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Abstract

We introduce a new homology theory for infinite graphs in order to generalize some results of Willis and
Woodward on translation invariant functional. We also extend some theorems of Gerl and Gromov.

1991 Mathematics subject classification (Amer. Math. Soc): primary 43A15; secondary 53C23.

1. Introduction

Let G be a finite, connected, directed graph with vertex set V(G) and edge set
E{G). A real function / on V(G) is called a boundary function if there exists a
function co on E(G), such that dco = / . That is, for each p € V(G), the sum of
the values of co on the edges pointing inward p minus the sum of the values of co on
the edges pointing outward p is equal to f(p). One of the oldest results of algebraic
topology is that the codimension of boundary functions on V is 1, or in other words,
the zeroth homology space of a finite, connected graph is one dimensional. Now let
G be an infinite, connected directed graph. The zeroth /<»-homology of the graph G is
the factor space //0°°(G) = C~(G)/B0°°(G), where C™(G) is the space of all bounded
real functions on V(G), and B™(G) is the space of functions, which are boundaries
of bounded functions on the edges. According to Block and Weinberger [1], the
zeroth /oo-homology of a graph is non-zero if and only if the graph is amenable, where
the amenablility is defined using F0lner sequences the same way as in the case of
discrete groups. One might observe that by Poincare-duality the above result implies
the combinatorial version of Gromov's theorem on /oo-cohomology [4]. Namely, one
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can prove that if X is an n-dimensional, oriented combinatorial manifold, then the
nth simplicial /oo-cohomology of X is non-zero if and only if the dual graph of X is
amenable. In Sections 3 and 4 we extend the above characterization of amenability
to /p-homologies and c0-homologies. The notion of homologies are related to the
notion of translation invariant linear functionals. The lp and c0 function space of
discrete groups were studied by Willis [7, 8] and Woodward [9]. They proved that
for a finitely generated group Y, lp(T) (p > 1) respectively co(r) have non-zero
translation invariant linear functionals if and only if F is amenable. In Section 5 we
show that the results of Willis and Woodward can be extended for arbitrary infinite
graphs of bounded vertex degrees. For an infinite graph G a translation is a bijection
on l'(G), which moves the vertices by a bounded distance.

2. The construction of a binary scheme

In this section we show what is behind the proof of [1, Theorem 3.1]. We construct
j binary scheme for non-amenable graphs in order to facilitate the solution of certain
equations. First we consider the binary tree B. The vertex set of B; V(B) consists
of the finite 0-1-sequences. The root vertex is the empty set 0. It has two children,
the vertex indexed by 0 and the vertex indexed by 1. In general, the vertex indexed
h> (/,./, ,ik} has two children: {/,, i2,.. .,ik, 0} and [i[y i2, . . . ,/*, 1}. Edges are
Jraw n between two vertices if and only if one is the child of the other one. That is,
ca>.h \ertex in V(B) has degree 3 except the root, which has degree 2. Now let G
Nr J connected, undirected infinite graph with bounded vertex degrees. Its vertex set
iv equipped with the path-distance metric dc : V(G) x V(G) —> H. We call such a
cruph a nice graph.

\xx U C V(G), then B(U, k) = [x e V(G) : minvef/ dc(x, y) < k}. The nice
praph G is amenable [1], if there exists a sequence of finite sets {f/,},>o, such that

,. \B(Un,l)\ ,
< 1 > ton—Try-— = 1,

"-*00 \Un\

where \Un\ denotes the cardinality of Un. If G is the Cayley-graph of a finitely
generated amenable group then {£/,},>o can be chosen as an exhaustion of G [1].
Obviously, if G is non-amenable, then there exists a constant / € N such that for any
finite non-empty set U C V(G):

Let G be a nice graph. A binary scheme on G is a map P : V(G) x V(B) —*• V(G)
such that:
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(i) for any x e V(G), the map P(x,.) is injective and P(x, 0) = x, where 0 is
the root vertex of the binary graph B;

(ii) there exists a constant m € N such that for any x e V (G) and adjacent vertices
a, be V(B),

dc(P(x,a),P(x,b))<m;

(iii) for any y e V(G), the inverse image of y, P~\y), consists of at most two
elements.

