
J. Functional Programming 10 (6): 509–559, November 2000. Printed in the United Kingdom

c© 2000 Cambridge University Press

509

Automatic useless-code elimination for HOT
functional programsã

FERRUCCIO DAMIANI

Dipartimento di Informatica, Università di Torino,

Corso Svizzera 185, 10149 Torino, Italy

(e-mail: damiani@di.unito.it)

PAOLA GIANNINI

DISTA, Università del Piemonte Orientale,

Corso Borsalino 54, 15100 Alessandria, Italy

(e-mail: giannini@di.unito.it)

Abstract

In this paper we present two type inference systems for detecting useless-code in higher-order

typed functional programs. Type inference can be performed in an efficient and complete

way, by reducing it to the solution of a system of constraints. We also give a useless-code

elimination algorithm which is based on a combined use of these type inference systems. The

main application of the technique is the optimization of programs extracted from proofs in

logical frameworks, but it could be used as well in the elimination of useless-code determined

by program transformations.

Capsule Review

Dead code is a subterm M of a term t = C[M] which does not matter to computation, that is,

which may be replaced by any other term of the same type without altering the observational

behaviour of the program: C[M] =obs C[N] for any N with the type of M. Dead-code may

be replaced by dummy variable, or even completely removed, in order to optimize a program.

The interest in dead-code by the authors started as a by-product of a proof system which

generated programs meeting a specification out of proofs that the specification is satisfiable.

Typically, the programs generated by such a system have plenty of dead-code. Yet, the

authors’ study seems of wider applicability, because the phenomenon of dead code arises in

any program generated by indirect or automatic means. Indeed, a related approach, based

also on the use of partial equivalence relation and pioneered by Hunt and Sands, existed

already in the world of functional programming. Partial equivalence relations are used both

to explain the typing system, and to prove that any term stated “dead-code” really is. The

core of the paper is an original algorithm, described in great detail, which infers dead code

from a combined use of three type inference systems.

ã Partially supported by the Esprit TYPES W.G. and Cofin ’99 TOSCA Project.

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

510 F. Damiani and P. Giannini

1 Introduction

Useless-code is any subexpression of a program that does not contribute to the final

result of the program. Even though is unlikely to occur in human produced code,

useless-code could be introduced by program transformations, or could be present

in programs in which general-purpose functions taken from standard libraries are

used in particular contexts.

To improve the quality of the code produced a compiler may perform a useless-

code analysis to detect and remove useless-code in the source program. Useless-code

analysis for typed functional programming languages has been originally studied in

the context of logical frameworks, like Coq, where functional programs are extracted

from formal proofs. See Pfenning (1996) for a short survey on logical frameworks,

and Paulin-Mohring (1989a, 1989b) for an introduction to program extraction.

Programs extracted from proofs usually contain large parts that are useless for the

computation of their result. Therefore some sort of simplification is mandatory. To

this aim various useless-code elimination techniques have been developed in the last

ten years, see for instance, Takayama (1991) and Berardi (1996).

Useless-code elimination focused on the elimination of useless function’s formal

parameters is often called useless-variable elimination (Shivers, 1991). The original

technique proposed in Berardi (1996) is essentially a useless-variable elimination,

while extensions of this technique (Boerio, 1995; Berardi and Boerio, 1995; Berardi

and Boerio, 1997) consider more general forms of useless-code.

In this paper we present two non-standard type assignment systems and simplifi-

cation mappings for removing useless-code in simply typed higher-order functional

programs. We also present a complete and incremental useless-code elimination

algorithm based on these systems.

In the non-standard type inference approach to program analysis, properties are

represented by particular types (called non-standard types), and program analyses

are presented via a system of logical inference rules. These systems are usually built

by two sets of rules. One set of rules, the ‘subtyping’ rules, determines an entailment

relation between the properties under investigation, and another set of rules, the

‘type assignment’ rules, defines the way in which properties are assigned to the terms

of the language. Non-standard type systems tailored to a specific analysis, such as

strictness, totality, binding-time, etc. have been introduced in the literature (Kuo and

Mishra, 1989; Jensen, 1992; Benton, 1992; Wright, 1992; Hankin and Le Métayer,

1995; Solberg, 1995; Barendsen and Smetsers, 1995; Dussart et al., 1995; Mossin,

1997; Damiani, 1998).

The basic idea of the useless-code elimination techniques presented in this paper

is inspired by the techniques of Berardi (1996) and Berardi and Boerio (1995). We

decorate a typed functional program with non-standard types (called evaluation

types). Such types are used to prove that the program can be evaluated without

evaluating some of its subexpressions, which are therefore useless-code. For the

programs of type nat (the type of natural numbers) there are two evaluation types:

• δnat, which is the property of the terms of type nat that can be evaluated, and

so they can only be replaced by terms with the same value, and

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

Automatic useless-code elimination 511

• ωnat, which is the property of the terms of type nat that are not evaluated,

and so they can be replaced by any term of type nat.

Evaluation types for programs of higher types are defined from these basic evaluation

types using the standard type construction. For instance the evaluation type ωnat →
δnat is the property of all the functions of type nat → nat that, when applied to

some argument, can be evaluated without using their argument (like λxnat.Q where

x does not occur in Q). In other words, ωnat → δnat characterizes all the functions

of type nat→ nat that do not use their argument: such functions are constant. The

evaluation type δnat → δnat, instead, does not give any information about useless-

code, since it says that the application of a function to an argument can be evaluated

if the argument can be evaluated. To detect the useless-code in a given term M we

will assume for it an evaluation type containing only δ’s, i.e. we assume that M can be

evaluated, and we will try to assign evaluation types containing only ω’s to as many

subterms of M as possible, in order to detect as many useless subterms as possible.

Let us look at three simple examples of useless-code detection and elimination.

Example 1.1

• Take

M = (λxnat.3)P

for some term P of type nat. Since x is never used in the body of the λ-

abstraction F = λxnat.3, we have that F has the property ωnat → δnat. This

implies that P is not used in the computation of the value of M and could be

replaced by any term of the same type. In fact, in a call-by-name language, M

behaves like the term

M1 = (λxnat.3)d

where d is a place-holder for the useless-code removed.

Note that, in this case, it is possible to perform a further simplification and

remove both the useless-variable x and the place-holder d, producing as final

result the body of the λ-abstraction (the constant 3).

• Take

N = (λxnat.prj1〈Q1, Q2〉)P
for some terms Q1, Q2, and P of type nat such that Q1 does not contain

any occurrence of x. Since the projection prj1 returns the first component of

the pair, the term Q2 is useless-code. Moreover, since Q1 does not contain

any occurrence of x, the λ-abstraction G = λxnat.prj1〈Q1, Q2〉 has the property

ωnat → δnat. This implies that also P is useless-code. So, in a call-by-name

language, N behaves like the term

N1 = (λxnat.prj1〈Q1, d〉)d.
Also in this case it is possible to simplify further N1, by removing the useless-

variable x, the projection operator, and the pair constructor, obtaining the

final term Q1.

• In the previous examples the simplified terms were obtainable from the original

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

512 F. Damiani and P. Giannini

ones just by reduction1, but this is not always the case. Let

R = (λfnat→nat.fP)(λxnat.3)

where P is a term of type nat. The function H = λfnat→nat.fP has the property

(ωnat → δnat) → δnat, and F = λxnat.3 has the property ωnat → δnat. This

implies that the subexpression P of R is useless-code. So, in a call-by-name

language, R behaves like the term

R1 = (λfnat→nat.fd)(λxnat.3).

In this case, a further simplification gives the simpler term R2 = (λfnat.f)3,

which cannot be obtained from R by reduction.

The soundness of the evaluation type assignment systems and of the induced

program transformations is proved via a partial equivalence relation semantics

of the evaluation types, showing that the simplified programs are observationally

equivalent to the original ones.

In section 2 of this paper we introduce the programming language we are dealing

with and its operational semantics. Section 3 shows how program properties can be

represented by partial equivalence relations on a term model of the programming

language.

In section 4 we describe the language of evaluation types and its semantics, we

also give a complete axiomatization of the logical implication between evaluation

types. Section 5 introduces an evaluation type assignment system and a program

simplification based on the information provided by the evaluation types assigned

to a program and to its subexpressions. We prove that a program and its simplified

version are observationally equivalent. Section 6 presents an evaluation type assign-

ment system, which characterizes a proper subset of the useless-code characterized

by the system in section 5: it restricts to useless-variable detection. The program

simplification induced by this type system is ‘deeper’ than that of section 5, since it

removes useless-variables without introducing dummy place-holders.

In section 7 we present two algorithms for inferring a representation of all the

evaluation typings of a term for the systems of sections 5 and 6.

In section 8 we show that the best way of using the useless-code elimination

techniques of Sections 5 and 6 is to compose them in a sequential way: first

detecting and removing useless-code using the technique of section 5, and then

applying the one of section 6 to the result.

In section 9 we discuss the independence of the techniques presented from the

particular evaluation strategy of the language considered in the paper (call-by-

name2). Related work is considered in section 10.

Appendix A contains the completeness proof for the e-type entailment relation

between e-types (introduced in section 4), while in Appendix B we show how the

algorithms described in section 7 can be integrated in an incremental useless-code

detection and elimination procedure.

1 By ‘reduction’ we mean β-reduction plus the reduction rules for projections.
2 The evaluation strategy used by languages like Miranda, Haskell and Clean.

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

Automatic useless-code elimination 513

(Var) x
ρ ∈ V
xρ ∈ Λρ

(Con) kρ ∈ K
kρ ∈ Λρ

(→ I) M ∈ Λσ

λxρ.M ∈ Λρ→σ
(→ E)

M ∈ Λρ→σ N ∈ Λρ

MN ∈ Λσ

(×I)
M1 ∈ Λρ1

M2 ∈ Λρ2〈M1,M2〉 ∈ Λρ1×ρ2

(×Ei)
M ∈ Λρ1×ρ2

prjiM ∈ Λρi

i ∈ {1, 2}

(Fix)
M ∈ Λρ

fix xρ.M ∈ Λρ
(Ifz)

N ∈ Λnat M1 ∈ Λρ M2 ∈ Λρ

ifzN thenM1 elseM2 ∈ Λρ

Fig. 1. PCFP terms.

A preliminary version of the material presented in this paper appeared in Coppo

et al. (1996) and Damiani (1998, Chap. 7).

2 The language PCFP

In this section we introduce a simple functional programming language and its

operational semantics. We use the acronym PCFP (which stands for ‘Programming

Computable Functions with Pairs’) for this language since it is the dialect of the

language PCF (Plotkin, 1977) obtained by using natural numbers instead of integers

and adding a type constructor for pairs.

2.1 PCFP syntax and evaluation rules

The set of PCFP types T is defined assuming as ground type the set of natural

numbers, nat.

Definition 2.1 (PCFP types)

PCFP types, ranged over by ρ, σ, and τ (with superscripts and subscripts if needed),

are defined by the following grammar: ρ ::= nat | ρ→ ρ | ρ× ρ.

PCFP terms are defined from a set of typed term constants

K = {0 nat, 1 nat, . . . , succ nat→nat, pred nat→nat, + nat×nat→nat, − nat×nat→nat}
(ranged over by k), and a set V of typed term variables (ranged over by xρ, yσ, . . .).

The type of a constant k is denoted by T(k).

Definition 2.2 (PCFP terms)

The set of PCFP terms ΛT, ranged over by M, N, . . ., is defined by:

ΛT =
⋃
ρ∈T

Λρ,

where the set Λρ is defined by the rules in figure 1.

According to Definition 2.2, in a PCFP term M the types of variables and

constants are explicitly mentioned. In the following we often omit to write types

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

514 F. Damiani and P. Giannini

(CAN) K ∈ VT

K ⇓ K (APP)
M ⇓ λx.P P [x := N] ⇓ K

MN ⇓ K

(KAPP1)
M ⇓ k N ⇓ k1

MN ⇓ k2
(k1, k2) ∈ mean(k)

(KAPP2)
M ⇓ k N ⇓ 〈N1, N2〉 N1 ⇓ k1 N2 ⇓ k2

MN ⇓ k3
(〈k1, k2〉, k3) ∈ mean(k)

(PRJi)
P ⇓ 〈M1,M2〉 Mi ⇓ K

prjiP ⇓ K i ∈ {1, 2} (FIX)
M[x := fix x.M] ⇓ K

fix x.M ⇓ K

(IFZ1)
N ⇓ 0 M1 ⇓ K

ifzN thenM1 elseM2 ⇓ K (IFZ2)
N ⇓ n M2 ⇓ K

ifzN thenM1 elseM2 ⇓ K n 6= 0

Fig. 2. ‘Natural semantics’ evaluation rules.

which are clear from the context. The finite set of the free variables of a term M,

denoted by FV(M), is defined in the standard way. In the following we identify

terms modulo renaming of the bound variables.

As usual a substitution is a finite function mapping term variables to terms,

denoted by [x1 := N1, . . . , xn := Nn] ([~x := ~N] for short), which respects the types,

i.e. each x
ρi
i is substituted by a term Ni of the same type. Substitution acts on free

variables, the renaming of the bound variables is implicitly assumed.

Let Λc
T = {M |M ∈ ΛT and FV(M) = ∅} be the set of the closed PCFP terms. The

process of evaluating a program is specified in a standard way by giving a structural

operational semantics (Plotkin, 1981; Kahn, 1988) in the form of an inductively

defined evaluation relation, M ⇓ K , where M is a closed term and K is a closed term

in weak head normal form (whnf), i.e. an element of the set of values

VT =K∪ {λxρ.N | λxρ.N ∈ Λc
T} ∪ {〈M1,M2〉 | 〈M1,M2〉 ∈ Λc

T}.
Any PCFP constant has either type nat or nat → nat or nat × nat → nat. The

meaning of a functional constant k is given by a set mean(k) of pairs, such that

if (K, k1) ∈ mean(k) then kK evaluates to k1. For example (5, 6) ∈ mean(succ) and

(〈1, 3〉, 4) ∈ mean(+).

Definition 2.3 (Value of a term)

Let M ∈ Λc
T. We write M ⇓ K , and say that M evaluates to K , if this statement is

derivable by using the rules in figure 2.

Let M ⇓, to be read ‘M is convergent’, mean that, for some K , M ⇓ K , and let M ⇑,
to be read ‘M is divergent’, mean that, for no K , M ⇓ K .

2.2 Ground contextual equivalence and bisimilarity

Two expressions M and N of a programming language are equivalent if any

occurrence of M in a complete program can be replaced by N, and vice versa,

without changing the results of program execution. To formalize this for a particular

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

Automatic useless-code elimination 515

programming language it is necessary to specify which are the observable results of

program execution.

