
Challenges in modelling the random structure correctly in
growth mixture models and the impact this has on model
mixtures

M. S. Gilthorpe1,*, D. L. Dahly2, Y.-K. Tu3, L. D. Kubzansky4 and E. Goodman5

1Division of Epidemiology & Biostatistics, School of Medicine, University of Leeds, Leeds, UK
2Department of Epidemiology and Public Health, University College Cork, Cork, Ireland
3Institute of Epidemiology & Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
4Department of Social and Behavioral Sciences, Harvard School of Public Health, Boston, MA, USA
5Mass General Hospital for Children, Department of Pediatrics, Harvard Medical School, Boston, MA, USA

Lifecourse trajectories of clinical or anthropological attributes are useful for identifying how our early-life experiences influence later-life morbidity and
mortality. Researchers often use growth mixture models (GMMs) to estimate such phenomena. It is common to place constrains on the random part of the
GMM to improve parsimony or to aid convergence, but this can lead to an autoregressive structure that distorts the nature of the mixtures and subsequent
model interpretation. This is especially true if changes in the outcome within individuals are gradual compared with the magnitude of differences between
individuals. This is not widely appreciated, nor is its impact well understood. Using repeat measures of body mass index (BMI) for 1528 US adolescents, we
estimated GMMs that required variance–covariance constraints to attain convergence. We contrasted constrained models with and without an
autocorrelation structure to assess the impact this had on the ideal number of latent classes, their size and composition. We also contrasted model options
using simulations. When the GMM variance–covariance structure was constrained, a within-class autocorrelation structure emerged. When not modelled
explicitly, this led to poorermodel fit andmodels that differed substantially in the ideal number of latent classes, as well as class size and composition. Failure to
carefully consider the random structure of data within a GMM framework may lead to erroneous model inferences, especially for outcomes with greater
within-person than between-person homogeneity, such as BMI. It is crucial to reflect on the underlying data generation processes when building suchmodels.
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Background

Lifecourse researchers often estimate growth curves or
‘trajectories’ in longitudinal data to understand developmental
processes. Multilevel modelling1,2 is perhaps the most popular
method of growth curve estimation in health research, but
other useful methods based on structural equation modelling3

are more commonly used in the social sciences. These include
latent growth curve modelling (LGCM)4–7 and growth mixture
modelling (GMM).8–17 In LGCM, repeated measures of a
growth variable (e.g. height) are modelled as a function of a
smaller number of latent growth factors (analogous to the random
effects of multilevel models) and time-specific latent errors. The
latent growth factors and errors are each assumed to be independent
and identically normally distributed, and the parameters of this
‘random structure’ help describe amean trajectory in the population
and how individuals deviate from that trajectory. GMM can be
viewed as an extension of LGCM, where model parameters are
allowed to vary across a specified number of latent classes.

In seeking a suitable standard GMM, it is currently common
practice to estimate multiple models, specifying a different
number of latent classes, and make a decision on which model
is ‘best’. Individuals are classified by estimating their posterior
probabilities of class membership. When a GMM with 2+
latent classes is a better explanation of the observed data than a
single class model, it suggests that the population comprises
sub-groups, each with its own underlying developmental
process. Sub-group membership is interpreted as an important
feature in its own right, related to health outcomes and other
important covariates. Selecting the model with the ‘correct’
number of latent classes is central to GMM interpretation,
and selection can be heavily influenced by the method used
to parameterize the structure of random effects within the
model. For example, a common approach is to constrain the
growth factor variances of all latent classes to be zero, referred
to as latent class growth analysis,18 group-based trajectory
modelling19 or semi-parametric growth modelling.20 At the
other extreme of model parsimony, one could freely estimate
the variances and covariances of the growth factors separately
for each latent class. It is also common to specify homoscedastic
or heteroscedastic models by constraining or freely estimating
the latent error variances across time points and/or classes.
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Choices regarding model parameterization should be driven
by an understanding of underlying data generation processes,
associated theory and the research question at hand. GMM
convergence can be difficult when there are too many freely
estimated parameters. A common solution is to simplify the
model with parameter constraints. Although these constraints
might be necessary for model estimation, they may not
accurately reflect the underlying growth process, and can thus
lead to erroneous conclusions. When growth factor variances
and covariances are constrained to be zero, autocorrelation
among the time-specific latent errors emerges. This occurs if
individual growth curves are regularly above or below the
class-specific mean growth curve, which is likely for large parts
of an individual growth trajectory if outcomes exhibit more
between-subject than within-subject heterogeneity (which is
the case for most human growth measures). This might be
resolved by freely estimating the growth factor variances and
covariances; however, as noted above, such free estimation may
be impossible because of convergence problems. An alternative,
more parsimonious approach is to model explicitly the
emergent autocorrelation structure. To date, no study has
examined the impact of doing this on the selection and
interpretation of GMMs. Our study addresses this gap. We
consider the simple approach of imposing an autocorrelation
constraint on successive measures.