PROPOSITION 2.1. If G is a nice, non-amenable graph, then there exists a binary
scheme P : V(G) x V(B) -* V(G).

PROOF. The proof is based on the following immediate corollary of [2, Theorem
4.1].

LEMMA 2.2. There exist maps \j/i, x//2, fa, if A from V(G) to V(G), such that

(i) ififj{x) = r/fjiy), then x = y and i = j ;
(ii) for some n > 0, d(\l/j(x), x) < n uniformly on {1, 2, 3,4} x V(G).

D

Now we define the map P by an inductive process using the i/r, 's of Lemma 2.2.
Let a0. a,, a2,... be an enumeration of V(G).

The first step is:

o, 0) = a0, P(a0, {0}) = fo(a0), P(a0, {1}) = xj,4(a0).

The second step is as follows:

P{a0, {0,0}) = ^r,(P(flo, {0})), P(ao, {0, 1}) = xlf2(P(a0, {0}))

P(P(a0, {0}), 0) = P(oo, {0}), P(P(ao, {0}), {0}) = f3(P(a0, {0}),

P(ao, {1,0}) = ^,(P(ao, {1})), P(ao, {1, 1}) = ^2(P(ao, {1}))

P(P(ao, {1}), 0) = P(oo, {1}), P(P(ao, {1}), {0}) = ^3(P(ao, {1}),

Still during the second step, we choose the first element at in the sequence ao,a\,...
which is not yet in the image of P and define: P(a,, 0) = a,-, P(a,, {0}) =

For the it-step, let us consider the set [yit y2, •. • ys] C V(G) with the following
properties:
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(i) Forany 1 < i < s, there exists x,x6, e V(G)x V(£),suchthat P(xh b,) = >>,•
has already been defined in the first k — 1 steps.

(ii) On the other hand, /*(*,•, c,) and P{xt, d/) are still undefined, where c,, d{ are
the children of &,.

Note that for any yf, such a pair (*,-, Z?,) is unique by our construction. Then for each
yh we define:

P(Xi,c,) = Vitv,), P{x,,d,) =
P(y,, 0) = y,, P(y,, {0}) = ^{y,), P(y,, {1}) = M*)-

Now we choose again the first a; in the enumeration of V(G), which is not yet defined
to be in the image of P, and let

P(aj, 0) = a}, P(aj, {0}) = yjf3{flj), P(a}, {1}) = M*; ) .

Inductively we can define P for all (JC, b) e V(G) x V(B).

3. Homology theories

The notion of uniformly bounded homology was introduced by Block and Wein-
berger [1]. We need an analogue of their construction. Let G be a nice graph. The
vertex set V(G) is a metric space and one can equip V(G)'+I, the (/ + l)-fold Cartesian
product of V(G), with a metric as well:

d ( ( x 0 , x { , . . . , Xj), ( y 0 , y i , . . . , j , ) )
0<j<i

Denote by A,-+, the multidiagonal in V(G)i+]. For 1 < p < oo, let c'fiG) be
the vector space of infinite formal sums c = ^a^x, where x e V(G)'+1, aj e R
satisfying the following two conditions:

(i) £ \OT\P < oo;
(ii) there exists R > 0 (depending only on c) such that aT = 0, if d(x, A,+,) > R.

The usual boundary operator 3 : C-'iG) -* C'^(G) is defined by

Then 33 = 0, hence (C*'(G), 3) is a chain complex. The homology of this complex
is the /,,-homology of G, H\'(G). The c0-homology of G: ^" (G) can be defined
analogously. We only need to replace condition (1) with the following one:

(la) a7 —> 0 as dG(x0, q) —> oo, where q is a fixed vertex of G.
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If H is another nice graph and / : V(G) -*• V(H) is a quasi-isometry in the sense of
Gromov, then we can define / , : c'"(G) -* C'"(H) and / . : C-°(G) -*• C-"(H) by

Following the argument of [1], one can see that / , induces an isomorphism between
HJ'(G) and HJ'(H), and between H?(G) and H?(H).

A very important observation of Block and Weinberger is that the Oth uniformly
finite homology of G is zero if and only if G is non-amenable. Analogously, we have
the following theorem.

THEOREM 1. For a nice graph G, the following conditions are equivalent.