Following Pitts (1997), we introduce the ground contextual equivalence on PCFP

terms, which is the congruence on terms induced by the contextual preorder that

compares the termination behaviour of programs just at the ground type nat. This

amounts to assume that complete PCFP programs are closed terms of type nat, and

that the only observable behaviour of a complete program P is its divergence or

converge to some natural number.

Let (C[]ρ)σ denote a typed context of type σ with a hole of type ρ in it.

Definition 2.4 (Ground contextual equivalence)

Let M and N be terms of type ρ. Define M �obs N whenever, for all contexts

(C[]ρ)nat, if C[M] and C[N] are closed terms, then C[M] ⇓ implies C[N] ⇓. The

relation �obs is the ground contextual preorder and the equivalence induced by �obs,

denoted by 'obs, is the ground observational equivalence.

In Pitts (1997), a co-inductive characterization of ground contextual equivalence

in terms of bisimulation is given. This characterization allow to prove more easily

the equivalence results on terms needed to show that the optimizations presented in

this paper are correct. We give here the definition of bisimulation for PCFP, and

state the two main results presented in Pitts (1997), namely Theorems 2.6 and 2.8.

Such results will be used in this paper.

Definition 2.5 (PCFP bisimulations and bisimilarity)

A PCFP bisimulation B is a type indexed family of relations on closed terms,

Bρ⊆ {(M,N) |M,N ∈ Λρ and FV(M) ∪ FV(N) = ∅}
satisfying the conditions in figure 3. PCFP bisimilarity is the largest bisimulation

and will be denoted by '.

A PCFP bisimulation B can be extended to a relation on (possibly) open terms

Bo (called the open extension of B). For any PCFP terms P and Q such that

FV(P)∪FV(Q) ⊆ {xσ1

1 , . . . , x
σn
n }, define: M Bo

ρ N if and only if, for every substitution

[xσ1

1 := N1, . . . , x
σn
n := Nn] such that

⋃
16i6n FV(Ni) = ∅,

P [~x := ~N] Bρ Q[~x := ~N].

Let 'o denote the PCFP open bisimilarity. The following results hold.

Theorem 2.6 (Operational extensionality for PCFP)

Ground contextual equivalence coincides with bisimilarity, that is:

M 'obs N if and only if M 'o N.

Consider, for every type ρ, the set of everywhere divergent terms of type ρ.

That is for type nat the always divergent terms, for an arrow type the terms that

for every input produce an everywhere divergent term, and for pairs that terms

whose projections are terms everywhere divergent. Notice that terms in these sets

are all observationally equivalent. In particular, the term fix xρ.x is a ‘canonical’

representative of the set of the everywhere divergent terms of type ρ.

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

516 F. Damiani and P. Giannini

(bis 1a) (M Bnat N and M ⇓ k) implies N ⇓ k

(bis 1b) (M Bnat N and N ⇓ k) implies M ⇓ k

(bis 2) M Bρ→σ N implies for all P ∈ Λρ, MP Bσ NP

(bis 3) M Bρ×σ N implies prj1(M) Bρ prj1(N) and prj2(M) Bσ prj2(N)

Fig. 3. Bisimulation conditions for PCFP

The following definition introduces the set of finite approximations of a recursive

term fix x.M. As usual approximations are defined starting from an everywhere

divergent term, and iterating the substitution of the recursion variable with the term

defined at the previous stage.

Definition 2.7

For all natural numbers m define fix(m) xρ.M as follows:

fix(0) xρ.M = fix xρ.x

fix(n+1) xρ.M = M[xρ := fix(n) xρ.M].

Theorem 2.8 (‘Compactness’ of evaluation)

For every PCFP context of type nat, (C[]ρ)nat, if (C[fix x.M]ρ)nat ⇓ k then exists

m > 0 such that (C[fix(m) x.M]ρ)nat ⇓ k.

2.3 A closed term model of PCFP

Let I(ρ) denote the set of the equivalence classes of the relation 'obs on the closed

terms of type ρ in Λc
T, and let [M] denote the equivalence class of the closed term

M. The preorder �obs induces a partial order on I(ρ): define [M] �obs [N] if and

only if M �obs N.

The closed term model M of PCFP is defined by interpreting each type ρ as the

poset I(ρ) ordered by �obs. For every type ρ, [fix xρ.x] is the least element of I(ρ).

An environment is a mapping e :V→ ⋃
ρ∈T I(ρ) which respects types, i.e. a mapping

such that, for all xρ, e(xρ) ∈ I(ρ). The interpretation of a term M in an environment

e is defined in a standard way by:

[[M]]e = [M[x1 := N1, . . . , xn := Nn]],

where {x1, . . . , xn} = FV(M) and [Nl] = e(xl) (1 6 l 6 n). Note that, using Theo-

rem 2.6, we can prove that M is an extensional model.

3 Partial equivalence relations and program properties

In this section we show how some properties of PCFP programs P of type ρ can be

represented as partial equivalence relations over the interpretation, I(ρ), of the type

ρ in the closed term model M.

A Partial Equivalence Relation (PER for short) over a set A is a symmetric and

transitive binary relation over A. Let R be a PER over a set A, we call domain of R

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

Automatic useless-code elimination 517

the subset of A defined as:

Dom(R) = {E | (E, E ′) ∈ R or (E ′, E) ∈ R for some E ′}.
Note that R is reflexive on its domain. The use of PERs is well known in literature

on program analysis, and dates at least back to Hunt and Sands (1991).

In the following let ‘PER over a type ρ’ mean ‘PER over the set I(ρ)’. A PER R
over ρ is an equivalence relation between the subset Dom(R) of the meanings I(ρ)

of terms in the modelM: the elements of Dom(R) that are in the same equivalence

class are identified by the property expressed by R. The following definition explains

what is meant by: a term P of type ρ satisfies the property (PER) R over ρ.

Definition 3.1 (P satisfies R)

Let R,R1, . . . ,Rn (n > 0) be PER over types ρ, ρ1, . . . , ρn, respectively. We say that a

term P of type ρ with free variables xρ1

1 , . . . , x
ρn
n satisfies the property R under the

assumptions Ri for xρii (1 6 i 6 n) if, for all the environments e and e′ such that

(e(xρii), e′(xρii)) ∈ Ri, we have that ([[P]]e, [[P]]e′) ∈ R.

A PER R over ρ can be read as a relation between closed terms such that

M,N ∈ Λc
T are indistinguishable w.r.t. R if and only if ([M], [N]) ∈ R. This view is

useful to understand which is the property represented by a given PER.

• For every type ρ ∈ T, consider the diagonal PER over I(ρ),

∆ρ = {([M], [M]) | [M] ∈ I(ρ)}.
The relation ∆ρ is the PCFP bisimilarity (it identifies two closed terms of

type ρ if and only if they are observationally equivalent), so it represents the

property for which the value of a term does matter. In other words, the relation

∆ρ has a different equivalent class for each of the meanings of the terms of

type ρ.

• The trivial PER over I(ρ),

Ωρ = {([M], [N]) | [M], [N] ∈ I(ρ)},
identifies all the closed terms of type ρ, so it represents the ‘true’ property for

which the value of a term does not matter. In other words, the relation Ωρ

consists of one equivalence class containing all the meanings of the terms of

type ρ.

• Given a PER R1 over ρ1 and a PER R2 over ρ2, let R1→→R2 be the PER over

ρ1 → ρ2 defined as follows:

R1→→R2 = {([F], [G]) | ∀([M], [N]) ∈ R1.([FM], [GN]) ∈ R2}.
For instance, Ωnat → ∆nat can be seen as the property of being a constant

function of type nat→ nat, since two closed terms P and Q are identified by

Ωnat → ∆nat if and only if: for all M,N ∈ Λc
nat, PM and QN are observationally

equivalent. So the value returned by P and Q must be the same, and must be

independent from their input.

According to the M semantics we have that, for every ρ1, ρ2 ∈ T,

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

518 F. Damiani and P. Giannini

— ∆ρ1→→∆ρ2 = ∆ρ1→ρ2 , and

— Ωρ1→→Ωρ2 = Ωρ1→ρ2 = R1→→Ωρ2 (for all the PERs R1 over ρ1).

• Given a PER R1 over ρ1 and a PER R2 over ρ2, let R1××R2 be the PER over

ρ1 × ρ2 defined as follows:

R1××R2 = {([M], [N]) | ∀i ∈ {1, 2}.([prjiM], [prjiN]) ∈ Ri}.
Observe that, for any pair of closed terms (P ,Q), the fact that ([P], [Q]) ∈
R1××R2 does not imply neither that P ⇓ 〈P1, P2〉, for some P1 and P2 nor

Q ⇓ 〈Q1, Q2〉, for some Q1 and Q2. In particular this may not be the case when

R1 = Ωρ1 and R2 = Ωρ2 .

It is easy to show that

— ∆ρ1××∆ρ2 = ∆ρ1×ρ2 , and

— Ωρ1××Ωρ2 = Ωρ1×ρ2 .

Example 3.2

The term G = (λznat.λynat×nat.+ 〈prj1y, x1〉) x2 satisfies the property

(∆nat××Ωnat)→→∆nat,

under the assumptions ∆nat for the free variable x1 and Ωnat for the free variable x2.

In fact,

• the free variable x2 is not used, and

• the second component of any pair of numbers to which G is applied is not

used.

The set-theoretic inclusion between PERs over a type ρ represents a logical

implication between properties, i.e. if R1 ⊆ R2 and a pair of closed terms (P ,Q) is

identified by R1, then (P ,Q) is also identified by R2. For instance, for every PER R
over ρ, R ⊆ Ωρ, according to the fact that Ωρ represents the ‘true’ property.

4 Evaluation types

In this section we introduce a set of non-standard types over T, the set of the

evaluation types (e-types for short), which is at the heart of the program analysis

and transformation technique presented in this paper. We first introduce the e-types

syntax and semantics and then a complete axiomatization of the logical implication

between e-types.

4.1 E-types syntax and semantics

Let φ range over e-types and φρ range over e-types with underlying type ρ. In the

following we will often omit the superscript ρ when it is either not relevant or clear

from the context. For an e-type φ ∈ L(ρ), let ε(φ) denote the underlying type, ρ, of φ.

Definition 4.1 (Evaluation types)

The set of the e-types, L, is defined by: L = ∪ρ∈TL(ρ), where the sets L(ρ) are

defined by the rules in figure 4. The symbols δ and ω are called basic properties.

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

Automatic useless-code elimination 519

(δ) δnat ∈ L(nat) (ω) ωρ ∈ L(ρ) (→)
φ1 ∈ L(ρ1) φ2 ∈ L(ρ2)
φ1 → φ2 ∈ L(ρ1 → ρ2)

φ2 6= ωρ2

(×)
φ1 ∈ L(ρ1) φ2 ∈ L(ρ2)
φ1 × φ2 ∈ L(ρ1 × ρ2)

∃i ∈ {1, 2}.φi 6= ωρi

Fig. 4. Evaluation types.

The meaning of e-types is given by interpreting each e-type, φρ, as a PER, [[φρ]]

over the interpretation of the type ρ in the model M (see Section 3).

Definition 4.2 (Semantics of e-types)

The interpretation [[φ]] of an e-type φ is defined by:

[[δnat]] = ∆nat

[[ωρ]] = Ωρ

[[φ1 → φ2]] = [[φ1]]→→[[φ2]]

[[φ1 × φ2]] = [[φ1]]××[[φ2]].

The previous definition justifies the choice of not having e-types of the form

• φρ1 → ωρ2 and ωρ1 ×ωρ2 (where φ is any e-type, and ρ1 and ρ2 are any types),

since the first would denote the equivalence relation Ωρ1→ρ2 , and the second

would denote Ωρ1×ρ2 , and

• δρ where ρ 6= nat, since ∆ρ1→→∆ρ2 = ∆ρ1→ρ2 and ∆ρ1××∆ρ2 = ∆ρ1×ρ2 for all ρ1

and ρ2.

Indeed, the e-type syntax has been defined in such a way that (syntactically) different

e-types denote different PERs.

A useful property of the e-types semantics is the following.

Proposition 4.3

If, for all n > 0, ([(C1[fix(n) x.M]ρ)σ], [(C2[fix(n) x.M]ρ)σ]) ∈ [[φσ]], then

([(C1[fix x.M]ρ)σ], [(C2[fix x.M]ρ)σ]) ∈ [[φσ]]

Proof

By structural induction on φσ .

φσ = ωσ . Immediate.

φσ = δnat. The result is equivalent to Theorem 2.8.

φσ = φσ1

1 → φσ2

2 . By absurd. Assume that ([(C1[fix x.M]ρ)σ], [(C2[fix x.M]ρ)σ]) 6∈
[[φσ]]. Then, for some ([P], [Q]) ∈ [[φσ1

1]], we have

([(C1[fix x.M]ρ)σP], [(C2[fix x.M]ρ)σQ]) 6∈ [[φσ2

2]].

By induction hypothesis there exists m > 0 such that ([(C1[fix(m) x.M]ρ)natP],

[(C2[fix(m) x.M]ρ)natQ]) 6∈ [[φσ2

2]]. Therefore

([(C1[fix(m) x.M]ρ)nat], [(C2[fix(m) x.M]ρ)nat]) 6∈ [[φσ]].

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

520 F. Damiani and P. Giannini

(Ref) φ 6 φ (ω) φρ 6 ωρ (→)
ψ1 6 φ1 φ2 6 ψ2

φ1 → φ2 6 ψ1 → ψ2
ψ2 6= ωε(ψ2)

(×)
φ1 6 ψ1 φ2 6 ψ2

φ1 × φ2 6 ψ1 × ψ2
∃i ∈ {1, 2}.ψi 6= ωε(ψi)

Fig. 5. Entailment rules for e-types (system 6).

φσ = φσ1

1 × φσ2

2 . Similar.

q

4.2 A complete entailment relation for e-types

In this section we introduce an entailment relation between e-types, 6. This rela-

tion models the set-theoretic inclusion between the interpretation of the e-types,

representing the logical implication between properties.

Definition 4.4 (Entailment relation 6)

Let φ, ψ ∈ L. We write φ 6 ψ to mean that φ 6 ψ is derivable by the rules in Fig. 5.

By ∼= we denote the equivalence relation induced by 6.

It is immediate to show that 6 is reflexive and transitive. Moreover φ ∼= ψ implies

φ = ψ.

The 6 entailment relation between e-types is sound and complete w.r.t. the PER

interpretation of Definition 4.2.