Body mass index (BMI) is a variable of great interest to
researchers in a variety of fields and has been studied previously
using GMM.8,10,12,14,16 We use a motivating example of
exploring lifecourse patterns of BMI in a sample of adolescents.
Prior work with this cohort has assessed cardiometabolic
risk, psychological distress and weight status.21–23 In our
illustration, we use these data to generate GMMs to identify
lifecourse patterns of BMI, while considering different model
parameterizations. We also simulate BMI growth data for a
simple model in the same context to help inform interpretation
of the findings from the genuine data. We contrast constrained
models with and without an autocorrelation structure, to reveal
the impact this has on the derived model, specifically the ideal
number of latent classes, their size and their composition.
Simulations inform how constraining a GMM’s random
structure can introduce an emergent autocorrelation structure,
and how failure to model this explicitly can lead to erroneous
models being selected.

Methods

The study data set

This study uses longitudinal data from a cohort study
conducted in Cincinnati, OH, US area.21–23 Data were drawn
from Phase 1 of the Princeton City School District study,
which began in the 2001–2002 school year and included
students in grades 5–12 at baseline with three further annual
waves of data collection. Students were excluded if they were
pregnant, received corticosteroid treatment for asthma, had a

disease that would interfere with carbohydrate metabolism
(diabetes, cancer, cystic fibrosis, acromegaly, Cushing’s disease
or syndrome, pheochromocytoma, liver or kidney disease) or
were participating in a longitudinal study of carbohydrate
metabolism. Study visits included a physical exam where height
and weight were measured. As the cohort was 95%
non-Hispanic black and white, analyses were restricted to these
two ethnic groups.

Statistical methods

GMM and data simulation were carried out in Mplus version
724 using maximum likelihood (ML) estimation to identify
sub-groups that deviated from the ‘normal’ adolescent BMI
trajectory. We modelled cohort trajectories (i.e. students nested
within measurement occasions, irrespective of their ages) rather
than age-specific growth trajectories (which would overlook the
natural cohort clustering), as this accurately reflected the
structure of the data.
BMI trajectories were taken to be quadratic in (centred)

time, requiring three latent growth factors, hereby referred to as
the intercept, velocity and acceleration. The intercept was
modelled conditional on age at the first measurement occasion,
sex, an age–sex product interaction term and racial/ethnic
group. Covariate coefficients were constrained to be identical to
ensure that the parameterization of underlying BMI growth
curves was identical across classes. Individual trajectory
differences in mean BMI by age, sex, age–sex interaction and
racial/ethnic group were thus accommodated, as were the
different ages at which students were recruited. The age–sex
interaction allowed for mean BMI sex differences to vary
according to age, and vice versa, accounting for growth spurt
differences. As the underlying age, sex and racial/ethnic
differences in mean BMI across the classes throughout
adolescence were modelled, ‘residual’ differences amount to
individual deviations from the underlying mean. Similarly,
velocity and acceleration were conditional on age, allowing for
differences in change in BMI by age throughout adolescence.
Age and sex differences in BMI changes were captured via the
age–sex interaction for the intercept. As initial investigation
for age and sex interactions with race revealed small,
non-significant coefficients, differences in BMI changes by
racial/ethnic group were not modelled. As outcome variances
appeared consistent over time, measurement occasion-specific
variances were constrained to be identical across waves within
each class (i.e. homoscedasticity was assumed).
Models of the illustrative data with freely estimated

