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1. Introduction. Let F±(x) and F2(x) be two distribution functions, that 
is, non-decreasing, right-continuous functions such that Fj(— °°) = 0 and 
Fj(+ co) = l (J = 1, 2). We denote their convolution by F(x) so that 

F(x) = Ft(x) * F2(x) = I Fi(x — y)dF2(y) = I JF2(* — y)dF1(y)1 

the above integrals being defined as the Lebesgue-Stieltjes integrals. Then it 
is easy to verify (2, p. 189) that F(x) is a distribution function. Let fi(t), 
fzif), and fit) be the corresponding characteristic functions, that is, 

/•oo 

/ , ( * ) = e'^dFjix), j = 1 , 2 , 

/(*) - f eitxdF(x). 
J-œ 

Then, according to the Convolution Theorem (2, pp. 188-190), the relation 

/(') = / l (0/2(0 

holds for all real /. Here f(t) is said to be a decomposable characteristic function 
and/i(0 and/2(0 are called the factors of f(t). In order to exclude the trivial 
decompositions we consider only the case when both the factors fi(t) and/2(0 
are characteristic functions of some non-degenerate distributions, that is, the 
distributions which have at least two points of increase. If the function f(z) 
as a function of the complex variable z (z = t + iv, t and v both real) is regular 
in every finite region of the complex plane, it is an entire characteristic function. 
Entire characteristic functions have many interesting decomposition (factori­
zation) properties. For example, the factors of an entire characteristic function 
are also entire characteristic functions (5). The factors of a normal distribution 
can be only normal (1 ). A similar property also holds for a Poisson distribution 

(5). 
In the present paper we study some decomposition properties of a class of 

functions of bounded variation. We denote by B the class of all real-valued 
functions G(x) which are of bounded variation in x ( - œ < x < oo) having 
at least two points of increase and for which G(— oo) = 0. We also denote the 
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total variation of G(x) in the interval [a, b] by VG(x)]%. Then clearly we have 
VG(x)]™m < oo for all G G B. 

We now consider two functions Gi(x) and G2(x), where Gj(x) G J3(j = 1, 2). 
Let 5?; denote the countable set of points where Gf(x) is discontinuous; i = 1,2. 
Denote by 5 J 2 the set of points x which have co-ordinates of the form x = x± 
+ x2, where X\ and x2 are the co-ordinates of the points of the sets Si and S2 

respectively. We also make the convention that the set 5i2 is empty if at least 
one of the sets Si and S2 is empty. Then (6, pp. 248-250) the convolution 
G(x) of Gi(x) and G2(x) given by 

(i) Xoo /»oo 

Gi(x ~ y)dG2(y) = G2(x - y)dGi(y) 
-oo • / — no exists for all x which are not in the set S i2. Moreover, G(x) as defined in (1) 

as a Lebesgue-Stieltjes integral may be defined for all x in the set 6*i2 so as to 
be of bounded variation in (— °°, °°). It is easy to verify (6, p. 250) that the 
total variation of G(x) cannot exceed the product of the total variations of 
dix) and G2(x) and, further, that G{- « ) = 0, while G ( + oo) = d(+ « ) X 
G2(+oo) so that G(x) Ç B. Let gi(t), g2(t), and g(t) be the corresponding 
Fourier-Stieltjes transforms, that is 

ei,xdG,(x), J = 1,2, 

/•oo 

g(/) = ei,xdG(x). 
*J — oo 

The above integrals are defined as the Lebesgue-Stieltjes integrals and these 
are uniformly and absolutely convergent for all real t. According to the Con­
volution Theorem (6, p.254) the relation 