Theorem 4.5 (Soundness of 6)

φ 6 ψ implies [[φ]] ⊆ [[ψ]].

Proof

By induction on the structure of the derivations. q

The proof of completeness relies on the definition, for each e-type φ, of a set of

pairs of terms, Chrφ, which characterize the pairs of terms in [[φ]]. In particular, the

characteristic sets Chrφ have the properties expressed by the following lemma.

Lemma 4.6 (Characteristic set Chrφ)

1. {([P], [Q]) | (P ,Q) ∈ Chrφ} ⊆ [[φ]].

2. {([P], [Q]) | (P ,Q) ∈ Chrφ} ⊆ [[ψ]] implies φ 6 ψ.

The construction of the set Chrφ, which is rather technical, and the proof of

Lemma 4.6 are presented in the Appendix A.

Theorem 4.7 (Completeness of 6)

[[φ]] ⊆ [[ψ]] implies φ 6 ψ.

Proof

By absurd. Assume φ 66 ψ. Then by Lemma 4.6.2 {([P], [Q]) | (P ,Q) ∈ Chrφ} 6⊆ [[ψ]]

and by Lemma 4.6.1 {([P], [Q]) | (P ,Q) ∈ Chrφ} ⊆ [[φ]]. Therefore [[φ]] 6⊆ [[ψ]]. q

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

Automatic useless-code elimination 521

4.3 ω-types and δ-e-types

In this section we introduce two sets of e-types: the ω-e-types and the δ-e-types.

Definition 4.8 (ω-e-types and δ-e-types)

1. We call ω-e-types the e-types in the set Lω = {ωρ | ρ ∈ T}.
2. The set of the δ-e-types (Lδ) is the subset of the e-types which do not contain

subexpressions of the form ωρ (for some ρ). For every type ρ ∈ T, let δ(ρ) be

the unique δ-e-type of type ρ.

The following proposition shows that ω-e-types provide a syntactical characterization

for the set of the e-types φρ such that [[φρ]] = Ωρ and δ-e-types for the set of the

e-types φρ such that [[φρ]] = ∆ρ.

Proposition 4.9

1. φρ ∈ Lω if and only if [[φρ]] = Ωρ, and

2. φρ ∈ Lδ if and only if [[φρ]] = ∆ρ.

Proof

1. (=⇒). Immediate from Definition 4.2.

(⇐=). We prove that φρ 6= ωρ implies [[φρ]] = Ωρ. Let φρ 6= ωρ. By structural

induction on φ ∈ L.

φ = δnat. Directly from Definition 4.2.

φρ = φ1
ρ1 → φ2

ρ2 . By definition of e-type, φ2 6∈ Lω , and, by induction,

[[φ2]] 6= Ωρ2 . So there are [P], [Q] ∈ I(ρ2) such that ([P], [Q]) 6∈ [[φ2]].

This implies that ([λzρ1 .P], [λzρ1 .Q]) 6∈ [[φ1 → φ2]], and so [[φ1 → φ2]] 6=
[[ωρ1→ρ2]].

φρ = φ1
ρ1 × φ2

ρ2 . By definition of e-type either φ1 6∈ Lω or φ2 6∈ Lω . So,

by induction, either [[φ1]] 6∈ Lω or [[φ2]] 6∈ Lω . This implies [[φ1 × φ2]] 6=
[[ωρ1×ρ2]].

2. (=⇒). We prove that, for all ρ ∈ T, [[δ(ρ)]] = ∆ρ. By induction on ρ ∈ T.

ρ = nat. Immediate.

ρ = ρ1 → ρ2. By hypothesis both [[δ(ρ1)]] = ∆ρ1 and [[δ(ρ2)]] = ∆ρ2 . By

definition of [[δ(ρ1 → ρ2)]] we have that

(∗) ([P], [Q]) ∈ [[δ(ρ1 → ρ2)]] if and only if, for all M and N such that

([M], [N]) ∈ [[δ(ρ1)]], ([P M], [QN]) ∈ [[δ(ρ2)]].

We first show that

(a) ([P], [Q]) ∈ [[δ(ρ1 → ρ2)]] implies P ' Q, and

(b) P ' Q implies ([P], [Q]) ∈ [[δ(ρ1 → ρ2)]].

The implication (a) is proved by absurd. If P 6' Q, then, by definition of

bisimilarity there would be an M such that P M 6' QM. So (by induction

hypothesis) ([P M], [QM]) 6∈ [[δ(ρ2)]], and therefore (from (∗)) ([P], [Q]) 6∈
[[δ(ρ1 → ρ2)]]. For (b), let P ' Q. This implies that, for all R and S such

that R ' S , P R ' P S ' QS ' QR. So (by induction hypothesis and (∗))
([P], [Q]) ∈ [[δ(ρ1 → ρ2)]].

From the equivalence between ' and contextual equivalence (Theorem 2.6)

we get the result.

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

522 F. Damiani and P. Giannini

ρ = ρ1 × ρ2. Similar.

(⇐=). Assume that [[φρ]] = ∆ρ. From (=⇒) ∆ρ = [[δ(ρ)]]. So Theorem 4.7

implies φρ ∼= δ(ρ), and Definition 4.4 implies φρ = δ(ρ).

q

5 Detecting and removing useless-code I

In this section we first introduce an e-type assignment system for detecting useless-

code in PCFP programs (section 5.1) . Then we give a mapping for removing from a

program the useless-code proved by using the e-type assignment system (section 5.2)

and consider the problem of finding and removing all the useless-code that can be

proved by the e-type assignment system (section 5.3).

The basic idea for using e-types to detect the useless-code in a given PCFP term

M of type ρ is the following: if we can prove that (under suitable assumptions

on its free variables) an application NM1 · · ·Mn has a δ-e-type while some of its

arguments Mi’s have ω-e-types, then (according to the e-type semantics) such Mi’s

are useless-code and can be removed without changing the semantics of the program.

This remark can be easily generalized to any subexpression of an expression having

a δ-e-type.

5.1 An e-type assignment system for detecting useless-code

If xρ is a term variable of type ρ an assumption for xρ is an expression of the

shape xρ : φρ. A basis is a set Σ of e-types assumptions for term variables. E-types

are assigned to PCFP terms by a set of inference rules for judgements of the form

Σ `1 M
φ where Σ is a basis containing an assumption for each free variable of

Mφ, and Mφ is a decorated term, that is, a term with (some of) the e-types assigned

to its subterms written in it. Such a decorated term can then be processed by a

transformation procedure (like the one described in section 5.2) that simplifies it.

Notation 5.1

For a basis Σ let ε(Σ) denote the set of term variables in Σ, and for a decorated

term Mφ define ε(Mφ) to be the term obtained from Mφ by erasing all the e-type

decorations. Let Σ, x : ψ denote the basis Σ ∪ {x : ψ} where it is assumed that x

does not appear in Σ.

Definition 5.2 (E-type assignment system `1)

We write Σ `1 M
φ to mean that Σ `Mφ can be derived by the rules in figure 6.

Note that, being `1 an inference system, a term can have different decorations.

However, for every judgment Σ `1 M
ψ there is exactly one derivation. Moreover,

the only way ω-types can be derived is by using the rule (ω).

Remark 5.3

The system in figure 6 could be expressed in a slightly different way (equivalent to

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

Automatic useless-code elimination 523

(ω)
ε(Σ) ⊇ FV(M) M ∈ Λρ

Σ `Mωρ

(Var)
φ 6 ψ

Σ, x : φ ` xψ ψ 6∈ Lω (Con) Σ ` kδ(T(k))

(→ I)
Σ, x : φ `Mψ

Σ ` (λx.M)φ→ψ
ψ 6∈ Lω (→ E)

Σ `Mφ→ψ Σ ` Nφ

Σ ` (MNφ)
ψ

(×I)
Σ `M1

φ1 Σ `M2
φ2

Σ ` 〈M1,M2〉φ1×φ2
∃i ∈ {1, 2}.φi 6∈ Lω

(×Ei)
Σ `Mφ1×φ2

Σ ` (prjiM
φ3−i)

φi
φi 6∈ Lω

(Fix)
Σ, x : φ `Mφ φ 6 ψ

Σ ` (fix x.Mφ)
ψ ψ 6∈ Lω

(If)
Σ ` Nδnat

Σ `M1
φ Σ `M2

φ

Σ ` (ifzN thenM1 elseM2)φ
φ 6∈ Lω

Fig. 6. Rules for e-type assignment (system `1).

this one) by removing the use of entailment in rules (Var) and (Fix), and by adding

an explicit entailment rule:

(6)
Σ `Mφ φ 6 ψ

Σ `Mψ ψ 6∈ Lω.

We chose the actual presentation since it is more suitable to the definition of the

e-type inference algorithm (see section 7).

To state the soundness of the e-type assignment system we introduce the following

definitions.

Definition 5.4

1. Two environments e1, e2 are Σ-related if and only if, for all x : ψ ∈ Σ,

(e1(x), e2(x)) ∈ [[ψ]].

2. Let Σ `1 M
φ and Σ `1 N

φ. We write ε(Mφ) ∼Σ
φ ε(N

φ) to mean that for all e1,

e2, if e1 and e2 are Σ-related, then ([[ε(Mφ)]]e1
, [[ε(Nφ)]]e2

) ∈ [[φ]].

Observe that, for any term P of type ρ with free variables x
ρ1

1 , . . ., xρnn , if

P ∼{x
ρ1
1 :ψ1 ,...,x

ρn
n :ψn}

χ P , then P satisfies (in the sense of Definition 3.1) the property

R = [[χ]] under the assumptions Ri = [[ψi]] for xρii (1 6 i 6 n). Soundness of the

system `1 can now be stated as follows.

Theorem 5.5 (Soundness of `1)

Let Σ `1 P
χ. Then ε(Pχ) ∼Σ

χ ε(P
χ).

Proof

By induction on the structure of derivations. We only present three cases.

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

524 F. Damiani and P. Giannini

• Let the derivation end with rule (Var). So P = x. Let e and e′ be such

that (e(x), e′(x)) ∈ [[φ]]. By Theorem 4.5 (soundness of 6), [[φ]] ⊆ [[χ]], so

(e(x), e′(x)) ∈ [[χ]] which proves the result.

• Let the derivation end with rule (→ I). So P = λx.M and χ = φ→ ψ. We have

to prove that for every e and e′ which are Σ-related ([[λx.M]]e, [[λx.M]]e′) ∈
[[φ → ψ]], i.e. ([(λx.M)[~y := ~Q]], [(λx.M)[~y := ~Q′]]) ∈ [[φ → ψ]], where

~y = y1 · · · yk (k > 0) are the variables in Σ, e(yi) = [Qi], e
′(yi) = [Q′i], φi is the e-

type of yi in Σ, and (e(yi), e
′(yi)) ∈ [[φi]]. By definition this is equivalent to show

that, for all ([N], [N ′]) ∈ [[φ]], ([(λx.M)[~y := ~Q]N], [(λx.M)[~y := ~Q′]N ′]) ∈ [[ψ]],

that is, since FV(N) = FV(N ′) = ∅, ([M[x := N,~y := ~Q]], [M[x := N ′,~y :=
~Q′]]) ∈ [[ψ]], that is ([[M]]e[x:=[N]], [[M]]e′[x:=[N ′]]) ∈ [[ψ]]. This follows directly

by induction.

• Let the derivation end by with rule (Fix). So P = fix x.M. We have to prove that

([[fix x.M]]e, [[fix x.M]]e′) ∈ [[φ]], i.e. ([(fix x.M)[~y := ~Q]], [(fix x.M)[~y := ~Q′]]) ∈
[[φ]], where~y = y1 · · · yk (k > 0) are the variables in Σ, e(yi) = [Qi], e

′(yi) = [Q′i],
φi is the e-type of yi in Σ, and (e(yi), e

′(yi)) ∈ [[φi]]. Since fix(0) x.P =

fix z.z for any P , we have ([fix(0) x.M], [fix(0) x.M]) ∈ [[φ]]. Assuming that

([[fix(n) x.M]]e, [[fix(n) x.M]]e′) ∈ [[φ]] and applying the induction hypothesis to

the derivation Σ, x : φ `1 M : φ we get ([[M]]e[x:=[[fix(n) x.M]]e]
, [[M]]e′[x:=[[fix(n) x.M]]e′])

∈ [[φ]], i.e. ([M[x := (fix(n) x.M)[~y := ~Q], ~y := ~Q]], [M[x := (fix(n) x.M)[~y :=
~Q], ~y := ~Q]]) ∈ [[φ]], i.e. ([(fix(n+1) x.M)[~y := ~Q]], [(fix(n+1) x.M)[~y := ~Q]]) ∈
[[φ]], i.e. ([[fix(n+1) x.M]]e, [[fix(n+1) x.M]]e′) ∈ [[φ]]. Then, by induction on n, we

have that for all n, ([[fix(n) x.M]]e, [[fix(n) x.M]]e′) ∈ [[φ]]. So we can conclude by

Proposition 4.3 that ([[fix x.M]]e, [[fix x.M]]e′) ∈ [[φ]]. Since φ 6 ψ then, by The-

orem 4.5 (soundness of 6), [[φ]] ⊆ [[ψ]] and therefore ([[fix x.M]]e, [[fix x.M]]e′) ∈
[[ψ]].

q

The previous theorem implies that, given a term M, if we have a derivation

Σ `1 M
′χ such that the subtem P of M is associated with the subderivation Σ′ `1 P

′φ,

then if we replace P with a term ∼Σ′
φ -related to P we get a term ∼Σ

χ -related to M.

Example 5.6

Take the terms M, N, and R of Example 1.1:

• M = (λxnat.3)P ,

• N = (λxnat.prj1〈Q1, Q2〉)P , where Q1 does not contain any occurrence of x,

and

• R = (λfnat→nat.fP)(λxnat.3).

Assume that P , Q1 and Q2 are closed. It it easy to check that the following `1-typings

hold:

• ∅ `1 ((λx.3)Pωnat

)δ
nat

,

• ∅ `1 ((λx.prj1〈Q1, Q2〉ωnat

)Pωnat

)δ
nat

, and

• ∅ `1 ((λf.fPωnat

)(λx.3)ω
nat→δnat

)δ
nat

.

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

Automatic useless-code elimination 525

This means that we can replace the subterms of M, N and R that have e-type ωnat

by with any other term of type nat without changing the meaning of M, N and P

(which have e-type δnat).

5.2 A useless-code elimination

We now introduce a useless-code elimination mapping O1 that takes a `1-decorated

term Mφ and returns a simplified version of it. The simplified version of the term

has ‘dummy variables’ in place of subterms that are not needed for the evaluation

of the term.