(i) G is non-amenable;
(ii) / # ( G ) = 0 ;

(iii) //0
C0(G)=0.

PROOF. Let G be a nice non-amenable graph. Then by Proposition 2.1 we have a
binary scheme P : V(G) x V(B) -»• V(G). Let So be the characteristic function of
the root vertex B. Then we consider the following 1-chain 4> = £ axv(x, y) on B:

1 1 1 1

all other coefficients axy are zeroes. Then of course, 3 * = <50.
Now let / b e a function on V(G). For any x € V(G), we define*, = P(x, .)»(*).

Then 3O, = 5,, the characteristic function of x. Hence one can define Q>f =
Jlxev(C) f(x)^x- It is easy to see that d<t>f = f. Moreover, if / € lp(G), (p > 1)
then <&f e C'{(G); and if / e co(G) then <Pf e C?(G). It is important to note that

The proof of the 'only if part is a little bit more complicated than in the case of
uniformly finite chains [1], but the idea is similar. Suppose that G is a nice amenable
graph. There exists a sequence of finite disjoint sets U\, U2,. • • such that

(3)

First we consider the /,,-case (p > 1). Let Ln = n~2/p\Un\~
l/p and let Sn be the

characteristic function of Un. Let / = J2T=t Ln&n- Then
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That is, / € lp(G) = do
p(G). Suppose that / = 34>, where $ = J^ax.y(x, y) €

Cl{{G). Then

Ln\Un\ =

The numbers of pairs (x, y) such that x e Un, y £ Un and axy ^ 0, is smaller than
K 2~n\Un\, where A' is a positive real number depending only on G. Therefore by
Jensen's inequality,

Note that (2")p ' /{n2Kp ') tends to infinity as n tends to infinity, hence <t> cannot be
in C\r{G).

Now we handle the co-case. Let {Un}n>0 and Sn be as above then / = J2n ^n/n 6
Co°(G). Suppose that / = 34>, where <1> = X>,.v(.x, y) e C\°(G). Then again we
have the following estimate:

j
— \Un\ < y / ^dfl .̂v! + l^y.jtl) ^ sup \ox,y\ 2K 2~" \Un\.
n x<=un yiun

 x-y

Therefore <1> ^ C\°(G). D

(Note: A different proof for the /p-case was given by Whyte [6].)

4. Simplicial homologies

Let G be a nice, directed graph. Now instead of Ct
r(G), we consider the space of

p-summable functions on the edges and denote it by c'{ (G). The simplicial boundary
map 3 : Cl{{G) -+ do

r(G) is defined as usual:

Note that C'{(G) C c'{(G) and the boundary map on c'{(G) is just the restriction of
the boundary map on C{{G). The simplicial /p-homology, respectively c0-homology
is defined as

A well-known result of Gerl [3] implies that HQ(G) is zero if and only if G is
non-amenable. We extend this implication.
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THEOREM 2. The following three conditions are equivalent.

(i) G is non-amenable.
(ii) Forp> 1, //o"(G) = O.

(iii) //0
c»(G)=0.

PROOF. If G is amenable, then HQ(G) and HQ°(G) are non-vanishing by Theo-
rem 1. Now let G be a nice non-amenable graph. Let / € do

p(G) and * e ^"(G)
be such that 3 * = / . We construct a * e C^(G) such that 3 * = / .

First of all, for each pair (a,b) e supp(*), we choose a path Lab of minimal
length from a to b. It is easy to see that there exists a real constant K > 0, depending
only on * such that each edge of G is contained in at most K chosen paths. Now we
construct a finitely supported function * (a, b) on the edges for each pair {a,b), a ^ b.
Let Wa.bie) = ty(a, &) if e is in the path L a i with its own orientation. On the
other hand, let ^aA

e) = —V(a, b) if e is in the path Lah with reverse orientation.
Finally, let VaAe) = 0 if the path La.b does not go through the edge e at all.
Then tyab is supported on at most M edges, where M depends only on G, also
(3*<,.*)(&) = *(a,&X (34vfc)(a) = -V(a,b), otherwise 3 4 ^ = 0. By our
previous observation, * = £ ( a 6)esupp^ *„.*> is a well-defined element of C{{G) and
34* = / . The co-case can be handled the same way. •

As an immediate corollary of Theorem 2 we can obtain the simplicial analogue
of Gromov's theorem on the vanishing of the nth /oo-cohomology of a non-compact
n-dimensional Riemannian manifold.