(2) g(t) = gi{t)g2{t) 

holds for all real /. Here we say that both gi{t) and g2{t) are factors of g(t). 
In this case the fact that g{z) (z complex) is an entire function does not ensure 
that each of its factors must also be an entire function. A simple example will 
make it clear. Let 

g(t) = e-'2; gl(t) = (1 + *V»''; g*(0 = }-^p e~il\ 

We can easily verify that both g(t) and g2(i) are characteristic functions, 
while gi(t) is the Fourier-Stieltjes transform of the function 

d{x) = -r^~ f (2 - u2)e-^2du 
V ( 2 T T ) 

so that Giix) G B. However, the functions g(s) as well as gi(s) are entire 
functions, while the factor g2iz) has singularities at the points z = dbi so that 
it is regular only in the strip |Im z\ < 1. 

https://doi.org/10.4153/CJM-1964-049-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1964-049-8


FUNCTIONS OF BOUNDED VARIATION 481 

This example clearly indicates t ha t we have to impose additional conditions 
on the functions belonging to the class B in order to obtain some significant 
results. Recently Linnik and Skitovich (3) have derived a generalization of 
Cramer 's theorem (1) for the case of functions of bounded variation under 
some conditions. In this paper we investigate the Fourier-Stieltjes transforms 
of a part icular class of functions belonging to B, which has the form g(t) 
= exp P(f), where P(t) is a polynomial in /. Finally, we derive a decomposition 
theorem for this particular class of functions. 

2. A c lass of f u n c t i o n s b e l o n g i n g to B. Before proceeding further, we 
prove a lemma which is instrumental for our subsequent investigation. 

L E M M A 1. Let a function G(x) satisfy the following conditions: 
(i) G(x) e By 

( 1 1 ) 1 ^ W U = 0 ( ^ ^ ) , as y-.to, 

where 8 is a fixed positive number and y > 1. Let g(t) be the Fourier-Stieltjes 
transform of G(x). Then g(z) as a function of the complex variable z(z = t + iv, 
t and v both real) is an entire function of some finite order p < 1 + 1/8. 

I 
Proof. From Condition (ii), it follows easily t ha t the integral 

hUxl\dG\ 

exists and is finite for every real v. Then, using the inequality 

(3) | g ( s ) | = e'"dG(x)\ < eMW\dG\, 
I « / — oo I « / — oo 

we conclude tha t g(z) is an entire function. We fix a value of v sufficiently large, 
say \v\ > \eh, and then select a value X0 given by the relation X 0 = (2|y|)1/ô . 
Then , using Condition (ii), we obtain 

' 'x\dG\ < C i e ' V y Av\x\An\ ^ r u\ - |xo1 + 5 

t h a t 

(œ elvlx\dG\<Cie
]vl P e-*xl + '<2&-

where C\ > 0 is independent of XQ. Proceeding in the same manner, we can 
show t h a t 

-Xo 
ehAlxl\dG\ <2C2e

lv\ r 
• / - c o 

where C2 > 0 is independent of Xo. Finally, we note tha t 

3Um\dG\ < CzelvlXo = C3exp(21 / 5 |H1 + 1 / Ô) , x • X o 
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where C3 > 0 is independent of X0. Thus, combining these three estimates, 
we obtain 

e
u l , *VG|<C 4 exp(C 6 | 2 | 1 + 1 / 5 ) , 

-oo 

where C\ > 0, C5 > 0. Then the proof of the lemma follows immediately from 
(3) and (4). 

Next we study the Fourier-Stieltjes transform of a particular class of 
functions belonging to B. Let BQ be the class of functions G(x) which satisfy 
the following three conditions: 

G(x) G B, 

1; evx\dG\ <oo for all real v, 

The Fourier-Stieltjes transform g(t) of G(x) is of the form g(t) = exp P(t)y 

where P{i) is a polynomial in t of degree > 2. Now we prove the following 
lemma. 

LEMMA 2. Let G(x) be a function belonging to the class B0. Then the polynomial 
P(t) must satisfy the following conditions: 

(i) P (t) is of an even degree; 
(ii) P (t) is of the form 

Pit) = a0 + ia.x t + a2 Ï* + ia, t* + . . . + a2m t2m, 

where the coefficients aGj ai, . . . , a2 are all real and a2m < 0. 