5.2.1 Dummy variables

For each type ρ, we consider a countable set { dρ, dρ1 , dρ2 , . . . } of dummy variables of

type ρ. We remark that dummy variables are not present in the original programs:

they are introduced by the useless-code elimination mapping O1 as place-holders

for the useless-code removed. In the following we assume that all the occurrences of

dummy variables in a program are free and distinct3.

Notation 5.7

For every term M, let DV(M) be the set of the dummy variables in M.

5.2.2 The simplification mapping

Let Λ`1

T be the set of `1-decorated PCFP terms, i.e.

Λ`1

T = {Mφ | Σ `1 M
φ for some e-type φ and basis Σ}.

Definition 5.8 (Simplification mapping O1)

1. The function

O1 : Λ`1

T → Λ`1

T

is defined by the clauses in figure 7, where the occurrence of ‘d’ (second row)

denotes a fresh dummy variable of the proper type.

2. If Σ is a basis then

O1(Σ) = {x : χ | x : χ ∈ Σ and χ 6∈ Lω}.

Proposition 5.9 (Correctness of O1)

Let Σ `1 M
φ, Σ′ = O1(Σ) ∪ {dσ : ωσ | dσ ∈ DV(ε(O1(Mφ))}, and Σ′′ = Σ ∪ {dσ :

ωσ | dσ ∈ DV(ε(O1(Mφ))}. Then

1. Σ′ `1 O1(Mφ), and

2. ε(Mφ) ∼Σ′′
φ ε(O1(Mφ)).

3 Dummy variables are simply a tool for proving the soundness of the simplification mapping O1:
we will show that the value of a simplified term does not depend from the values assigned to its
dummy variables. Indeed, since in a simplified program every dummy variable is useless-code, in a real
implementation we can replace them with some polymorphic ‘dummy constant’ d.

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

526 F. Damiani and P. Giannini

O1(Mψ) = (o1(M,ψ))ψ, where

o1(M,ψ) = d, if ψ ∈ Lω . Otherwise:

o1(k, ψ) = k

o1(x, ψ) = x

o1(〈M1,M2〉, ψ1 × ψ2) = 〈o1(M1, ψ1), o1(M2, ψ2)〉

o1(prjiM
ψ3−i , ψi) = prji(o1(M,ψ1 × ψ2))ψ3−i where i ∈ {1, 2}

o1(MNφ, ψ) = o1(M,φ→ ψ)(o1(N,φ))φ

o1(λx.M, ψ1 → ψ2) = λx.o1(M,ψ2)

o1(fix x.Mφ, ψ) = fix x.(o1(M,φ))ψ

o1(ifzN thenM1 elseM2, ψ) = ifz o1(N, δnat) then o1(M1, ψ) else o1(M2, ψ)

Fig. 7. Mapping O1 on terms.

Proof

Both (1) and (2) are by induction on the structure of the derivations, observing that

Σ `1 M
φ implies both Σ′′ `1 M

φ and Σ′′ `1 O1(Mφ). q

To use the simplification mapping O1 to simplify terms while preserving their

meaning we identify a subset of `1-typings for which the ∼Σ
φ relations implies the

'obs relation.

Definition 5.10 (Faithful `1-typing)

Σ `1 M
φ is a faithful `1-typing of M if φ ∈ Lδ , and for all x : ψ ∈ Σ, ψ ∈ Lω ∪ Lδ .

Example 5.11

The `1-typings of the terms M, N, and R in Example 5.6 are faithful. By applying

the simplification mapping O1 we get the following `1-typings:

• {d : ωnat} `1 ((λx.3)dω
nat

)δ
nat

,

• {d1 : ωnat, d2 : ωnat} `1 ((λx.prj1〈Q1, d1〉ωnat

)dω
nat

2)δ
nat

, and

• {d : ωnat} `1 ((λf.fdω
nat

)(λx.3)ω
nat→δnat

)δ
nat

.

Then, by erasing all the e-type decorations, we get the simplified terms:

• M1 = (λxnat.3)dnat,

• N1 = (λxnat.prj1〈Q1, d
nat
1 〉)dnat

2 , and

• R1 = (λfnat→nat.fdnat)(λxnat.3).

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

Automatic useless-code elimination 527

The proof that the simplification performed by the mapping O1 on faithful

decorated terms preserve 'obs relies on the following lemma.

Lemma 5.12

Let Σ `1 M
φ and Σ `1 N

φ be faithful `1-typings. Then ε(Mφ) ∼Σ
φ ε(N

φ) implies

ε(Mφ) 'obs ε(N
φ).

Proof

Let Σ′ be the restriction of Σ to the variables FV(M) ∪ FV(N). Since Σ `1 M
φ is

faithful, then for all x : ψ ∈ Σ′, ψ ∈ Lω ∪ Lδ . So for all e, e is Σ′ related with e.

Let now ε(Mφ) ∼Σ′
φ ε(Nφ), then (by Definition 5.4.2) ([[ε(Mφ)]]e, [[ε(N

φ)]]e) ∈ [[φ]].

Therefore, since φ ∈ Lδ , from Proposition 4.9 we get for all e, [[ε(Mφ)]]e = [[ε(Nφ)]]e.

Using the definition of 'o and Theorem 2.6 we conclude that ε(Mφ) 'obs ε(N
φ).

q

We can now show how to use the system `1 and the simplification mapping O1

to simplify terms producing observationally equivalent terms. In particular we show

that all the dummy variables introduced by applying the mapping O1 on a faithful

`1-typing are useless-code.

Theorem 5.13 (O1 on faithful `1-typings preserves 'obs)

Let Σ `1 M
φ be a faithful `1-typing. Then ε(Mφ) 'obs ε(O1(Mφ)).

Proof

Let Σ′ = Σ ∪ {dσ : ωσ | dσ ∈ DV(ε(Mφ))}. Since Σ `1 M
φ is a faithful `1-typing

then also Σ′ `1 M
φ and Σ′ `1 O1(Mφ) are faithful `1-typings. So the result follows

immediately from Proposition 5.9.2 and Lemma 5.12. q

Example 5.14

Let

M = (λgnat→nat.λxnat.+ 〈+〈fg, gx〉, (λynat.1)P 〉)(λznat.3)Q ∈ Λnat

where P , Q ∈ Λnat are such that FV(P) = {unat} and FV(Q) = {vnat}. Then

FV(M) = {f (nat→nat)→nat, u nat, v nat}.
Take the faithful `1-typing Σ′ `1 M

′, where (writing δ and ω instead of δnat and

ωnat)

Σ′ = {f : (δ → δ)→ δ, u : ω, v : ω}, and

M ′ = ((λg.λx.+ 〈+〈fgω→δ, gxω〉δ×δ, (λy.1)Pω〉δ×δ)(λz.3)ω→δQω)δ.

Applying the O1 simplification mapping we get O1(Σ′) ∪ {d1 : ω, d2 : ω, d3 : ω} `1

O1(M ′), where

O1(Σ′) = {f : (δ → δ)→ δ}, and

O1(M ′) = ((λg.λx.+ 〈+〈fgω→δ, gdω1 〉δ×δ, (λy.1)dω1 〉δ×δ)(λz.3)ω→δdω1)δ.

Let N1 be the term obtained from O1(M ′) by erasing the e-type decorations, i.e.

N1 = ε(O1(M ′)). We have

N1 = (λgnat→nat.λxnat.+ 〈+〈fg, gdnat
1 〉, (λynat.1)dnat

2 〉)(λznat.3)dnat
3

with FV(N1) = {f (nat→nat)→nat, dnat
1 , dnat

2 , dnat
3 }.

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

528 F. Damiani and P. Giannini

φρ v ωρ

δnat v δnat

φ1 v ψ1 φ2 v ψ2

φ1 → φ2 v ψ1 → ψ2
ψ2 6∈ Lω

φ1 v ψ1 φ2 v ψ2

φ1 × φ2 v ψ1 × ψ2
∃i ∈ {1, 2}.ψi 6∈ Lω

Fig. 8. Relation v for e-types.

5.3 Optimal faithful `1-typings

To detect all the useless-code of a term term M that can be proved useless in system

`1, it is useful to see whether there is a faithful `1-typing of M that shows all the

useless-code that is showed by some faithful `1-typing of M. If such an ‘optimal’

faithful `1-typing exists then the problem of detecting all the useless-code that can

be proved by system `1 would be reduced to the problem of computing the ‘optimal’

faithful `1-typing.

Given two faithful `1-typings of M, Σ `1 M
φ and Σ′ `1 M

′φ, the one which allows

the mapping O1 to remove more useless-code is the one that assigns ω-e-types to

more subterms of M. This fact induces a partial order relation, v, on the set of the

`1-typings of M, defined as follows.

Definition 5.15 (The v partial order)

1. For basic properties the order v is defined by: δ v δ, δ v ω and ω v ω.

2. For e-types the partial order v is defined by the rules in figure 84.

3. For basis the partial order v is defined by: Σ v Σ′ if for every xρ : ψ ∈ Σ′
there exists xρ : φ ∈ Σ such that φ v ψ.

4. For `1-decorated terms the partial order v is defined by the rules in figure 9.

5. For `1-typings the partial order v is defined by: Σ `1 M
φ v Σ′ `1 M

′ψ if

Σ v Σ′ and Mφ vM ′ψ .

It is straightforward to check that the relation v is a partial order.

Definition 5.16 (Optimal faithful `1-typing)

For every PCFP term M the optimal faithful `1-typing of M is the maximum element

of the set

{Σ `1 M
′ | Σ `1 M

′ is a faithful `1-typing of M} .
In section 7 we will prove (Theorem 7.14) that for every PCFP term M there

exists the optimal faithful `1-typing of M. In particular we will give an algorithm

that returns such a typing.

4 The partial order v for e-types, which is covariant in both arguments of the constructor→, should not
be confused with the e-type entailment relation 6, which is contravariant in the left argument of →.

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

Automatic useless-code elimination 529

Mφ v ε(M)ω
ε(φ)

φ v ψ
xφ v xψ ψ 6∈ Lω

kδ(T(k)) v kδ(T(k))

φ1 v ψ1 Mφ2 v Nψ2

(λx.M)φ1→φ2 v (λx.N)ψ1→ψ2
ψ2 6∈ Lω

Fφ1→φ2 v Gψ1→ψ2 Mφ1 v Nψ1

(FMφ1)φ2 v (GNψ1)ψ2

M
φ1
1 v Nψ1

1 M
φ2
2 v Nψ2

2〈M1,M2〉φ1×φ2 v 〈N1, N2〉ψ1×ψ2
∃i ∈ {1, 2}.ψi 6∈ Lω

Mφ1×φ2 v Nψ1×ψ2

(prjiM
φ3−i)φi v (prjiN

ψ3−i)ψi
i ∈ {1, 2} and ψi 6∈ Lω

Mφ1 v Nψ1 φ2 v ψ2

(fix x.Mφ1)φ2 v (fix x.Nψ1)ψ2
ψ1, ψ2 6∈ Lω

Bδ
nat v Cδnat

M
φ
1 v Nψ

1 M
φ
2 v Nψ

2

(ifzB thenM1 elseM2)φ v (ifzC thenN1 elseN2)ψ
ψ 6∈ Lω

Fig. 9. Relation v for decorated terms.

6 Detecting and removing useless-code II

We now introduce a useless-code type assignment, `2, which shows less useless-code

than `1. In section 6.2, we will see that the system `2 induces a more effective

simplification mapping, which transforms not only the code of a program but also

the type of its subexpressions. In particular, the simplification does not introduce

dummy variables. In Section 6.3 we show that system `2 can be used to remove

some of the dummy variables introduced by O1.

6.1 A weaker e-type assignment system for detecting useless-code

Definition 6.1 (E-type assignment system `2)

We write Σ `2 M
φ to mean that Σ ` Mφ can be derived by the rules in figure 6 in

which the rules (Var) and (Fix) are replaced by the following:

(Var) Σ, x : φ ` xφ φ 6∈ Lω (Fix)
Σ, x : φ `Mφ

Σ ` (fix x.Mφ)
φ φ 6∈ Lω .

Also in this case, for every judgment Σ `2 M
ψ there is exactly one derivation.

Example 6.2

Take the terms M, N and R of Example 5.6:

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

530 F. Damiani and P. Giannini

O2(δnat) = δnat

O2(φ→ ψ) =

{
O2(φ)→ O2(ψ) if φ 6∈ Lω

O2(ψ) if φ ∈ Lω

O2(φ× ψ) =


O2(φ)×O2(ψ) if φ, ψ 6∈ Lω

O2(φ) if ψ ∈ Lω

O2(ψ) if φ ∈ Lω

Fig. 10. Mapping O2 on types.

• M = (λxnat.3)P ,

• N = (λxnat.prj1〈Q1, Q2〉)P , where Q1 does not contain any occurrence of x,

and

• R = (λfnat→nat.fP)(λxnat.3).

Assume that P , Q1 and Q2 are closed. It it easy to check that the two `1-typings of

Example 5.6 are also `2-typings, i.e.

• ∅ `2 ((λx.3)Pωnat

)δ
nat

,

• ∅ `2 ((λx.prj1〈Q1, Q2〉ωnat

)Pωnat

)δ
nat

, and

• ∅ `2 ((λf.fPωnat

)(λx.3)ω
nat→δnat

)δ
nat

.

The following theorem states the soundness of the system `2.

Theorem 6.3 (Soundness of `2)

Let Σ `2 M
φ. Then ε(Mφ) ∼Σ

φ ε(M
φ).

Proof

By Theorem 5.5, since Σ `2 M
φ implies Σ `1 M

φ. q

6.2 A more effective useless-code elimination

In this section, following Berardi (1996), we introduce a simplification mapping O2

that, given a `2-decorated term Mφ with φ 6∈ Lω , returns an optimized version

of it. The simplification performed by O2, which is essentially a useless-variable

elimination, can be much stronger than the simplification performed by O1. For

instance, O2 transforms an application like ((λx.M)Nωρ)δ(σ), in which the function

λx.M does not use its argument, in the body of the applied function Mδ(σ).

Since O2 introduces a deep change in the structure of the term we need to define

it also on types and not only on terms.

6.2.1 The mapping on types

Definition 6.4 (Simplification mapping O2 on types)

The function O2 : (L− Lω)→ (L− Lω) is defined by the clauses in Fig. 10.