variance–covariance structures (i.e. random intercept, velocity
and acceleration for each class trajectory) often gave rise to
a non-positive definite covariance matrix, which led to
difficulties in convergence. This is not unusual with such
models. A common solution to this problem is to constrain
some of the variance–covariance parameters to be zero. For our
data, variances of both velocity and acceleration had to be
constrained to be zero before models consistently converged.
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Details of the model specification for the illustrative data set are
given in the Supplementary material.

Model-fit criteria examined were: −2 log-likelihood (−2LL);
the Akaike’s Information Criterion (AIC = − 2LL+ 2k, where
k is the number of model parameters); and the Bayesian
Information Criterion (BIC = − 2LL+ k× ln[n], where k is
the number of model parameters and n is the sample size). The
−2LL improves asymptotically towards model saturation with
increasing model complexity, whereas the inclusion of penalty
terms in AIC and BIC attenuate this, both seeking parsimony.
Consequently, AIC and BIC can attain minima for relatively
low values of k. Either AIC or BIC may be preferred in pur-
suing model parsimony, but one must remain mindful of the
impact of parameterization on the utility and meaning of the
GMM adopted.

Selection of the ‘ideal’ number of latent classes should be a
combination of likelihood-based model-fit criteria and
interpretational value. The number of latent classes that we
examined for the illustrative data set ranged from 2 to 11.
As the risk of models converging to local minima increases with
increasing number of classes,25 models were run for 20k
random starts (for a limited number of iterations), of which the
best 10% (according to ranked LL) were run to completion to
derive final model estimates; the number of converged models
was examined to determine what proportion settled on the
same ML value.

To evaluate whether models that differed only with regard to
the parameterization of autocorrelation had the same
individuals allocated to classes, we ranked classes by size for
each model type and assessed class ‘correspondence’ for modal
assignment. We used the Rand statistic for cross-classification
agreement,26 the adjusted Rand statistic which accounts for
chance,27 Stuart’s test for homogeneity,28 and a summary
measure of net drift of the class membership from larger to
smaller classes between models with and without AR1
structure.

Means of residual variances within each class were calculated
for all models, weighted according to class size, yielding a
measure of within-class random intercept heterogeneity. The
overall BMI trajectory intercept variance (constrained to be
identical across all classes) provides a measure of between-class
random intercept heterogeneity. Both measures reflect how the
random structure is partitioned within and between classes for
each parameterization.

To inform interpretation of the findings from the illustrative
data set, Monte Carlo simulations were undertaken using
parameters guided by the genuine data. Details of the model
specification for the simulated data are given in the online
appendix. Simulated BMI growth data were evaluated using
three GMM parameterizations: (a) unrestricted random
effects (reflecting the underlying data generation process);
(b) restricted random effects comprising random intercept only
and no covariance terms (as per the constraints adopted to aid
convergence); and (c) identical restricted random effects plus
AR1 [a more parsimonious alternative to the unrestricted

random effects that captures the emergent autoregressive
(AR) structure]. Models were run for 10k random starts, of
which the best 10% were used to derive model estimates. These
were summarized over all viable replicates that attained
convergence. For parameterizations (b) and (c), models were
explored for a number of latent classes to explore changes in
model likelihood statistics. Class composition was investigated
for a subset of common replicate data sets where convergence
was achieved for all parameterizations.

Results

Demographics of the illustrative study in relation to BMI are
summarized in Table 1. The cohort was 51.2% female, 47.1%
black and had mean age at baseline of 14.4 years (SD = 2.1).
There were no substantive differences by age, sex or ethnicity
between the 1528 students who completed two or more study
visits (data used for this study) and the 222 who did not
(data omitted from this study). All students had BMI assessed
at baseline, 78% had a BMI assessment at all four waves, 15%
had BMI assessment at three waves and 7% had a BMI
assessment at two waves.
A summary of all models explored for the illustrative data,

convergence characteristics and model-fit criteria are given in
Table 2.

