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ON THE DUALITY OF SOME MARTINGALE SPACES

N.L. BAssILY AND A.M. ABDEL-FATTAH

Fefferman has proved that the dual space of the martingale Hardy space H; is the
BMO,-space. Garsia went further and proved that the dual of H; is the so-called
martingale Kp-space, where p and ¢ are two conjugate numbers and 1 < p < 2.

The martingale Hardy spaces Hs with general Young function &, were in-
vestigated by Bassily and Mogyorédi. In this paper we show that the dual of the
martingale Hardy space Hs is the martingale Hardy space He where (&, ¥) is
a pair of conjugate Young functions such that both & and ¥ have finite power.
Moreover, two other remarkable dualities are presented.

1. BASIC NOTATIONS AND DEFINITIONS

Let X € L'(Q, A, P) be a random variable defined on the probability space
(2, A, P) and consider the regular martingale

X.=E(X|F), n3>0,

where {F,}, n > 0, is an increasing sequence of o-fields of events such that

Fooza'(GFn) = A.
n=0

We suppose that Xy = 0 almost surely. We denote by dy = 0, dy, da, ... the difference
sequence corresponding to the martingale (Xn, Fy).

The K,-spaces were investigated by Garsia (see [2]).

In [3] we generalised this notion. Consider a pair (®, ¥) of conjugate Young
functions and let

p) = {v:7 € L*, E(IX — Xn_1| | Fa) < E(7 | Fa) almost surely Vn > 1},
We say that X € Ks if the set /.Lg?) is not empty. In this case we define

IX|lg, = inf llvlle»
[ 3
‘YEI‘(X)
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where ||.]| denotes the Luxemburg norm in the Orlicz-space L¥. For the definition
of the Young functions, Orlicz-spaces and Luxemburg norms we refer to [4] and [5]. It

is easily proved that (Kq,, -l K,) is a Banach space (see [3]). The space Ko is the
well-known BM O;-space.

We say that the random variable X belongs to the Hardy space Hg if the quadratic
variation

oo 1/2
§=28(X)= (Ed,?) € L%.

It is easy to show that He with the norm | X||, = ||S|l; is a Banach space (see [3]).

A Young function @ is said to be of moderated growth if its power
p = sup(24(z))/(2(=))
is finite. Here ¢(z) stands for the right-hand side derivative of ®.

2. AUXILIARY RESULTS
LEMMA 1. If the Young function ® has a finite power, then Hs C K3 .

PRrOOF: In fact, the Burkholder-Davis-Gundy inequality (see [6, Theorem 15.1])
guarantees that X € Hy implies that

X* = sup|Xa| € L?,
n21

where X, = E(X | F,), n 2> 1.
From this for all n > 1 we have almost surely.

E(IX = Xn1|| Fa) < E(2X* | F,).

Consequently, X € Kg with ”X”K* <2 Xl -

The following assertion gives a sufficient condition which ensures that the martin-
gale Hardy space Hs and the martingale space K coincide and the corresponding
norms are equivalent. 1]

THEOREM 1. Suppose that ® and its conjugate ¥ have finite powers p and ¢
respectively. Then, the spaces Hg and K coincide. More precisely, there exist positive
constants cg) and Cg) depending only on ® such that

1
N XNk, <Xz, <CP X, -
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PROOF: Supposethat X € K. Let X,, = E(X | F,), n > 1 be the corresponding
regular martingale and let us define

X* = max |X n>1.
n lStSn' l', Z

This random variable with arbitrary constants 8 > a > 0 satisfies the inequality

(ﬂ - a)P(X; 2 ﬂ) < E(’YX(X,‘,}a))a

where v € ;4(;) is arbitrary and x(p) stands for the indicator of B.

For arbitrary A > 0 define
X' = min(X,, a).
Then X}* € Lo and for arbitrary A > 0 we have

0 ifA>a

X(x3*22) = .
{ X(XE>2)» ifA<a.

Consequently, since 8 > a > 0, it follows that
(B — a)P(X 2 B) < E(vx(x2*3a))-

Choose 8 = ca where ¢ > 1 is a constant, and integrate the above inequality with
respect to the measure d¢(a) and using Fubini’s theorem we get

(c=1)E (w (¢(X;f' ))) < E(rd(X2)-

Since & has finite power, then for any ¢ > 1 there exists a constant 4 = A(c) > 0 such
that

$(cz) < Ag(z), =20

From the preceding inequality we get

(oo (55))) 4o (5)

Applying Young’s inequality and rearranging, we have

(p-1)E (w (¢(X))) < B(2(1/8)),
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where b= (¢ —1)/(Ap) and p > 1 is arbitrary.