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

Automatic useless-code elimination 531

Iδnat = λ xnat.x

Jδnat = λ xnat.x

Iφ→ψ =

{
λfε(φ→ψ).λzε(O2(φ)).Iψ(f(Jφz)) if φ 6∈ Lω

λfε(φ→ψ).Iψ(fDε(φ)) if φ ∈ Lω

Jφ→ψ =

{
λfε(O2(φ)→O2(ψ)).λzε(φ).Jψ(f(Iφz)) if φ 6∈ Lω

λyε(O2(ψ)).λzε(φ).Jψy if φ ∈ Lω

Iφ1×φ2
=


λzε(φ1×φ2).〈Iφ1

(prj1z), Iφ2
(prj2z)〉 if φ1, φ2 6∈ Lω

λzε(φ1×φ2).Iφ1
(prj1z) if φ2 ∈ Lω

λzε(φ1×φ2).Iφ2
(prj2z) if φ1 ∈ Lω

Jφ1×φ2
=


λzε(O2(φ1)×O2(φ2)).〈Jφ1

(prj1z), Jφ2
(prj2z)〉 if φ1, φ2 6∈ Lω

λzε(O2(φ1)).〈Jφ1
z,Dε(φ2)〉 if φ2 ∈ Lω

λzε(O2(φ2)).〈Dε(φ1), Jφ2
z〉 if φ1 ∈ Lω

Fig. 11. Mappings I· and J·.

Note that, in general, ε(O2(φ)) 6= ε(φ). For any e-type φ 6∈ Lω there is a

(PCFP-definable) isomorphism between I(ε(φ)) (the interpretation of ε(φ) in M)

and I(ε(O2(φ))) which is defined by a pair of PCFP terms. The basic idea is to map

a constant function which has e-type ωρ → δ(σ) in a term of e-type δ(σ), and vice-

versa. This idea is lifted to e-types with more involved structure in a standard way.

Definition 6.5

For χ ∈ L − Lω , the closed PCFP terms Iχ ∈ Λε(χ)→ε(O2(χ)) and Jχ ∈ Λε(O2(χ))→ε(χ)
are defined by induction on χ according to the clauses in figure 11 where every

occurrence of D denotes a closed term of the proper type.

The basic properties of these mappings are expressed by the following lemma that

can be proved by induction on e-types.

Lemma 6.6

1. For all χ ∈ L− Lω ,

(a) [λ xε(O2(χ)).Iχ(Jχx)] = [λ xε(O2(χ)).x], and

(b) [λ xε(χ).Jχ(Iχx)] = [λ xε(χ).x].

2. Let φ, ψ 6∈ Lω , and M,N be closed terms such that ([M], [M]) ∈ [[O2(φ→ ψ)]]

and ([N], [N]) ∈ [[O2(φ)]]. Then [Jψ(MN)] = [(Jφ→ψ(M))(JφN)].

3. Let φ1, φ2 6∈ Lω , and M be a closed term such that ([M], [M]) ∈ [[O2(φ1×φ2)]].

Then, for i ∈ {1, 2}, [Jφi(prjiM)] = [prji(Jφ1×φ2
(M))].

4. Let φ ∈ Lδ . Then [Jφ] = [Iφ] = [λ xε(φ).x].

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

532 F. Damiani and P. Giannini

O2(Mψ) = o2(M,ψ) where

o2(k, ψ) = k

o2(x, ψ) = o(x)

o2(〈M1,M2〉, ψ1 × ψ2) =


〈o2(M1, ψ1), o2(M2, ψ2)〉 if ψ1, ψ2 6∈ Lω

o2(M1, ψ1) if ψ2 ∈ Lω

o2(M2, ψ2) if ψ1 ∈ Lω

o2(prjiM
ψ3−i , ψi) =

{
prji(o2(M,ψ1 × ψ2))O2(ψ3−i) if ψ1, ψ2 6∈ Lω

o2(M,ψ1 × ψ2) if ψ(3−i) ∈ Lω

where i ∈ {1, 2}

o2(MNφ, ψ) =

{
o2(M,φ→ ψ)(o2(N,φ))O2(φ) if φ 6∈ Lω

o2(M,φ→ ψ) if φ ∈ Lω

o2(λx.M, ψ1 → ψ2)) =

{
λo(x).o2(M,ψ2) if ψ1 6∈ Lω

o2(M,ψ2) if ψ1 ∈ Lω

o2(fix x.M,φ)) = fix o(x).(o2(M,φ))O2(φ)

o2(ifzN thenM1 elseM2, ψ) = ifz o2(N, δnat) then o2(M1, ψ) else o2(M2, ψ)

Fig. 12. Mapping O2 on terms.

6.2.2 The mapping on terms

We now define the simplification mapping O2 on terms. Note that the mapping O2

may modify the type of the term and of its subterms.

Let Λ`2

T be the set of the `2 decorated terms, i.e.

Λ`2

T = {Mφ | Σ `2 M
φ for some e-type φ and basis Σ}.

In the following definition we assume that all free and bound variables of a term M

have different names, and that there is a mapping o which maps variables of type

ε(φ) in variables of type ε(O2(φ)). We assume also that the domain and the range

of o are disjoint.

Definition 6.7 (Simplification mapping O2 on terms)

1. The function

O2 : {Mφ |Mφ ∈ Λ`2

T and φ 6∈ Lω} → {Mφ |Mφ ∈ Λ`2

T and φ 6∈ Lω}
is defined by the clauses in Fig. 12.

2. If Σ is a basis then

O2(Σ) = {o(x) : O2(ψ) | x : ψ ∈ Σ and ψ 6∈ Lω}.
Notice that, for every Σ `2 M

φ, in O2(Σ) and O2(Mφ) all the variables that have

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

Automatic useless-code elimination 533

an ω-e-type in Σ have been removed by the simplification. The mapping O2 is

correct.

Proposition 6.8 (Correctness of O2)

Let Σ `2 M
φ (where φ 6∈ Lω). Then

1. O2(Σ) `2 O2(Mφ), and

2. for all environments e1, e2 such that x:ψ∈Σ and ψ 6∈Lω implies (e1(x), [JψN])∈
[[ψ]] (where [N] = e2(o(x))), we have that: ([[M]]e1

, [[Jφε(O2(Mφ))]]e2
) ∈ [[φ]].

Proof

Both (1) and (2) are by induction on derivations. In particular the proof of (2) uses

Lemma 6.6. q

Faithful `2-typings are defined in the same way of faithful `1-typings (see Defini-

tion 5.10).

Example 6.9

The `2-typings of the terms M, N, and R in Example 6.2 are faithful. By applying

the simplification mapping O2 we get the following `2-typings:

• ∅ `2 3δ
nat

,

• ∅ `2 Q
δnat

1 , and

• ∅ `2 ((λf.f)3δ
nat

)δ
nat

.

Then, by erasing all the e-type decorations, we get the simplified terms:

• M1 = 3,

• N1 = Q1, and

• R1 = (λfnat.f)3.

Note that, if Σ `2 M
φ is a faithful `2-typing, then ε(O2(φ)) = ε(φ), O2(Σ) ⊆ Σ,

and [Jφε(O2(Mφ))] = [ε(O2(Mφ))]. We can now prove that if Σ `2 M
φ is a faithful

`2-type assignment then ε(Mφ) and ε(O2(Mφ)) are observationally equivalent.

Theorem 6.10 (O2 on faithful `2-typings preserves 'obs)

Let Σ `2 M
φ be a faithful `2-typing. Then ε(Mφ) 'obs ε(O2(Mφ)).

Proof

Since Σ `2 M
φ is a faithful `2-typing then also Σ `2 O2(Mφ) is a faithful `2-typing.

Therefore for all environments e, e is Σ related to itself. From Proposition 6.8, and

the fact that [Jφε(O2(Mφ))] = [ε(O2(Mφ))] which follows from 6.6.4, we derive that

([[M]]e, [[ε(O2(Mφ))]]e) ∈ [[φ]]. So from Proposition 4.9 and φ ∈ Lδ , we get that

for all environments e, [[M]]e 'obs [[ε(O2(Mφ))]]e. Using the definition of 'o and

Theorem 2.6 we conclude that ε(Mφ) 'obs ε(O2(Mφ)). q

Example 6.11

Let

M = (λgnat→nat.λxnat.+ 〈+〈fg, gx〉, (λynat.1)P 〉)(λznat.3)Q

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

534 F. Damiani and P. Giannini

be the term of Example 5.14. Take the faithful `2-typing Σ′′ `2 M
′′, where (writing

δ and ω instead of δnat and ωnat)

Σ′′ = {f : (δ → δ)→ δ, u : ω, v : δ}, and

M ′′ = ((λg.λx.+ 〈+〈fgδ→δ, gxδ〉δ×δ, (λy.1)Pω〉δ×δ)(λz.3)δ→δQδ)δ .

Applying the O2 simplification mapping we get O2(Σ′′) `2 O2(M ′′), where

O2(Σ′′) = {f : (δ → δ)→ δ, v : δ}, and

O2(M ′′) = ((λg.λx.+ 〈+〈fgδ→δ, gxδ〉δ×δ, 1〉δ×δ)(λz.3)δ→δQδ)δ .

Let N2 be the term obtained from O2(M ′′) by erasing the e-type decorations, i.e.,

N2 = ε(O2(M ′′)). We have

N2 = (λgnat→nat.λxnat.+ 〈+〈fg, gx〉, 1〉)(λznat.3)Q

with FV(N2) = {f (nat→nat)→nat, v nat}.
Optimal faithful `2-typings are defined like optimal faithful `1-typings (see sec-

tion 5.3). In section 7 we will give an algorithm that for every PCFP term M returns

the optimal faithful `2-typing of M.

6.3 Combined use of O1 and O2

In this section we show that the combined use of the simplification mappings O1

and O2 improves the useless-code elimination performed by either one of them.

Example 6.12

Let

M = (λgnat→nat.λxnat.+ 〈+〈fg, gx〉, (λynat.1)P 〉)(λznat.3)Q

be the term of Example 5.14.

Let N1 be the term obtained from M as shown in Example 5.14, i.e. by

• decorating M using the system `1,

• applying the simplification mapping O1, and

• erasing the e-type decorations.

We have that

N1 = (λgnat→nat.λxnat.+ 〈+〈fg, gdnat
1 〉, (λynat.1)dnat

2 〉)(λznat.3)dnat
3

with FV(N1) = {f (nat→nat)→nat, d1
nat, d2

nat, d3
nat}.

Take the faithful `2-typing Σ `2 N
′
1, where

Σ = {f : (δ → δ)→ δ, d1 : ω, d2 : ω, d3 : ω}, and

N ′1 = ((λg.λx.+ 〈+〈fgδ→δ, gdδ1〉δ×δ, (λy.1)dω2 〉δ×δ)(λznat.3)δ→δdω3)δ.

Applying the O2 simplification mapping we get O2(Σ) `2 O2(N ′1), where

O2(Σ) = {f : (δ → δ)→ δ, d1 : ω}, and

O2(N ′1) = ((λg.+ 〈+〈fgδ→δ, gdδ1〉δ×δ, 1〉δ×δ)(λznat.3)δ→δ)δ.

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

Automatic useless-code elimination 535

Let N be the term obtained from O2(N ′1) by erasing the e-type decorations, i.e.

N = ε(N ′1). We have that

N = (λgnat→nat.+ 〈+〈fg, gdnat
1 〉, 1〉)(λznat.3)

with FV(N) = {f (nat→nat)→nat, d1
nat}.

Comparing N with the term N1 above and with the term N2 of Example 6.11 we

note that this combined use of the simplification mappings O1 and O2 improves the

useless-code elimination performed by each one of them.

We remark that all the faithful typings considered in Example 6.12 are optimal

faithful typings w.r.t. the corresponding e-type assignment system.

7 Computing optimal faithful typings

In this section we prove that for every PCFP term M there exists both the optimal

faithful `1-typing and `2-typing. This result is proved by giving algorithms which

compute such typings. We first introduce e-type schemes which are meant to represent

sets of e-types, then we introduce the inference algorithm that given a term returns

a decorated version of the term and an e-type scheme representing the set of e-types

that can be assigned to the term.

7.1 Evaluation type schemes

In this section we first introduce the notion of e-pattern and e-constraint. Then we

define e-type schemes as pairs of e-patterns and sets of e-constraints.

Definition 7.1 (Evaluation type patterns)

Let A be the set of basic property variables (basic variables for short), ranged by α,

β , γ , The language P of e-type patterns (e-patterns for short), ranged over by θ,

η, . . ., is defined by the following grammar: θ ::= αnat | θ → θ | θ × θ, where α ∈ A.

A basic variable α can be replaced by another basic variable or instantiated to a

basic property (δ or ω).

Definition 7.2 (Replacements and instantiations)

1. A replacement is a mapping r :A →A. A one-to-one replacement is called a

renaming.

Let α1, . . . , αn (n > 0) be basic variables such that i 6= j implies αi 6= αj . As

usual the expression [α1 := β1, . . . , αn := βn] denotes the replacement r which

behaves as described on α1, . . . , αn and is the identity elsewhere.

2. An instantiation is a mapping i :A → {δ, ω}.
Replacements and instantiations are extended to basic properties by defining

i(a) = a and r(a) = a , for a ∈ {δ, ω}.
The order relation v for basic properties (Definition 5.15.1) is such that: δ v δ,

δ v ω and ω v ω. Let the symbol ≡ denote the equivalence relation induced by v.

An e-constraint is an equality or an inequality (between basic variables and/or the

basic property δ) or a guarded set of e-constraints.

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

536 F. Damiani and P. Giannini

Definition 7.3 (E-constraints)

An e-constraint is a formula of one of the following shapes:

• ζ1 ≡ ζ2• ζ1 v ζ2• (δ in G)⇒ E
where ζ1, ζ2 ∈ {δ} ∪ A, G is a finite not empty subset of {δ} ∪ A and E is a finite

set of e-constraints. We call the third kind of constraint a conditional constraint.

Definition 7.4 (Solution of a set of constraints)

An instantiation i satisfies a set of constraints E if

• ζ1 ≡ ζ2 ∈ E implies i(ζ1) ≡ i(ζ2) (that is either i(ζ1) = i(ζ2) = δ or i(ζ1) =

i(ζ2) = ω), and

• ζ1 v ζ2 ∈ E implies i(ζ1) v i(ζ2) (that is either i(ζ1) = δ or i(ζ2) = ω), and

• (δ in G)⇒ E′ ∈ E implies that, if δ ∈ i(G), then i satisfies E′.
If i satisfies E we say that i is a solution of E.

Let sat(E) denote the set of all the solutions of E. According to Definition 7.4

above we have that sat(E1 ∪ E2) = sat(E1) ∩ sat(E2).

We can now give the definition of e-type scheme.

Definition 7.5 (E-type schemes)

An e-type scheme (e-scheme for short) is a pair 〈θ,E〉 where θ is an e-pattern and E
is a finite set of e-constraints.