Model convergence

Almost all random starts converged for models with no AR1
structure, although the proportion of the best 10% that settled
on the sameML value varied, with greater consistency observed
for models with two to four latent classes or models with seven
and eight classes. Among models with an AR1 structure, only
20% of random starts converged, indicating a limited solution
space for models with this random effects parameterization;

Table 1. Study data set structure and features

n (%) Mean BMI (S.D.)

Gender
Male 745 (48.8) 23.0 (5.6)
Female 783 (51.2) 23.7 (6.3)

Race/ethnicity
White 809 (52.9) 22.5 (5.0)
Black 719 (47.1) 24.4 (6.8)

Pubertal status
Puberty 749 (49.1) 21.9 (5.5)
Post-puberty 776 (50.9) 24.8 (6.1)

Parent’s education
<High school 358 (23.4) 23.8 (6.4)
High school 447 (29.3) 24.4 (6.9)
Some college 419 (27.4) 23.0 (5.3)
College or more 304 (19.9) 21.9 (4.3)

BMI, body mass index.
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that is, many random starts began too far from a viable solution
and many more random starts were needed to conduct an
exhaustive search for potential solutions. Although one may
predetermine starting values, the default is to permit randomly
generated initial values. Among the best 10% of models that
converged, consistency in the optimum ML varied, but was
generally a smaller proportion than for models with no AR1
structure: ML agreement reduced markedly from 100% for the
two- and three-class models to 0.2% for the 11-class model.

Likelihood-based model-fit criteria and optimum
number of classes

A graphical summary of the likelihood-based model-fit criteria
is presented in Figure 1. The BIC favoured less complex
models over AIC, as anticipated. Models with AR1 consistently
fitted better than those without. For these particular cohort
data, AIC and BIC never attained a minimum up to the 11
latent classes considered for models without AR1; BIC pla-
teaued around 10 or 11 classes. A minimum BIC occurred at
six classes for models with AR1.

Class size and composition

Under the null hypothesis of no class discordance between
models with or without AR1, class sizes should remain the same
and classes ranked by size should correspond to the same class
across both model types, with the ideal that class membership
corresponds 100%. In practice, although correspondence
between models generally decreased smoothly, there were three
outlying values for the three-class, six-class and nine-class models
when contrasted using modal assignment. The Rand statistic was
optimistic, whereas the adjusted Rand, which accommodated
chance, suggested modal agreement was often below 50% and
near zero for the 3-class, 9-class and 11-class models. For models
with three or more classes, there was a net drift of membership
from smaller to larger classes with AR1 incorporated, and this was
typically significant at the 0.1% level according to Stuart’s test,
apart from the three-class and seven-class models (Table 3).

Model random structure

Figure 2 summarizes the weighted mean variation of class
trajectory intercept residual variances and the model trajectory

Table 2. Summary of growth mixture model (GMM) convergence characteristics and model-fit criteria for the illustrative study data:
10 restricted standard GMMs (Std) and 10 restricted AR1 GMMs (AR1)

Convergence -2LL AIC BIC

% successa % agreeb Estimate df Estimate Estimate AR1(ρ)

