|=0,
a—>w k=1

where A g, (@) =gy (@) — 11 (a).
Since (g;(a)) is a y-matrix we have

(3) 5 | Agi(a)| < M independently of a,
k=1 ~

(4) lim g¢,(a) =1 for each fixed k.
a—> w0

The proof of the theorem is based on the following lemma :—
The necessary and sufficient conditions that X d, c; may be convergent

%
whenever s, = X ¢; 15 bounded are

i=1
P>
(6) 2 |Ady| 5 convergent.
k=1
Since

n n—1
o, = X dpc,= Elsk (Ady) + s, d,,

k=1

the conditions are obviously sufficient. The necessity of (6) is
established as in Abel’s Lemma? 1If we take ¢, = (— 1)%, we see

1 All these terms and others used here are explained in P. Dienes, The Taylor Series
(Oxford), 1931, Chapter 12. A knowledge of this chapter is assumed. The book will
be referied to as D.

2 See p. 394 of D.
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that X d,(— 1)* is divergent when lim d,=3=0. (5) is therefore
k=1 k—> o
necessary.

Thus
o= lim Oy = E [Adk]sk

n—>w

Hence for particular values of a we have

(7) yla)= kz ge(a) e = Z [Agk(a)] Sk
lim +y(a) exists by (2), s, being bounded The conditions are

therefore sufficient.

(1) is necessary in view of (5) already proved necessary. We use
(7) to prove the necessity of (2). 1If (2) does not hold, we can select a
real increasing sequence {a,} such that Z | Ag'y(ay)| or Z ] Ag'i(ay) |
(or both) is greater than 4> 0 where gr(a) = gk(a) + 19" (a).
Suppose the first.

Put Ag¢g',(a,) = ay. Then X |a,|>4A. Choose a value n, of n

k=1

and determine, by (3), p, such that
2 ‘anl;\.‘<)\/2.
k=p, +1
We will construct a real sequence s; such that [s;|< 1. Suppose
s =s8gn(an;), 1 =k=<p). Then |T, |> 32 where T, = R{y(a,)}.

D,
Next choose, by (4), ny>n; such that X a,,,! < A/2 and determine,
k=1

as before, p, >1)1 such that X |a, ;| <A/2.
k=p.+1

Take s; =0 for p, <k < po. Then [T, | <A. Next choose n; > n,
such that

P2
2 Ianakl < )\/2,
k=1

and determine p3 > p, such that

Z aug| < M2
k=p,+1
Take s, = sgn (an, ) for po <k = p;. Now

D Ps
Tn, = 3 Q. k Sk + z Ian L‘ + E_ Qo k Ske
k=1 k=p.+ 1

k=yp,
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Therefore
@ P2 @®
[Th |2 Z |ans | —2 Z Jape|—2 2 |aps|>21
k=1 k=1 k=p,+1

Continuing in this way we have | T, |> 2A for odd  and [T, |< A for
even r. Therefore y (a,) diverges and (2) is necessary.

THEOREM 2. Every indefinitely divergent series of complex constants
has for its generalised sum any given complex constant.

By an indefinitely divergent series we mean a series for which
there are at least 2 distinct limiting values of its partial sums s;.
Suppose L’ and L’ are any two limiting values of s;.

Let the given complex constant be s. Take suffixes &', "', (> ¥',)
such that s;, — L' and sy, — L, where s ==s;,, and determine the
y-matrix by putting

Gur =1 (1 ékék,n)
= (S — S, )/(Sk",, - Sk'n) (kln <k = k”n)
=0 (k>Ek",).

Then

E gueCr = sw, +{(8 — s,/ (80, — 80, )} (S0, — Spe,)) = 8.
k=1
As an example of a definitely divergent series that can be

evaluated to any complex constant s we take the series

1"+ 21434 ..., r=0,1,2, ....

and the y-matrix

kSY,
s
== k:
2 (k=)
=0 (k> n),
where SO =17+ 27+ 37+ ... + n".