An e-scheme 〈θ,E〉 represents the set of e-types {i(θ) | i ∈ sat(E)}, where i(θ) is

the e-type obtained by applying the instantiation i to the e-pattern θ according to

Definition 7.6 below. Replacements are extended to e-patterns by r(αnat) = r(α)nat,

r(θ → η) = r(θ) → r(η), and r(θ × η) = r(θ) × r(η). Instead, the extension of

instantiations to e-patterns is more complex, since we define it as a mapping from

e-pattern to e-types.

Definition 7.6 (Instantiation of an e-pattern)

An instantiation i induces a mapping from e-patterns to e-types as specified by the

following clauses.

• i(αnat) = i(α)nat

• i(θ → η) =

{
ωε(θ→η), if i(η) ∈ Lω

i(θ)→ i(η), otherwise

• i(θ1 × θ2) =

{
ωε(θ1×θ2), if i(θ1), i(θ2) ∈ Lω

i(θ1)× i(θ2), otherwise.

We extend the order v for basic properties (Definition 5.15.1) to a preorder for

instantiations by considering the pointwise ordering.

Definition 7.7 (Pointwise ordering on instantiations)

Let i1, i2 be instantiations. We write i1 v i2 if, for all α ∈ A, i1(α) v i2(α).

A useful property relating the v preorder for instantiations to the v preorder for

e-types (Definition 5.15.2) is the following: for instantiations i1 and i2 and for an

e-pattern θ, if i1 v i2 then, from the covariance of v (see figure 8), i1(θ) v i2(θ).

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

Automatic useless-code elimination 537

(v)
E[δ/α] ↪→ I

E, α v δ ↪→ I∪ {α} (≡)
E[δ/α] ↪→ I

E, cns ↪→ I∪ {α} cns ∈ {α ≡ δ, δ ≡ α}

(⇒) E ∪ E′ ↪→ IE, (δ in G)⇒ E′ ↪→ I δ ∈ G (STOP)
no other rule can be applied

E ↪→ ∅

Fig. 13. ‘Natural semantics’ rules for e-constraints solution (system ↪→).

7.2 Computing the maximal solution of a set of constraints

In this section we prove that any finite set of constraints E has a maximal solution,

and we give an algorithm for computing such a solution. In section 7.3, the e-type

inference problem will be reduced to the solution of a finite set of e-constraints whose

maximal solution corresponds to the optimal faithful typing. Before introducing the

algorithm we look at a simple example.

Example 7.8

Consider the set of e-constraints:

E = { α1 v δ,
(δ in {α1})⇒ {α1 ≡ α2, α3 v α4},
(δ in {α3, α5})⇒ {α4 v δ, α6 ≡ δ},
(δ in {α2})⇒ {α5 v α6, α7 ≡ δ} }.

To find the maximal instantiation i in sat(E) observe that from the first constraint

of E1 we get i(α1) = δ. Then from the second constraint we get i(α2) = δ, and finally

from the last constraint of E we have i(α7) = δ. Let I = {α1, α2, α7}, then i defined

by: i(α) = δ if α ∈ I and i(α) = ω otherwise, is the maximal instantiation in sat(E).

The algorithm for finding the maximal instantiation i that satisfies a finite set of e-

constraints E is presented in natural semantics style using judgements E ↪→ I, where

I is the set of basic variables that represents i, i.e. such that i(α) = δ if α ∈ I and

i(α) = ω otherwise. The idea is simply that of recognizing, following the equalities

and the inequalities, all the basic variables that are forced to be instantiated to δ.

All other basic variables are then replaced by ω in the maximal solution.

Definition 7.9 (Algorithm for maximal solution of e-constraints)

Let E be a finite set of e-constraints, and let cns be an e-constraint. The expression

E, cns denotes the set of constraints E ∪ {cns} where it is assumed that cns 6∈ E. We

write E ↪→ I to mean that this judgement is derivable by the rules in figure 13.

Theorem 7.10 (Soundness and completeness of algorithm ↪→)

Let E be a finite set of e-constraints. Then E ↪→ I if and only if I represents the

maximum of sat(E).

Proof

First, observe that I represents the maximal element of sat(E) if and only if for

all I′ representing an instantiation i′ ∈ sat(E), I ⊆ I′. Moreover if there is an

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

538 F. Damiani and P. Giannini

instantiation i ∈ sat(E) then there is a maximal one. The result can now be proved

by induction on the number of symbols in E, observing that if E does not contain

a constraint of the kind α v δ, α ≡ δ, δ ≡ α, or (δ in G)⇒ E′ with δ ∈ G, then the

maximal solution of E is the one that assigns ω to all the basic variables. q

Remark 7.11 (Complexity of algorithm ↪→)

Define the length of an e-constraint cns, |cns|, and the length of a finite set of

e-constraints E, |E|, to be the number of symbols in cns or E. Given E we can find

I such that E ↪→ I in linear time in |E|.

7.3 An algorithm for inferring `1-typings

In this section we first introduce notions and simple functions involving e-types and

e-patterns. Then we present the e-type inference algorithm W1 for `1.

1. Let θ, η be e-patterns such that ε(θ) = ε(η). We say that a replacement r is

a unifier for θ and η if r(θ) = r(η). A most general unifier (m.g.u. for short) is a

unifier r0 such that, for every unifier r, there exist a replacement r′ such that:

r = r′◦r0, where ‘◦’ denotes function composition.

It is easy check that U(θ, η), where U is the algorithm in figure 14, is a m.g.u.

for θ and η.

2. Let ρ be a type. By fresh(ρ) we denote an e-pattern obtained from ρ by

assigning a fresh basic variable to each occurrence of any ground type in ρ.

For example: fresh(nat → nat) = αnat → βnat. For a set of term variables Γ,

fresh(Γ) = {xρ : fresh(ρ) | xρ ∈ Γ}.
3. The function vars maps an e-pattern θ to the finite set of its basic variables.

For instance, vars(αnat → βnat) = {α, β}.
4. The function tail, that maps e-patterns and δ-e-types to finite subsets of {δ}∪A,

is inductively defined by: tail(ζnat) = {ζ} (for ζ ∈ {δ} ∪ A), tail(θ × η) =

tail(θ) ∪ tail(η), and tail(θ → η) = tail(η). We have that for all instantiations i:

(a) i(tail(θ)) = {ω} if and only if i(θ) = ωε(θ).

5. Let θ, η be e-patterns or δ-e-types such that ε(θ) = ε(η). Then cs6(θ, η) and

acs6(θ, η) denote5 the sets of constraints inductively defined by the clauses in

figures 15 and 16. We have that for all instantiations i:

(a) i(η) 6∈ Lω implies: i(θ) 6 i(η) if and only if i ∈ sat(cs6(θ, η)), and

(b) i(θ) 6 i(η) if and only if i ∈ sat(acs6(θ, η)).

6. For each constant k an e-scheme ets(k) is specified. The function ets(·) is such

that: for an integer k, ets(k) = 〈αnat, ∅〉, for an unary operator k1 of type

nat→ nat, ets(k1) = 〈αnat → βnat, {α v β}〉, and for a binary operator k2 of

type nat× nat→ nat, ets(k2) = 〈αnat × βnat → γnat, {α v γ, β v γ}〉, where α,

β , γ are fresh variables. For all constants k let ets(k) = 〈θ,E〉. We have that:

(a) i ∈ sat(E) if and only if either i(θ) ∈ Lω or i(θ) ∈ Lδ .

5 Here ‘cs’ stands for ‘constraint set’ and ‘acs’ stands for ‘auxiliary constraint set’.

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

Automatic useless-code elimination 539

U(αnat, βnat) = [β := α]

U(θ1 → θ2, η1 → η2) = let r = U(θ2, η2) in U(r(θ1), r(η1))◦r end

U(θ1 × θ2, η1 × η2) = let r = U(θ1, η1) in U(r(θ2), r(η2))◦r end

Fig. 14. E-pattern unification algorithm U.

cs6(ζ1
nat, ζ2

nat) = {ζ1 v ζ2}, where ζ1, ζ2 ∈ {δ} ∪A

cs6(θ1 → · · · → θn → θ, η1 → · · · → ηn → η) = cs6(θ, η) ∪⋃16i6n acs6(ηi, θi),

where n > 1 and θ, η are not arrow e-patterns or arrow δ-e-types.

cs6(θ1 × θ2, η1 × η2) = acs6(θ1, η1) ∪ acs6(θ2, η2)

Fig. 15. Function cs6.

We can now define the e-type inference algorithmW1. This algorithm is presented

in figures 17 and 18. Let M ∈ Λρ, if W1(M) = 〈Θ,M ′θ,E〉 then Θ is a basis that

associates to each term variable in FV(M) an e-pattern, M ′θ is a term decorated

with e-patterns, and E is a finite set of e-constraints. We can read the conditional

constraints generated by the algorithmW as saying: if this terms is not assigned an

e-type with the rule (ω), then its decoration must satisfy the following constraints.

Notice that for abstractions, pairs, and projections these conditional constraints are

not generated since in these cases they are already present in the constraints gener-

ated by the subterms, and would be superfluous. This is also the case for constants,

since looking at the e-scheme for constants, we can see that for all constants k,

ets(k) = 〈θ,E〉 is such that i ∈ sat(E) if and only if i ∈ sat({(δ in tail(θ))⇒ E}).
Replacements are extended to decorated terms by applying the replacement to

every e-pattern in the term. The extension of instantiations to decorated terms is a

mapping from e-pattern decorated terms to e-type decorated terms.

Definition 7.12 (Instantiation of an e-pattern decorated term)

An instantiation i induces a mapping from terms decorated with e-patterns to terms

acs6(θ, η) =


{(δ in tail(η))⇒ cs6(θ, η)}, if θ, η are arrow e-patterns or

arrow δ-e-types

cs6(θ, η), otherwise

Fig. 16. Function acs6.

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

540 F. Damiani and P. Giannini

W1(P) = let Θ = fresh(FV(P))

and 〈P ′,E〉 =W(Θ, P)

in 〈Θ, P ′,E〉 end

Fig. 17. Algorithm W1.

W(Θ, P) = case P of

k : let 〈θ,E〉 = ets(k)

in 〈kθ,E〉 end

x : let θ1 = Θ(x) and θ2 = fresh(ε(θ1))

in 〈xθ2 , (δ ∈ tail(θ2))⇒ cs6(θ1, θ2)〉 end

λ xρ.M : let θ = fresh(ρ)

and 〈M ′η,E〉 =W(Θ ∪ {x : θ},M)

in 〈(λ x.M ′)θ→η,E〉 end

MN1 · · ·Np, where p > 1 and M is not an application :

let 〈M ′η1→···→ηp→η,E0〉 =W(Θ,M)

and, for all 1 6 i 6 p, 〈N ′θii ,Ei〉 =W(Θ, Ni)

and r = U(η1, θ1)◦(· · · ◦U(ηp, θp) · · ·)
in 〈r((M ′N ′θ1

1 · · ·N ′θpp)η), {(δ in tail(r(η)))⇒ r(E0 ∪ E1 ∪ · · · ∪ Ep)}〉 end

〈M1,M2〉 : let 〈M ′θ1
1 ,E1〉 =W(Θ,M1)

and 〈M ′θ2
2 ,E2〉 =W(Θ,M2)

in 〈(〈M ′
1,M

′
2〉)θ1×θ2 ,E1 ∪ E2〉 end

prjiM : let 〈M ′θ1×θ2 ,E〉 =W(Θ,M)

in 〈(prjiM
′θ3−i)θi ,E〉 end

fix xρ.M :

let θ1 = fresh(ρ) and θ2 = fresh(ρ)

and 〈M ′η,E〉 =W(Θ ∪ {x : θ1},M)

and r = U(θ1, η)

in 〈r((fix x.M ′η)θ2), {(δ in tail(r(θ2)))⇒ r(E ∪ cs6(θ1, θ2))}〉 end

ifz N then M1 else M2 :

let 〈N ′αnat
,E0〉 =W(Θ, N)

and 〈M ′θ1
1 ,E1〉 =W(Θ,M1)

and 〈M ′θ2
2 ,E2〉 =W(Θ,M2)

and r = U(θ1, θ2)

in 〈r((ifz N ′ then M ′
1 else M ′

2)θ1),

{(δ in tail(r(θ1)))⇒ r({α ≡ δ} ∪ E0 ∪ E1 ∪ E2)}〉 end

Fig. 18. Algorithm W.

decorated with e-types as specified by the following clauses.

i(Pθ) =

{
ε(P)i(θ), if i(θ) ∈ Lω

i(P)i(θ), otherwise ,

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

Automatic useless-code elimination 541

where

i(P) =



k, if P = k

x, if P = x

λ x.i(M), if P = λ x.M

i(M)i(N)i(θ2), if P = MNθ2

〈i(M1), i(M2)〉, if P = 〈M1,M2〉
prjii(M)i(θ3−i), if P = prjiM

θ3−i

fix x.i(M), if P = fix x.M

ifz i(N) then i(M1) else i(M2), if P = ifz N then M1 else M2.

Correctness and completeness of the inference are expressed by the following

proposition.

Proposition 7.13 (Soundness and completeness of W1 w.r.t. `1)

Let P ∈ Λρ and W1(P) = 〈Θ, P ′θ,E〉. Then

1. for all instantiations i ∈ sat(E), i(Θ) `1 i(P ′θ),
2. for all Σ and P ′′φ such that ε(Σ) = FV(ε(P ′′φ)) and ε(P ′′φ) = P , if Σ `1 P

′′φ

then there exists i ∈ sat(E) such that i(Θ) = Σ and i(P ′θ) = P ′′φ.

Proof

From the definition of W1 (see figure 17) we have that 〈P ′θ,E〉 = W(Θ, P), where

Θ = fresh(FV(P)).

1 (soundness). By induction on the structure of terms.

2 (completeness). By induction on the structure of derivations. We consider only

four cases:

• The derivation ends with rule (ω), so φ ∈ Lω . Observe that, for all terms P ,

the set of constraints returned byW(Θ, P) is satisfied by the instantiation that

maps every basic variable α to ω. The proof of this fact is by induction on the

structure on terms.

• The derivation ends with rule (Var), so φ 6∈ Lω , P ′′φ = xφ, Σ = {x : φ1} (for

some φ1 such that φ1 6 φ), Θ = {x : θ1}, and W(Θ, P) = 〈xθ, (δ in tail(θ))⇒
cs6(θ1, θ)〉.
The result follows by property (a) of tail and by property (b) of cs6 (see

points (4) and (5) at the beginning of this subsection).