Std
2-class 100.0 100.0 24,235.8 15 24,265.8 24,345.8 –

3-class 100.0 100.0 23,742.2 20 23,782.2 23,888.9 –

4-class 99.9 100.0 23,396.8 25 23,446.8 23,580.1 –

5-class 99.8 90.8 23,140.8 30 23,200.8 23,360.7 –

6-class 99.8 60.5 22,949.8 35 23,019.8 23,206.4 –

7-class 99.6 100.0 22,841.5 40 22,921.5 23,134.8 –

8-class 99.4 100.0 22,758.2 45 22,848.2 23,088.1 –

9-class 99.1 28.9 22,699.9 50 22,799.9 23,066.5 –

10-class 98.9 10.7 22,656.3 55 22,766.3 23,059.5 –

11-class 98.7 11.5 22,617.1 60 22,737.1 23,057.0 –

AR1
2-classc 19.7 100.0 22,916.2 15 22,946.2 23,026.2 0.944
3-class 20.1 100.0 22,692.4 21 22,734.4 22,846.3 0.923
4-class 20.1 26.1 22,613.6 26 22,665.6 22,804.3 0.873
5-class 20.1 23.4 22,561.9 31 22,623.9 22,789.2 0.842
6-class 19.4 48.1 22,522.8 36 22,594.8 22,786.8 0.850
7-class 19.5 46.3 22,499.2 41 22,581.2 22,799.8 0.805
8-class 19.7 8.7 22,472.1 46 22,564.1 22,809.3 0.733
9-class 19.7 1.4 22,450.7 51 22,552.7 22,824.6 0.734
10-class 19.4 1.9 22,432.0 56 22,544.0 22,842.6 0.742
11-class 19.4 0.2 22,414.4 61 22,536.4 22,861.6 0.742

LL, log-likelihood; AIC, Akaike’s Information Criterion; BIC, Bayesian Information Criterion; df, degrees of freedom.
aPercentage of successes derived as proportion of the 20k random starts that converged to a maximum likelihood.
bPercentage of successes as proportion of the 2k (10%) better models that converged that also agree on the same log-likelihood

value derived.
cFor the two-class AR1 model, the intercept variance was constrained to zero to attain convergence with non-negative variances.
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intercept residual variance for the range of models considered.
Class trajectory intercept residual variances were on average
twice of that for models with AR1, indicating that individual
trajectories were heterogeneous within classes when
autocorrelation was accommodated explicitly. The overall
model intercept residual variance was typically a third smaller
for models with AR1, revealing that class trajectories were more
homogeneous between classes in models when autocorrelation
was accommodated explicitly. This illustrates the extent by
which within-model/between-class and within-class trajectories

are affected by the parameterization of the random structure.
For these data, the AR1 parameterization elevated random
intercept heterogeneity within classes, while reducing random
intercept heterogeneity between classes, compared with models
with a constrained variance–covariance structure and no
‘compensatory’ autocorrelation.

Simulations

Among the simulated data sets, several models failed to converge
without a non-positive definite latent variable covariance matrix,
indicating either negative variances or residual variances for a latent
variable or correlation greater than or equal to one between two
latent variables. Modelling complex random structure is thus
challenging, which is why constraining random effects to achieve
convergence is so appealing. Although each of the one- to three-
class restricted random effects models converged easily, this was
not true for some of the four- and five-class restricted models.
For the entire range of models considered, there were only nine
repeated simulation data sets that were unproblematic for all
models (different data sets gave rise to differing convergence
problems). Table 4 summarizes the mean likelihood statistics for
these data sets.
Under simulation, both the AIC and the BIC favoured the

two-class unrestricted model that reflects the underlying
data generation process. However, when analyses were limited
to restricted models (i.e. when unrestricted models fail to
converge and more parsimonious random structure is not
explored), both the AIC and the BIC favoured models with
more than two classes. When random effects were constrained
and emergent AR structure modelled explicitly, BIC favoured
the correct number of classes, but AIC did not. Likelihood
statistics generally favoured models with more classes for the
constrained random effects models with no AR1 structure
compared with models with AR1.
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Fig. 1. Likelihood-based model-fit criteria for growth mixture models (GMMs): 10 restricted standard (Std) and 10 restricted AR1 (AR1).