Let AT 400, XX* 1T X and by the monotone convergence theroem we have

(p—1)E (\I' (¢({"))) < E(3(x/b)).

Applying the so obtained inequality to the new martingale
X
(—"b, F,,), k=1,2,...
lirlls

we get X
o-05(+{olrim) ) <+

Since ¢, the power of ¥ is finite it follows that with p=g¢

. c
I Xalle < e—=A[ Xl g, -
c—1

REMARK. Especially, with ®(z) = zP/p, p > 1, we have ¢(z) = zP~! and ¥(z) =
z9/q, ¢ >1 where 1/p+1/g=1. Thus,if K € Ks = K, we have

C
Xz, <q

1 Xl

This is the inequality obtained by Garsia ([2, Theorem IIL.5.2]). The constant ¢ > 1 is
used to optimise the coefficient on the right hand side in the preceding inequaity. The
minimal value of (c?)/(c — 1) is obtained when ¢ = p/(p — 1). Thus we get

IX2ll, < p? X llx, < pell Xl -

Now, let us denote X* = sup |X,|, then by the monotone convergence theorem we
n21

have
c

c—1
We deduce that X* € L% . By the above mentioned Burkholder-Davis-Gundy inequality
it follows that X € Hs and with some Cj > 0 we have

1X*lle < g Al Xllx, -

c
3 1 X, <IX"lls < a,—741XlIk, -

c —

This proves the right hand side of our inequality.
Conversely, suppose that X € Hs, then using Lemma 1, with some constant
c4 > 0, we have
1 XNlxp <21X" Mg <2653 1 X|p, -
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This proves the left hand side of our inequality. g

LEMMA 2. Let (®, ¥) be a pair of conjugate Young functions and suppose that
both ® and ¥ have finite power p and q respectively. Then for every X € Hs there

exist positive constants cf:) and Céz) depending only on ® such that the following two
sided inequality holds:

cg) sup || X — Xallg < HX”H* < Cf:) sup | X — X[l -
n20 n20

Here X, = E(X | F,), n > 0.
PRoOOF: Denote X* = sup |X,|. Since ® has finite power, then by the Burkholder-
n20
Davis-Gundy inequality we have

(1) e 1 Xlla, <X |l < C3 1 XI|pg »

where ¢ and ¢} are positive constants depending only on ®. Since ¥ has a finite
power ¢, then using Doob’s maximal inequality (see [7]) we have

) sup || Xnllg < X7l < gsup || Xall-
n20 n20

Remarking that X, = 0 almost surely and that ||X,|; T ||X]|ls by using Jensen’s
inequality and by [4, Appendix (Proposition A-3-4)], (2) implies that

1
5 8uP [X — Xnllg < supl|Xnlly < I X7ls < qllX[lg < gsup|lX — Xall -
n20 n20 n20

holds. Thus, using (1) our inequality is proved with

cg) =1/2c and C?) = g/cs.

Ishak and Mogyorédi (see [8, 9] proved the following result:

THEOREM 2. Let & be a Young function with finite power p and ¥ denotes its
conjugate Young function, not necessarily with finite power. If X € Hy and Y € Ks
then the following Feflerman-Garsia type inequality holds

|E(XaYa)| < &) 1 Xnllg, [¥allxy »

where cg) is a constant depending only on ®. Further, the limit lirix E(X,Y,) exists
n—1+o0
and we have

'nli.Too E(XnYn) S Cg) "X”H’ "Y”KQ *

Here X, =E(X | F,) and Y, =E(Y | F,), n > 0.

Now, combining the results of Theorems 1 and 2, we have
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THEOREM 3. Let (®, ¥) be a pair of conjugate Young functions and suppose
that both have finite power. If X € Hgy and Y € Yy then

|E(XY)| < ClIX M gy 1Y 52 »

where E(XY) = lilil E(X,Y,) and C is a constant depending on ® and ¥ such
3) (1
that C = cg) m,
PRrOOF: Using the result of Theorem 1, we have ¥ € Ky and

1Y NI, <1/€S 1Y g, -

And using the result of Theorem 2 we have ].iI_I*} E(X,Y,) = E(XY) and

|E(XY)| < C || X||g, 1Y |, » where C =c§ /el

Let (To, |I.llg), (T3, lll;) --- be a sequence of Banach spaces, and let us define
the following Banach spaces

T = {z:(zo,zl,...)e(Tole L) e = Zuznn <+oo}

n=0
() — {z =(z1,21,...) € (To xT1%,...): ||:z;||(°°) = 81;}1)) lznll, < +oo} ,
n/
and

7 = {o €7 tm_loall, =0, ¢l = supllenl, }.
nz

Now, we formulate the following lemma without proof (see [10]).