Proof. First we consider the case when the degree of the polynomial P(t) is 
even, say 2m (m a positive integer). We note that g{z) is an entire function 
of the complex variable z (z = t + iv, t and v both real) and that 

Xoo 

e~"dG(x) 
-co 

giiv 

exists for all real v and is real. It is then easy to verify that P{t) is of the form 
(ii), where the coefficients a0, «1, «2, • • • , ot2m are all real. We also note that 
g(t) must be bounded for all real t so that a2m < 0. 

Next we show that the degree of the polynomial P{t) cannot be odd. Let 
us suppose that P(t) has an odd degree, say 2m + 1 (m a positive integer). 
Then, proceeding as above, we can show that P(t) must be necessarily of the 
form 

(5) P(t) = ao + ion t + a2 /2 + . . . + a2m t2m + ia2m+1 t2m+\ 

where the coefficients a0, «i, . . . , a2m, a2m+i are all real and a2m < 0. We 
also note that for an arbitrary real V, the function 

Xoo 

etzxdH(x) 
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is the Fourier-Stieltjes transform of a function 

H(x) = P e-VydG(y), 

which again belongs to the class B. Therefore, the function h(t) must be 
bounded for all real /. Using (5) and (6) we obtain 

(7) h(t) = g(f + iV) = exp[a0 + ia,(t + iV) + . . . + ia2m+1(t + iV)*»*1]. 

We can verify easily t ha t the coefficient of t2m in the polynomial in (7) is 
oi2m — (2m + 1) Va2m+ij which can always be made positive for a suitable 
choice of V, and consequently h(i) becomes unbounded for real t. Hence we 
conclude t h a t the degree of the polynomial P(t) cannot be odd. 

I t is also easy to verify t ha t all the functions belonging to the class B0 are 
absolutely continuous. We are now in a position to prove the following decom­
position theorem for this special class of functions belonging to B0. 

T H E O R E M . Let a function G(x) belong to the class BQ. Assume that G(x) admits 
the decomposition 

G(pc) = Gi(x) * G2(x), 

where the functions Gj(x) (j = 1, 2) satisfy the conditions 

(i) Gj(x) e B, 

(VGj(x)l? = 0(er>>1+8), 
W \ VGj(x)]zl = 0(e-y1 + '), as y -> « , 

where ô is some positive number and y > 0. Then 

Gj(x) e Bo (j = 1,2). 

Proof. From Lemma 1 it follows t ha t both the functions gi(z) and g2(z) are 
entire functions of some finite orders not exceeding 1 + 1/8. We further note 
t ha t the relation 

(8) gi(z)g2(z) = exp[P(z)] 

holds for all complex values of z. From (8) we see easily t ha t the functions 
gi(z) and g2(2) cannot have any zeros throughout the entire complex plane. 
Therefore, we conclude from Hadamard ' s factorization theorem tha t 

gj(z) = exp[Pj(z)], j = 1,2, 

where Pj(z) is a polynomial in z of degree < 1 + 1/5. Therefore, each of 
dix) and G2(x) belongs to the class $ 0 . We then conclude from Lemma 2 
t h a t Pj{i) is a polynomial in / of some even degree 2mj < min(2m, 1 + 1/5) 
and is given by 

Pj(t) = a0j + ion j t + a2jt
2 + . . . + a2mjJ t2mi, 
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where the coefficients a0j-, «iy, . . . , a2m;t>/ are all real and a^mhj < 0 (j = 1, 2). 
We have also the relation 

Pi(t)+P2(t) =P( / ) 

holding for all real /. 

The following corollary is an immediate consequence of the theorem. 

COROLLARY. In addition to the conditions of the theorem, let G(x) be a distribu­
tion function. Then the components Gi(x) and G2(x) are normal distribution 
functions. 

Proof. From the theorem of Marcinkiewicz (4) we conclude that G(x) is 
normal and the rest of the proof is similar to that of the above theorem. This 
result has been obtained earlier by Linnik and Skitovich (3). 
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