Table 3. Contrast of class correspondence based on ordered class sizes for
10 growth mixture models (GMMs) with and without AR1 based on
modal assignment of 1528 individuals in the illustrative data set

Modal assignment

Classes % correspondence
Rand
(%)

Adjusted
Rand (%)a

Drift
(%)b

2-classc 90.7 83.1 65.9 116
3-class 88.6 50.6 0.3 56
4-class 68.0 77.9 54.1 −175
5-class 66.9 80.3 58.2 −326
6-class 25.1 75.1 34.6 −327
7-class 54.7 80.2 46.3 −320
8-class 45.9 79.6 42.7 −389
9-class 20.5 64.5 −0.6 −214

10-class 40.5 81.6 46.4 −335
11-class 21.3 66.5 0.4 −128

aAdjusted Rand accommodates for chance.
bNet difference in the number of individuals within the smaller

classes within the AR1 model.
cFor the 2-class AR1 model, the intercept variance was constrained

to zero to attain convergence with non-negative variances.
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When examining class composition via modal assignment
there were marked differences (Table 5). Compared with the
true generating model, the unrestricted GMM fared well,
although it was far from perfect (adjusted Rand was just
>50%). The restricted+AR1 model did well in recovering
latent class membership and was very similar to the unrestricted
GMM. The restricted model without AR1, on the other
hand, did considerably worse (adjusted Rand of 0.2%). In
contrasting the different parameterizations against each other, the
unrestricted and restricted+AR1 models were very similar (class
correspondence >90% and adjusted Rand of 72.2%), whereas the

restricted model with no AR1 was very different from the other two
parameterizations in class membership (class correspondence barely
over 50% and adjusted Rand <1%).

Discussion

In lifecourse epidemiology, identification of early-life patterns
or critical periods of growth that might impact health status in
later life is a rich and exciting area of research, albeit one fraught
with methodological challenges.29 We examine the use of
GMMs in the context of lifecourse evaluation of BMI and
specifically reflect upon how models are parameterized in terms
of their random structure. Given the increasing popularity of
these methods, it is likely that many applications will adopt
constraints for the random structure either as a matter of
convenience to promote parsimony or out of necessity to attain
model convergence. These constraints will affect the features of
interest (i.e. the latent classes), creating the challenge of
determining which model parameterization is ‘correct’.
Choosing the ‘correct’ model requires an understanding of

the context in which data are generated to model variation
correctly (i.e. to attain model parsimony without inadvertently
imposing inappropriate constraints). The residual autocorrela-
tion between observed values and fitted BMI trajectories is
often trivial. However, within GMMs, if the variance–
covariance structure is severely restricted, and as BMI exhibits
greater within-person than between-person homogeneity
(as with most growth measures), residual autocorrelation
emerges between individual fitted trajectories and the class
mean. Methods for modelling an AR structure are varied,30

with one being a simple autocorrelation constraint for
successive measures, and another expressing the longitudinal
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mixture models (GMMs; Std) and 10 restricted AR1 GMMs (AR1); for the two-class AR1 model, intercept variance was constrained to zero to
attain convergence with non-negative variances.

Table 4. Mean likelihood statistics for growth mixture models (GMMs) of
nine simulated data sets

Mean
-2LL df

Mean
AIC

Mean
BIC

Mean
AR1(ρ)

Unrestricted
2-class 41,877.6 21 41,919.6 42,031.6 –

Restricted standard
1-class 42,130.9 5 42,140.9 42,167.6 –

2-class 41,980.8 11 42,002.8 42,061.5 –

3-class 41,919.5 17 41,953.5 42,044.1 –

4-class 41,892.4 23 41,938.4 42,061.0 –

5-class 41,871.5 29 41,929.5 42,084.2 –

Restricted AR1
1-class 42,017.9 6 42,029.9 42,061.9 0.255
2-class 41,936.9 12 41,960.9 42,024.8 0.269
3-class 41,905.5 18 41,941.5 42,037.4 0.141