• The derivation ends with rule (→ E), so φ 6∈ Lω , P ′′φ = (M ′′N ′′φ1

1 · · ·N ′′φpp)φ

(where M is not an application). We consider the case p = 1. We have that

1. Σ `1 M
′′φ1→φ, Σ `1 N

′′
1
φ1 , and Σ `1 (M ′′N ′′φ1

1)
φ
,

2. W(Θ,M) = 〈M ′η1→θ,E0〉, W(Θ, N1) = 〈N ′θ1

1 ,E1〉, and

W(Θ, P) = 〈r((M ′N ′θ1

1)θ), {(δ in tail(r(θ)))⇒ r(E0 ∪ E1)}〉,
where r = U(η1, θ1).

By induction there is i0 ∈ sat(E0) such that i0(Θ) = Σ and i0(M ′η1→θ) =

M ′′φ1→φ, and there is i1 ∈ sat(E1) such that i1(Θ) = Σ and i1(N ′θ1) = N ′′1
φ1 .

The only basic variables that occur in both E0 and E1 are those in Θ

so, since algorithm U returns a most general unifier, there must exist i ∈

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

542 F. Damiani and P. Giannini

sat({(δ in tail(r(θ))) ⇒ r(E0 ∪ E1)}) such that i(Θ) = Σ and i(r((M ′N ′θ1

1)θ)) =

(M ′′N ′′φ1

1)
φ
.

• The derivation ends with rule (Fix), so φ 6∈ Lω and P = fix x.M. We have that

1. Σ, x : φ1 `1 M
′′φ1 and Σ `1 (fix x.M ′′φ1)

φ
, where φ1 6 φ,

2. W(Θ ∪ {x : θ1},M) = 〈M ′η,E〉 and

W(Θ, P) = 〈r((fix x.M ′η)θ), {(δ in tail(r(θ)))⇒ r(E ∪ cs6(θ1, θ))}〉,
where r = U(θ1, η).

By induction there is i0 ∈ sat(E) such that i0(Θ ∪ {x : θ1}) = Σ ∪ {x : φ1} and

i0(M ′η) = M ′′φ1 . So the result follows by the fact that algorithm U returns a

most general unifier.

q

We are interested in finding the optimal faithful `1-typing, since it shows all the

useless-code that can be detected by using system `1. This can be done as shown by

the following theorem.

Theorem 7.14 (Optimal faithful `1-typing)

Let M ∈ Λρ, W1(M) = 〈Θ,M ′θ,E〉. Define: faithful(Θ, θ) =⋃
x:η∈Θ

{(δ in tail(η))⇒ {γ ≡ δ|γ ∈ vars(η)}} ∪ {α ≡ δ|α ∈ vars(θ)}.

If i is the maximum element of sat(E ∪ faithful(Θ, θ)) then i(Θ) `1 i(M ′θ) is the

optimal faithful `1-typing.

Proof

First observe that, for every x : η ∈ Θ, the constraint (δ in tail(η)) ⇒ {γ ≡ δ|γ ∈
vars(η)} forces η to be instantiated either to an ω-e-type or to a δ-e-type. Then

the result follows by Proposition 7.13 since, for every i1, i2 ∈ sat(E ∪ faithful(Θ, θ)),

i1 v i2 implies i1(Θ) `1 i1(M ′θ) v i2(Θ) `1 i2(M ′θ). q

Example 7.15

By applying algorithm W1 to the term

N = (λxnat.prj1〈ynat, x〉)znat

we get W1(N) = 〈Θ, N ′′α′1 ,E1〉, where (writing ζ instead of ζnat):

Θ = {y : α1, z : α2},
N ′′α

′
1 = ((λx.prj1〈y, x〉β′1)zβ1)α

′
1 , and

E1 = {(δ in {α′1})⇒ {α1 v α′1}, (δ in {β′1})⇒ {β1 v β′1}, (δ in {β1})⇒ {α2 v β1}}.
We also have

faithful(Θ, α′1) = { (δ in {α1})⇒ {α1 ≡ δ}, (δ in {α2})⇒ {α2 ≡ δ}, α′1 ≡ δ }.
Applying the algorithm of figure 13, we get E1 ∪ faithful(Θ, α′1) ↪→ I1, where

I1 = {α′1, α1}.

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

Automatic useless-code elimination 543

Let i1 be the instantiation represented by I1, then i1(Θ) `1 i1(N ′′α
′
1), where

i1(Θ) = {y : δ, z : ω} and

i1(N ′′α
′
1) = ((λx.prj1〈y, x〉ω)zω)δ ,

is the faithful `1-typing showing all the useless-code that can be detected by using

`1.

By applying the simplification mapping O1 we get:

O1(i1(Θ)) = {y : δ}, and

O1(i1(N ′′α
′
1)) = ((λx.prj1〈y, d1〉ω)dω2)δ.

Remark 7.16 (Complexity of algorithm W1)

Define the length of a PCFP type ρ, |ρ|, and length of a PCFP term P , |P |, to be

the number of symbols in ρ or P . Define the width of a PCFP type ρ, width(ρ), and

the width of a PCFP term P , width(P), as follows

width(ρ) =


1, if ρ = nat

width(ρ2), if ρ = ρ1 → ρ2

width(ρ1) + width(ρ1), if ρ = ρ1 × ρ2

width(P) = max {width(σ) | Q is a subterm of M of type σ}.
Define the length of a pattern decorated term P ′θ , |P ′θ|, to be the number of symbols

in P ′θ .
For every PCFP term P , let W1(P) = 〈Θ, P ′θ,E〉. The following results hold:

• |P ′θ| is linear in |P |.
• Since the set tail(η), for some η which occur in P ′θ , may contain at most

width(P) elements, |E| has an upper bound of order width(P)|P |. If we restrict

to the language without the type constructor × (and therefore to terms without

pairs and projections) then |E| is linear in |P |.
• The execution time of W1(P) is at worst quadratic in |P | (due to the linear

unifications in the clauses for application, fix, and ifz).

7.4 An algorithm for inferring `2-typings

The only difference between `1 and `2 is in the use of the 6 in rules (Var) and (Fix).

This use is reflected in the inference algorithm W1 by generating the constraints

cs6 for variables and recursive terms. The inference algorithm for the system `2,

W2, is therefore obtained from the algorithm W1 in figure 17 by replacing (in the

algorithm W in figure 18) the occurrence of cs6 with cs=, which is defined by the

clauses in figure 19. It is easy to see that, for all instantiations i: i(θ) = i(η) if and

only if i ∈ sat(cs=(θ, η)).

The inference algorithm W2 is correct and complete w.r.t. the `2 assignment

system, and we can find the optimal faithful `2-typing in the same way as for `1.

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

544 F. Damiani and P. Giannini

cs=(ζ1
nat, ζ2

nat) = {ζ1 ≡ ζ2}, where ζ1, ζ2 ∈ {δ} ∪A

cs=(θ1 → η1, θ2 → η2) = cs=(θ1, θ2) ∪ cs=(η1, η2)

cs=(θ1 × η1, θ2 × η2) = cs=(θ1, θ2) ∪ cs=(η1, η2)

Fig. 19. Function cs=.

Example 7.17

By applying algorithm W2 to the term N of Example 7.15 we get W2(N) =

〈Θ, N ′′α′1 ,E2〉 where Θ and N ′′α
′
1 are as in Example 7.15, while

E2 = {(δ in {α′1})⇒ {α1 ≡ α′1}, (δ in {β′1})⇒ {β1 ≡ β′1}, (δ in {β1})⇒ {α2 ≡ β1}}.
The set faithful(Θ, α′1) is as in Example 7.15, and by applying the algorithm of

figure 13 we get E2 ∪ faithful(Θ, α′1) ↪→ I2, where I2 = {α′1, α1}. Since I2 is equal to

the set I1 in Example 7.15 the faithful `1-typing i1(Θ) `1 i1(N ′′α
′
1) of Example 7.15

is also a faithful `2-typing.

By applying the simplification mapping O2 we get:

O2(i1(Θ)) = {y : δ}, and

O2(i1(N ′′α
′
1)) = yδ .

8 A useless-code detection and elimination procedure

Let Oε
1 : ΛT → ΛT be the mapping that given a PCFP term M finds the optimal

faithful `1-typing of M, Σ1 `1 M
′φ1 , and then returns ε(O1(M ′φ1)). Similarly, let

Oε
2 : ΛT → ΛT be the mapping that given a PCFP term M finds the optimal faithful

`2-typing of M, Σ2 `2 M
′′φ2 , and then returns ε(O2(Mφ2)). The following property

holds.

Proposition 8.1

For every PCFP term M,

1. Oε
1(M) = Oε

1(Oε
1(M)),

2. Oε
2(M) = Oε

2(Oε
2(M)), and

3. Oε
2(Oε

1(M)) = Oε
1(Oε

2(Oε
1(M))) = Oε

2(Oε
1(Oε

2(M))).

Proof

1. We will show that, if Σ `1 M
′ is the optimal faithful `1-typing of M, then

Σ1 `1 O1(M ′), where Σ1 = O1(Σ) ∪ {dσ : ωσ | dσ ∈ DV(ε(O1(M ′)))}, is the

optimal faithful `1-typing of N = ε(O1(M ′)) = Oε
1(M).

From Proposition 5.9.1 we have that Σ1 `1 O1(M ′) is a faithful `1-typing of

N. Assume, by contraposition, that this is not the optimal one. This implies

that the optimal faithful `1-typing of N, say Σ′ `1 N
′, is such that an ω-e-type

is assigned to some subexpression of N different from d. Then it is possible to

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

Automatic useless-code elimination 545

define (starting from the derivation of Σ′ `1 N
′ and looking at the definition

of O1) a faithful `1-typing of M, Σ′′ `1 M
′′, with

Σ′′ = {xρ : φ ∈ Σ′ | xρ ∈ FV(M)} ∪ {xρ : ωρ | xρ ∈ FV(M)− FV(N)},
such that Σ′′ `1 M

′′ 6v Σ `1 M
′. This contradicts the hypothesis that Σ `1 M

′
is optimal.

2. We will show that, if Σ `2 M
′ is the optimal faithful `2-typing of M, then

O2(Σ) `2 O2(M ′) is the optimal faithful `2-typing of N = ε(O2(M ′)) = Oε
2(M).

From Proposition 6.8.1 we have that O2(Σ) `2 O2(M ′) is a faithful `2-typing

of N. Assume, by absurd, that this is not the optimal one. This implies that

the optimal faithful `2-typing of N, say Σ′ `2 N
′, is such that an ω-e-type is

assigned to some subexpression of N. Then it is possible to define (starting

from the derivation of Σ′ `2 N
′ and looking at the definition of O2) a faithful

`2-typing of M, Σ′′ `2 M
′′ (where Σ′′ = Σ′ ∪ {xρ : ωρ | xρ ∈ ε(Σ) − ε(Σ′)}),

such that Σ′′ `2 M
′′ 6v Σ `2 M

′. This contradicts the hypothesis that Σ `2 M
′

is optimal.

3. Oε
2(Oε

1(M)) = Oε
1(Oε

2(Oε
1(M))). Let Σ `1 M

′ be the optimal faithful `1-typing

of M, and let N ′ = O1(M ′) and N = ε(N ′) = Oε
1(M), then Σ′ `1 N ′,

where Σ′ = O1(Σ) ∪ {dσ : ωσ | dσ ∈ DV(N)}, is the optimal faithful `1-

typing of N. Let Σ′′ `2 N
′′ be the optimal faithful `2-typing of N, and let

P = ε(O2(N ′′)) = Oε
2(N). Let Σ′′′ `1 P

′ be the optimal faithful `1-typing of

P . Suppose, by absurd, that an ω-e-type is assigned to some subexpression

of P different from d. Then it is possible to define6 (starting from the

derivation of Σ′′1 `1 P
′ and looking at the definition of O2) a faithful `1-

typing of N, Σ′′′′ `1 N
′′′, such that Σ′′′′ `1 N

′′′ 6v Σ′ `1 N
′. This contradicts

the fact that Σ′ `1 N
′ is optimal.

Oε
2(Oε

1(M)) = Oε
2(Oε

1(Oε
2(M))). We first consider the optimal faithful typings

involved on the left and right-hand side of the equality.

(l) Let Σl `1 M
′
l be the optimal faithful `1-typing of M, let Nl = Oε

1(M),

and let Σ′l `2 N
′
l be the optimal faithful `2-typing of Nl.

(r) Let Σr `2 M
′
r be the optimal faithful `2-typing of M, and let Nr =

Oε
2(M). Let Σ′r `1 N

′
r be the optimal faithful `1-typing of Nr, and let

Pr = Oε
1(Nr)). Let Σ′′r `2 P

′
r be the optimal faithful `2-typing of Pr.

Since `2 is a subsystem of `1, any subexpression of M that is labeled by an

ω-e-type in Σr `2 M
′
r is also labeled by an ω-e-type in Σl `1 M

′
l. Moreover,

any subexpression of M that is not labeled by an ω-e-type in Σr `2 M
′
r

corresponds to a subexpression of Nr, and if such a subexpression is labeled

by an ω-e-type in Σ′r `1 N
′
r, then the original subexpression of M is labeled

by an ω-e-type in Σl `1 M
′
l. This implies that

• any subexpression of Pr that is labeled by an ω-e-type in Σ′′r `2 P
′
r is

labeled by an ω-e-type in Σ′l `2 N
′
l,

6 Observe that, since `2 is a subsystem of `1, any subexpression of N that is labeled by an ω-e-type in
Σ′1 `2 N

′′ is also labeled by an ω-e-type in Σ1 `1 N
′.

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

546 F. Damiani and P. Giannini

• any subexpression of Nl that does not correspond to a subexpression

of Pr (since the corresponding one has been removed by the application

of Oε
2 to M) is labeled by an ω-e-type in Σ′l `2 N

′
l, and

• any subexpression of Nl that is labeled by an ω-e-type in Σ′l `2 N
′
l

and that corresponds to a subexpression of Pr (since it has not been

removed by the application of Oε
2 to M) is labeled by an ω-e-type in

Σ′′r `2 P
′
r.

So we have that Oε
2(Nl) = Oε

2(Pr).

q

This shows that the more convenient way of using the useless-code detection and

elimination techniques described in sections 5 and 6 is to apply first the simplification

mapping Oε
1 and then the simplification mapping Oε

2 (as done in Example 6.12).

In particular, if we apply the simplification mappings in the reverse order, i.e. first

Oε
2 and then Oε

1, we may loose some simplifications, as the following example shows.