Let K be an infinite, connected, oriented ^-dimensional combinatorial manifold.
This means that K is the union of oriented n-simplices such that any (n — l)-simplex
of K is the face of exactly two n-simplices with different orientations. Also, the dual
graph of K is nice. Recall that the vertices of the dual graph are the n-simplices of K
and two n-simplices are defined adjacent if they have a common (n — l)-face. Then
one can define the n-th simplicial /p-cohomology of K, H"p)(K) as in [5].

PROPOSITION 4.1. Let K be as above. Then H?p)(K) = 0 if and only if the dual
graph of K is non-amenable.

5. Translation invariant linear functionals

Let G be a nice graph. We call a bijection T : V(G) ->• V(G)a translation if there
exists a constant L > 0 such that dG(x, T(x)) < L for all x € V(G). The translations
form a group T(G). Note that if G is the Cayley graph of a finitely generated group
F, then for any y € F, TY : x —• xy is a translation. Thus we have an injective
homomorphism from T to T(G). For all the Banach spaces we investigated, namely
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loo(G), lp(G) and cQ(G), the group T(G) can be faithfully represented by the left
regular action the following way. If / € /^(G) then (Tf)(x) = f(T~l(x)). Let
B c l<x,(G) be a 7*(G)-invariant subspace (for example, lp(G), co(G)), then we
call 4> : B —> R a translation invariant linear functional if it commutes with the
7\G)-action.

According to Willis [7, 8] and Woodward [9], if f is a finitely generated group,
then there exist non-zero F-invariant linear functional on /P(G) (p > 1) and co(G)
if and only if G is amenable. We prove the analogue of their results for arbitrary nice
graphs.

THEOREM 3. Let G be a nice amenable graph and let a : Ho" -*• IR be a linear
map. Then a* : / —*• a[f] is a translation invariant linear functional on /P(G). The
analogous statement holds for Co(G) as well.

PROOF. It is enough to prove that if T is a translation and / e lp(G), then Tf — f
is always a 0-boundary. Let * e Cl{(G) be defined by * = J^ax,y(x, y), where
ax.y = f{x) if y = T'1 (x), otherwise ax_y = 0. Then Tf - f = 9*. •

Now we prove the complementary result for non-amenable graphs.

THEOREM 4. Let G be a nice, non-amenable graph. Then any translation invari-
ant linear functional on lp(G) and co(G) is zero.

We will use the following easy-to-prove 'colouring' lemma.

LEMMA 5.1. Let H be a graph such that k > deg(x) for any x € V(H). Then
there exists a function n : E(H) —> {1, 2 , . . . , Ik — 1} such that if e and f have a
joint vertex, then n(e) ^ n(f).

PROOF (of Theorem 4). Suppose that a ( /) ^ 0 , where a is a translation invariant
linear functional on lp(G) and / € /P(G). By Theorem 1, there exists * € C?{(G),
* = ][>*,.(*, v) such that 9 * = / . Choose a constant c > 0 such that a*y = 0
if dc(x, y) > c. Now let H be the graph, obtained from G in the following way:
V(H) = V(G) and (x, y) € £( / / ) if^c(^, y) < c. Obviously H is nice. We denote
the bound on its vertex degrees by bH. Let n : E(H) -> (1 ,2 , . . . , 2bH — 1} as in
the previous lemma. Now we can define the translations 7] for 1 < / < 2bH — 1. Let
Ti(x) = y if there exists an edge (x, y) e H such that n(x, y) = i and let Tt(x) — x
otherwise. It is easy to check that all 7}'s defined above are in fact translations. Also,
if 0 < dc(x, v) < c then there exists exactly one i, 1 < i < 2bH — 1, such that
7](x) = y. We define g, € lp(G) as follows. Let gt(x) = *(x, y) if there exists a
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vertex y such that (x, y) e E(H) and TT((X, y)) = i. Otherwise let g,(x) = * U , x).
Then,

2 * H - 1

1=1

since /(*) = Ev(*(y, x) - *(*, y)). Then

2b_H-\ 2bH-\

is a contradiction. D
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