LEMMA 3. Let B, be the dual space of T,, n = 0,1, 2,.... Then, the dual
space of (Tém), ||.||(°°)) is isomorphic to (B(l), ||.||(1)) and isomorphism can be given
by the formula

o0

BOsym fy=> (., yn)

n=0

. o~ 6))
with ||fyll = Eo Hyall, = ll¥ll* -
n=
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3. MAIN RESULT

THEOREM 4. Let (®, ¥) be a pair of conjugate Young functions and suppose
that both of them have finite power. Then, the dual space of the martingale Hardy
space Hg is the martingale Hardy space Hy .

Proor: If Y € Hy is fixed and X varies on Hs then ]irf E(X,Y,) is a
n—-t+oo
continuous and linear functional on Hs with norm < C ||Y||,, . Conversely, suppose

f is a continuous and linear functional on (Hq,, (A H}) . Then by Lemma 2, f is

also continuous with respect to the norm sup || X — X, |5 . Consider the Banach space
n>0

To(°°)( ®) defined by the formula
TE(8) = {A= (o, A1, .) An € L%, 020, lim_[|An]| =0}

furnished with the norm
"'\"Té“’)(i’) = i‘g; Al -

Then, the space (Hs, Sup,>o | X — Xa|lg) which can be considered as the set of the
sequences
X=X-X0,X-X1, X-Xo,...), X €H,

is a subspace of T§°°)(‘I>) since X,, converges to X almost surely and in L¥-norm. The

continuous and linear functional f given on (Hq,, st;p 1X — Xa| q,) can be extended
n>0
to a linear functional G(A) on Tém)(Q) with the same norm as that of f. This can be
done by means of the Hahn-Banach theorem.
Remarking that the dual space of L* is L¥ and choosing T; = L¥*(Q, 4, P),
1=0,1,2, ..., by Lemma 3 there exists a sequence (0 ).>, of random variables such
that o, € LY with

> lloalle < iGN =11l
n=0

We also have
G(N) =Y E(Aaon) for all A € T{™)().

n=0

Consider now the special sequence
X=(X-Xo,X-X1,X-Xz2,..., 5~ X, ...)
Putting ).(:,, =(Xn—Xo, Xn—X1,..., Xn—Xn_1,0,0,...), we see that

%= Fol oy = 210 = Xl 0
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as n — +oo. Consequently,
6(5) - . 6(%)
Now, easy calculations show that

n~1 n—1

¢(%.) = 2 El(Xn = Xi)ail = 3~ B{{E(Xn | Fa) - E(Xn | F)loi}
- i E{X4|E(0: | Fa) - E(o: | F2)[}
=FE {X,, [i (E(oi | Fr) — E(0: | F,-))} } .
Writing
A, = E[E(Ut l Fn) - E(Ui | Fi)])
we have

G(X) = tm_6(X.)= Jim  E(XaA).

n—-+oo

It is easy to see that (An, Fn) is a martingale which satisfies

lAnlle < X-: I E(oi | Fa) — E(o: | Fillg <2 Z_: loille

=0 =0

o0
<2 lloslly <20G -

=0
This martingale (An, Fn) is L¥-bounded. It follows that (A,, F,) is a regular martin-
gale (see [11]) and there exists a random variable A € LY such that A, = E(A | F,).
We also show that A € K¢ = Hg. This follows from the Doob maximal inequality

according to which A* = sup|A,| € LY, since
n20

NA%le < sup [[Aa]l < 20 llonlly < oo

n=0
This in fact implies that
E(|A — Any| | Fo) < E(2A% | F,) almost surely for all n > 1,

and so A € Ky and [[Af|, < 2[[A%||y. Using the result of Theorem 1, it follows that
A€ Hyg and
Al < 31Xk, <205° 187 q,

where C‘(I,l) is a constant depending only on ¥ defined in Theorem 1. This proves our
asseriion. 1]
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4. SOME REMARKABLE DUALITIES

As a direct consequence of our main result proved in Section 3, we are now in a
position to present the following remarkable dualities:

THEOREM 5. If (®, ¥) is a pair of conjugate Young functions such that both $
and ¥ have finite power then:

(i) The martingale space Ks is the dual space of the martingale Kg-space.
(ii) The martingale Hardy space Hs is the dual space of the martingale Ky-
space.

In the special case when ®(z) = z?/p and ¥(z) = 29/q, 1 < p < +oo0 and 1 <
g < 40, it follows that the dual of the space H,, is the space K, where 1/p+1/g¢=1,
for all the values of p such that 1 < p < +o00. This can be considered as an extension
of Garsia's result (see [2]).
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