LL, log-likelihood; AIC, Akaike’s Information Criterion; BIC,
Bayesian Information Criterion; df, degrees of freedom.
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variable as an additive function of its immediately preceding
values.31 An example of the combined attributes of the family
of LGCMs, which capture no influence of the lagged growth
variable on itself, and the AR models, which do not allow
for individual random effects, is the more comprehensive
autoregressive latent trajectory (ALT) model.32–34 The simple
autocorrelation constraint or the ALT model captures the
emergent autocorrelation explicitly. For our growth measure,
BMI, differences in model fit or overall interpretation from
either approach are likely to be small, although the exact
meaning of model parameters will differ slightly: the AR1
model estimates a correlation coefficient for successive growth
measures, whereas the ALT model estimates a regression
coefficient for each growth measure regressed on prior values.
In both instances, however, the relationship (if any) among
the level-1 residuals is conflated with the relationship that
emerges among trajectory residuals as a consequence of
the random effects constraints. Our findings suggest that for
growth measures such as BMI, if the variance–covariance
structure is constrained, the emergent AR structure can and
should be modelled explicitly, as this leads to model improve-
ment and more accurately captures the underlying data
generation process.

In practice, selecting the ideal number of classes is informed
largely by likelihood statistics but partly by model interpretation.
It is clear that parsimony is desirable and the BIC is preferred as it
has been shown to perform best of all such information criteria
under simulation.35 It is also recognized that growth mixtures
can be determined in the absence of genuine population hetero-
geneity,36 especially if the distribution of growth trajectories is
non-normal,37–39 and where covariance misspecification is
restrictive the estimated number of latent classes can be greater
than the true number, because more are required to model the
extra variability.40 For growth data of the kind motivating this

investigation, where BMI is homogeneous over time (near linear),
with considerable between-person heterogeneity, where covar-
iance constraints are necessary, and there is no clear underlying
normal distribution, one has to wonder whether there are any
genuine population sub-groups or whether the GMM is merely
categorizing a continuum. Given the competing factors that may
lead to more classes being determined than are meaningful, it is
important to pursue parsimony with GMMs while being
careful to capture random structure appropriately. Striking a
balance between model complexity in the random structure and
parsimony, while not straightforward, is important to determine
the correct number and composition of classes if the associated
inferences are to be meaningful and robust.
A benefit of modelling the emergent within-class

autocorrelation to compensate for the variance–covariance
constraints is that a larger proportion of individuals are assigned
to larger classes compared with models with no autocorrelation
structure. Accounting for the random structure effectively
homogenizes the larger classes and the LL statistics indicate that
modelling autocorrelation in this context provides an improved
model fit; though blindly adopting likelihood-based model-fit
criteria may not always differentiate among plausible models.41

Unsurprisingly, as the number of classes increases, class
correspondence decreases between models with and without
the AR1 random structure. Class correspondence assumes that
relative class sizes remain the same for all models, and hence
class ranks remain the same. This is unlikely to hold. For the
illustrative data set, the peculiarity of the six-class model in
percentage correspondence and the 9-class and 11-class low
adjusted Rand statistics were due to diagonals of some class
cross-tabulations being zero, suggesting that class correspondence
according to ranked class size was inappropriate; with no similar
indication for the three-class model, we may only speculate that
the assumption was not upheld.
There are a few limitations of this study and its findings.

First, if the variance–covariance structure of a model must be
constrained (e.g. to achieve convergence), the choice of
alternative, more parsimonious parameterizations of the
random structure is open to evaluation. For instance, the ALT
model approach could be considered. We explored a serial
correlation term among class trajectory residuals within each
growth mixture by incorporating an ARn constraint
(with n = 1, in this instance), and the choice of ‘n’ is also open
to evaluation. For both the illustrative and simulated data, there
were only four time points and an AR1 was adequate; for more
repeated measures a larger ‘n’ might be warranted. In general,
however, we do not propose that a universal alternative
approach to modelling random structure in GMMs in the
presence of variance–covariance constraints is an AR1
parameterization, as it is advisable to explore a range of model
options that are driven by an a priori understanding of the data
generation processes. We note, however, that this relatively
simple strategy fared well in our study.
Second, although not a problem for our illustrative data,

parameterization of a simple polynomial may not always

Table 5. Class correspondence for two-class growth mixture models
(GMMs): unrestricted random effects and restricted random effects either
with or without AR1: mean (S.D.) modal assignments of 1528 individuals
across the nine simulated data sets