§2. Let G and @’ be two y-matrices which evaluate the divergent
geries X c,. :
Suppose that

L

(8) Yn = L Gy
k=1

n
(9) Y= /§1g’nkckéﬁfl'
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Let us find conditions that v = ',
I. If (g,,) has an inverse with respect to c;, that is, if (8) can be
solved for ¢,
Cr= )X gkm Yme
{(9) becomes "
(10) Y= % 9 nk % Jim Yme

If the order of summation can be changed, we have

Yln =X (% 9’ vk Gem) Yms

m
and so we have constructed a sequence transformation leading from
one of the transforms to the other. Now the necessary and sufficient
condition that the convergent sequence {y,,} should be transformed
into another tending to the same value is that a,, = )Eg’,,k Gim bE &

T-matrix.

We notice that (8) can be solved for ¢, if (g,;) is row-finite and
has a row-finite left reciprocal. If (¢’,) is also row-finite, the order
of summation in (10) can be changed. Hence

THEOREM 3. If (i) (9.) and (g'.:) are row-finite and (ii) (g.:) has row-
Jinite left reciprocal (§in), then (gn) and (g'n;) are mutually consistent

(for every c;) if and only if ( = ¢'ur Gim) t8 @ T-matrix.
k=1

‘CorROLLARY 3.1. When (¢’,) s a reciprocal of (g.z), the theorem showws
that the matriz square of (¢',:) should be a T-matrix.

CoROLLARY 3.2. The necessary and sufficient condition that G includes

L] -
G is that ( Z g'pGim) ts @ T-matriz, G and G being subject to the con-
k=1

ditions of the theorem.

‘CorOLLARY 3.3. When @ and G’ satisfy the conditions of the theorein,
they are equivalent if and only if ( § 9k Grm) and ( ;‘. Gt G 1m) Q@7e
T-matrices. = -

II. Whether or not (g,.) has an inverse with respect to ¢, we pro-
ceed ag follows:—
We transform the sequence {y’,} by a T-matrix 4. The trans-
formed sequence is
Y”n =X Aam Y’m - Y”

m
(11) =T dau, 9 m
m k
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If the order of summation can be changed, we have
Y”n =2z (E Apm g/mk) Cy-
kE m

Now y"’ is necessarily equal to y' and v = y"' if
(12) (gnL) = (zanmg'mk)'
m

The order of summation in (11) can be changed if 4 and G’ are
row-finite and therefore, from (12), G must also be row-finite. Hence
THEOREM 4. If G, G’ are row-finite, G and G’ are mutually consistent
if G = AGQ', where the product is of the matriz kind and A is a row-finite
T-matriz.

CoRrOLLARY 4.1. G includes @ if G = AG', G, @ and A being subject
1o the conditions of the theorem.

COROLLARY 4.2. @ and G are equivalent if ¢ = AG’ and G = BG,
where G and G’ are row-finite y-matrices, A and B row-finite T'-matrices.
If we transform vy, and ¥, by 7-matrices B and B’ respectively, we
easily get as in 1I above, the following theorem:—

TuroreM 5. If G and G’ are row-finite y-matrices and B and B’ are
row-finite T-malrices, G and G’ are mutually consistent if BG = B’ &,
the product on each side being a matrix one.

Since (gnr — gn, x+1) 30d (9'np — ¢'n,x+1) are T-matrices’, we have
‘CoroLLARY 5.1. If two row-finite y-mairices (g) and (9 1) satisfy
Ez: (Gnr — Gn,141) 9’ = zl(g'nz = 0, 141) G

they are mutually consistent for every series they evalualte.
THEOREM. 6. The necessary and sufficient conditions that a row-finile

y-matriv  (gn) should be regular are that (i) (2 gup Grmer1), and
k=1

o
{ii) (kEIgn,k+1 1, m+1) are T-matrices.

This follows from Corollary 3.3.
I have great pleasure in expressing my thanks to Dr P. Dienes
for his interest during the preparation of this note.

1See VII, p. 399 of D after noting that G and & are row-finite.

BirkBECK COLLEGE
LoNDON.
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