GMM contrast made % correspondence
Rand
(%)

Adjusted
Rand (%)a

Against true
Unrestricted 86.1 (0.9) 76.1 (1.3) 52.2 (2.5)
Restricted AR1 86.7 (1.2) 76.9 (1.7) 53.8 (3.5)
Restricted 52.2 (1.6) 50.1 (0.1) 0.2 (0.3)

Against each other
Unrestricted v.
restricted AR1

92.5 (1.9) 86.1 (3.2) 72.2 (6.5)

Unrestricted v.
restricted

52.9 (3.1) 50.3 (0.5) 0.6 (1.1)

Restricted AR1 v.
restricted

53.3 (2.7) 50.3 (0.5) 0.6 (1.0)

aAdjusted Rand accommodates for chance.
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adequately capture the underlying growth trajectories.
More sophisticated strategies, such as fractional polynomials
splines, or freed-loading models4 may be needed.

Third, as often the case in longitudinal epidemiological
studies (and in our illustrative data), measurement intervals
may not be balanced across individuals, which may lead to
inaccuracy in estimating the AR1 structure. We did not adopt a
continuous time approach because this caused fewer initial
starts to converge, considerably lengthened the time for each
model to complete (100-fold), and required imputed ages
for missing measurement occasions, without affecting our
conclusions (results not shown). In general, however, one
should not ignore this added complication. Depending on the
data, one solution may be to fit individual curves first, and then
extract a balanced set of data from those.

Fourth, parameterization of the random variation over time
was constrained to be identical for every class. Relaxing this
constraint may yield classes that could distinguish between
more or less homogeneous individuals (a very plausible
scenario), although for the illustrative data set fewer random
starts attained convergence and there was no effect to our
overall conclusions (results not shown).

Fifth, whether or not the random structure is fixed throughout
the lifecourse is debatable. BMI generally exhibits greater
individual than population homogeneity, but this might vary for
different growth periods, such as the first few years of life where
differences between population heterogeneity and individual het-
erogeneity are less. Fewer variance–covariance constraints may
then be required. Consequently, each stage of the lifecourse must
be examined separately for these effects, because implications
of findings on growth throughout adolescence may not generalize
to other periods of life. The extent of individual and population
heterogeneity might vary (i.e. heteroscedasticity), and with
variance–covariance constraints the emergent within-class
autocorrelation might differ across the different stages of growth.
Seeking to accommodate heteroscedasticity throughout different
stages of the lifecourse remains an issue for future research.

Finally, it must be recognized that we have undertaken a
narrow range of simulations with few parameter specifications that
emulate a single observed data set. However, insights gleaned from
these simulations clearly demonstrate that tampering with the
random structure of GMMs for whatever motive (e.g. parsimony
or to aid convergences) has substantive impact on the types of
models determined. Our initial findings may inform further
research so that the field can advance beyond these limitations.

Conclusion

Where lifecourse outcomes exhibit greater within-person
homogeneity (gradual changes over time) than between-person
homogeneity (substantial differences between individuals), and
where these outcomes are explored using GMMs with the
random effects constrained (for parsimony or to attain
convergence), within-class autocorrelation can emerge and should
be accommodated explicitly in the model. During puberty,

increased individual heterogeneity is a hallmark of adolescence
and is likely to contribute to a reduced degree of within-class
autocorrelation owing to greater within-person variation.
Adolescence is also a time of elevated between-person hetero-
geneity, which is likely to contribute to an increased degree of
within-class autocorrelation. The net effect of these two factors is
probably population-specific; however, for our illustrative data,
substantial within-class autocorrelation was induced once
constraints on the random effects were introduced to achieve
model convergence. Models with an autocorrelation structure
were substantially different frommodels without yielding different
class trajectories with different subjects in each class; these models
more likely reflect the underlying data generation processes,
according to simulations. These findings imply that failure
to model random structure of growth outcomes carefully within a
GMM framework can give rise to misleading models and
therefore potentially erroneous inferences.
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