Example 8.2

Consider the term of Example 6.12,

M = (λgnat→nat.λxnat.+ 〈+〈fg, gx〉, (λynat.1)P 〉)(λznat.3)Q.

We have that:

Oε
1(M) = (λgnat→nat.λxnat.+ 〈+〈fg, gdnat

1 〉, (λynat.1)dnat
2 〉)(λznat.3)dnat

3

(which is the term N1 in Example 6.12),

Oε
2(M) = (λgnat→nat.λxnat.+ 〈+〈fg, gx〉, 1〉)(λznat.3)Q

(which is the term N2 in Example 6.11),

Oε
1(Oε

2(M)) = (λgnat→nat.λxnat.+ 〈+〈fg, gdnat
1 〉, 1〉)(λznat.3)dnat

3 , and

Oε
2(Oε

1(M)) = (λgnat→nat.+ 〈+〈fg, gdnat
1 〉, 1〉)(λznat.3)

(which is the term N in Example 6.12).

9 Functional languages with other evaluation strategies

The useless-code detection and elimination techniques described in Section 8 is in

some sense independent from the evaluation strategy of the language and so they

can be applied also to call-by-value languages7. The key property is that in general,

for any evaluation strategy, a simplified program is always observationally greater

or equal than the original one.

To see that under some evaluation strategy observational equivalence is not

preserved look at the following example.

7 Like ML, Objective Caml and Scheme.

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

Automatic useless-code elimination 547

Example 9.1

Take the PCFP term

M = (λznat.3)(fix xnat.x).

By applying the simplification mappings Oε
1 and Oε

2 of Section 8 we get

1. Oε
1(M) = (λznat.3)dnat, and

2. Oε
2(M) = 3.

It is easy to see that, under the call-by-value evaluation strategy, we have that8 the

original program M is observationally less or equal than (and not equivalent to)

both Oε
1(M) and Oε

2(M).

The fact that the simplified program are observationally greater or equal than

the original ones is guaranteed from the fact that, for any PCFP term M, if

N = Oε
2(Oε

1(M)), then we have that

• the evaluation of N under the call-by-name evaluation strategy never requires

the evaluation of a dummy variable, and

• the evaluation of N under any evaluation strategy never requires the evaluation

of an application of a dummy variable (i.e. dQ1 · · ·Qn with n > 1) or of a

projection of a dummy variable (i.e. prj1d or prj2d).

Note that, when considering terminating programs (which is the typical case for

programs extracted from proof) we have that, independently from the evaluation

strategy of the language, the simplified programs are observationally equivalent to

the original ones.

10 Related work

In this section we give a brief account of the use of PERs in program analysis

and discuss the relation between our approach and other useless-code elimination

techniques.

10.1 About PERs and program analysis

The first use of PERs in program analysis is, to our knowledge, in (Hunt and Sands,

1991), where the authors present a binding-time analysis for a functional program-

ming language which is a version of PCFP with lists. In particular, they pointed

out that PERs can be used for live-variable analysis (which is a form of useless-code

analysis). The PER model in Hunt and Sands (1991) is built on a model of the

language based on Scott domains, and the analysis is specified via abstract interpre-

tation. The PhD thesis (Hunt, 1991) shows how recursive domain equations can be

solved by PERs, allowing the construction of finite lattices expressing properties of

algebraic data structures.

8 Considering the dummy variables dσ as special constants having only the property of being convergent:
dσ ⇓ dσ .

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

548 F. Damiani and P. Giannini

The key idea in using PERs for specifying a binding-time analysis (as described

in Hunt and Sands (1991)) is that of understanding ∆ρ as the property of values

that are available at compile-time, and Ωρ as the property of values that may not be

available at compile-time. The binding-time analysis of Hunt and Sands (1991) has

been expressed as a type system by a number of authors (Jensen, 1995; Hankin and

Le Métayer, 1995). The corresponding type system makes use of the conjunction

type operator, which is necessary to model the analysis of Hunt and Sands (1991)

(see Jensen (1995) for a discussion about the relation between conjunctive types and

abstract interpretation). More recently, in Abadi et al. (1999), PER models are used

for dependency-based type systems.

We got the idea for our use of PERs from Berardi (1996). The main difference

between the use of PERs of Berardi (1996) and the one of Hunt and Sands (1991)

is in the underlying model of the language: Berardi (1996) consider PERs on a term

model of the language, whereas Hunt and Sands (1991) use a model based on a

Scott domain.

10.2 About useless-code elimination

The useless-code elimination presented in this paper is inspired by that of Berardi

(1996) and Berardi and Boerio (1995). The main differences between our approach

and that of Berardi (1996) and Berardi and Boerio (1995) are the programming

language considered, and the algorithm that finds the useless-code in a given term.

The language considered in these papers is strongly normalizing: it can be obtained

from PCFP by removing the constructor fix and adding, for every type τ ∈ T, an

operator recτ for primitive recursion from nat to τ. The algorithm described in

Berardi (1996) and Berardi and Boerio (1995) is a backtracking algorithm: it finds

the best simplification of a given term by trying to type simplified versions of the term

without changing the original type and context. Such algorithm is rather difficult

understand, and this makes its proof of correctness even more difficult to follow.

In our approach instead we assign to each term a set of constraints representing

all the faithful e-type assignment of the term9. This system has always a maximal

solution corresponding to the e-typing of the term showing all the useless-code that

can be proved by the corresponding e-type assignment system (the optimal faithful

e-typing). An important feature of our algorithm is that it is naturally compositional

(see Appendix B) while that of Berardi (1996) and Berardi and Boerio (1995) is not.

The paper by Boerio (1994) (see also Boerio (1995, Chap. 5)) Extends the technique

of Berardi (1996) to the Polymorphic Second Order λ-calculus. This analysis does

not consider type entailment. In Prost (2000) this work is extended to the higher

order polymorphisms present in the lambda-cube systems. In Berardi and Boerio

9 The condition of being a faithful e-type assignment (Definition 5.10) is simply the translation in our
framework of the condition introduced in Berardi (1996) to find useless-code. Namely, in Berardi’s type
assignment system a subterm is useless-code if once removed (replaced by a dummy constant having
a special type, corresponding to our ω-e-types) the type of the term is unchanged. So the fact that (in
a faithful e-type assignment) the e-type of the term is in Lδ , reflects exactly Berardi’s requirement that
the global type of the term is unchanged.

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

Automatic useless-code elimination 549

(1997) (see also Boerio (1995, Chap. 3) the technique of Berardi (1996) is extended

to deal with algebraic data types. Also this analysis considers a strongly normalizing

language and does not make use of type entailment. The problem of extending

the analysis of Berardi and Boerio (1997) by adding a type entailment relation is

considered in Damiani (1999), which extends system `1 (in section 5 of this paper)

to a version of PCF with algebraic data types.

In Damiani (2000) (see also Damiani (1998, Chap. 8)) the system `1 is extended

by adding conjunction. A version of the system in which conjunction is restricted

to rank 2 is presented in Damiani and Prost (1998) (see also Damiani (1998, Chap.

9). The addition of conjunction increases significantly the power of the analysis, but

makes the inference problem more difficult.

The paper by Xi (1999) describes a technique, based on dependent types, for

detecting unreachable matching clauses in typed functional programs. This work is

primarily concerned with error detection, while our approach is mainly designed

for program optimization. The kind of useless-code considered in Xi (1999) is

orthogonal with respect to the useless-code detected by the techniques mentioned

above. It could be interesting to integrate the useless-code detection for PCF with

algebraic data types of Damiani (1999) with the approach based on dependent types.

Useless-variable elimination (Shivers, 1991; Wand and Siveroni, 1999; Kobayashi,

2000; Fischbach and Hannan, 1999) is a particular useless-code elimination that

focuses on useless function’s formal parameters. This particular form of useless-

code can be removed without introducing dummy place-holders: the key idea is

that a function’s actual parameter can be removed if and only if the function’s formal

parameter can be removed. Both the simplification mapping Oε
2 (see section 8 of this

paper) and the algorithm described in Berardi (1996) perform essentially a useless-

variable elimination. The useless-code elimination performed by the simplification

mapping Oε
1 removes more useless-code, but requires the introduction of dummy

place-holders in the simplified code. As explained in section 8, the best result is

obtained by applying both the two mappings (first Oε
1 and then Oε

2). Take, for

instance the term M in Example 8.2. All the useless-code eliminations in Shivers

(1991), Wand and Siveroni (1999), Kobayashi (2000) and Fishbach and Hannan

(1999) can simplify M to Oε
2(M), but they cannot simplify it to Oε

2(Oε
1(M)).

The technique described in Shivers (1991) is based on control flow analysis

and works on higher-order untyped functional programs. This approach has been

recently reformulated and proved correct in Wand and Siveroni (1999). This method

has cubic time cost in the worst case.

Both Kobayashi (2000) and Fishbach and Hannan (1999) propose type-based

useless-variable elimination techniques which are closely related to ours. The useless-

variable elimination proposed in Kobayashi (2000) can be described as the extension

to a language with let-polymorphism of the one performed by Oε
2. As explained

in Kobayashi (2000), let-polymorphism has interesting interactions with useless-

variable elimination: on one side polymorphism provides more opportunity for

useless-variable elimination and, on the other, the simplified program may be more

polymorphic than the original one. We are working on the extensions of both Oε
2

and Oε
1 to a language with let-polymorphism.

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

550 F. Damiani and P. Giannini

• If φ ∈ Lω , then Extφ = ∅
• If φ = φ1 → · · · → φn → δnat, n > 0, then Extφ = {(λxε(φ).x, φ1 · · ·φn)}
• If φ = φ1 → · · · → φn → ψ1 × ψ2, n > 0, then

Extφ =
⋃
i∈{1,2}{ (λxε(φ).λy

ε(φ1)
1 . · · · λyε(φn)

n .E(prji(xy1 · · · yn)), φ1 · · ·φn−→ψ) |
(E,−→ψ) ∈ Extψi }

Fig. A 1. Set Extφ

The simplification in Fishbach and Hannan (1999) can be described as the

extension to a language with effects of the one performed by Oε
2. The key idea is

that of integrating a simple effect analysis in the type system for detecting useless-

code, marking as ‘useful’ the pieces of code containing side effects. Therefore, the

program simplification preserves such effects.

A Proof of Lemma 4.6

In this appendix we complete the proof of completeness for the entailment relation

between e-types by presenting the construction, for each e-type φ, of a set of pairs

of terms, Chrφ, characterizing membership in the set [[φ]] as specified by Lemma 4.6.

This construction is done by defining at the same time the set Extφ, which is a set of

pairs (E,−→ψ) where E is a closed PCFP term, and −→ψ is a sequence of n > 0 e-types

φ1 · · ·φn. Each pair (E, φ1 · · ·φn) ∈ Extφ identifies an occurrence of δnat in φ that

does not occur in the left-hand side of some arrow operator. In particular E is such

that, whenever applied to a term M of type ε(φ) and to n terms Ni of type ε(φi)

(1 6 i 6 n), returns a value of type nat.

Both Extφ and Chrφ are defined by structural induction on φ.

Definition A.1

Let φ be an e-type. The set of pairs Extφ is defined according to the clauses in

Fig. A 1.

It is easy to prove that: (E, φ1 · · ·φn) ∈ Extφ implies E ∈ Λε(φ)→ε(φ1)→···→ε(φn)→nat.

Example A.2

Let φ = (δnat → ωnat → δnat)× (ωnat → (δnat × ωnat)). Extφ is the set

{ (λxε(φ).(λx′nat→nat→nat.x′)(prj1x), δnatωnat) ,

(λxε(φ).(λx′nat→(nat×nat).λynat
1 .(λx′′nat.x′′)(prj1(x′y1)))(prj2x), ωnat) } .

The set Extφ characterizes φ in the following sense.

Proposition A.3

Let φ ∈ L. ([P], [Q]) ∈ [[φ]] if and only if, for all (E, ψ1 · · ·ψn) ∈ Extφ and for all

([Mi], [Ni]) ∈ [[ψi]] (1 6 i 6 n),

EPM1 · · ·Mn 'obs EQN1 · · ·Nn.

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

Automatic useless-code elimination 551

Proof

The case φ ∈ Lω is immediate. If φ 6∈ Lω the proof is by structural induction on φ.

φ = φ1 → · · ·φn → δnat, n > 0. By Definition A.1, Extφ = {(λxε(φ).x, φ1 · · ·φn)}, and,

by Definition 4.2, ([P], [Q]) ∈ [[φ]] if and only if, for all ([Mi], [Ni]) ∈ [[φi]]

(1 6 i 6 n), ([P M1 · · ·Mn], [QN1 · · ·Nn]) ∈ [[δnat]]. Again, from Definition 4.2, this

is if and only if P M1 · · ·Mn 'obs QN1 · · ·Nn. Therefore also

(λxε(φ).x)P M1 · · ·Mn 'obs (λxε(φ).x)QN1 · · ·Nn.

φ = φ1 → · · ·φn → ψ1 × ψ2, n > 0. By Definition 4.2, ([P], [Q]) ∈ [[φ]] if and only if,

for all for all ([Mi], [Ni]) ∈ [[φi]] (1 6 i 6 n), ([P M1 · · ·Mn], [QN1 · · ·Nn]) ∈ [[ψ1×
ψ2]]. Moreover, again by Definition 4.2, ([PM1 · · ·Mn], [QN1 · · ·Nn]) ∈ [[ψ1 × ψ2]]

if and only if both [prj1(P M1 · · ·Mn)] ∈ [[ψ1]] and [prj2(QN1 · · ·Nn)] ∈ [[ψ2]]. So

the result follows by induction hypotheses and Definition A.1.

q

The set of characteristic pairs Chrφ is defined by induction on φ.

Definition A.4

Let φ be an e-type. The set of pairs of closed terms Chrφ is defined according to

the clauses in Fig. A 2.

It is easy to prove that: (P ,Q) ∈ Chrφ implies P ∈ Λε(φ) and Q ∈ Λε(φ).

The proof of completeness relies on the following lemma.

Lemma A.5

φ 66 ψ implies that there are (P ,Q) ∈ Chrφ and (E, ψ1 · · ·ψn) ∈ Extψ, such that for

some (M1, N1) ∈ Chrψ1 , . . ., (Mn,Nn) ∈ Chrψn ,

EPM1 · · ·Mn 6'obsEQN1 · · ·Nn.

Proof

By structural induction on φ.

φ = ωρ1→···→ρn→nat. Since φ 66 ψ, it must be that ψ = ψ1 → · · · → ψn → δnat. By

definition

• Chrφ = {(P ,Q)}, where P = λx
ρ1

1 · · · xρnn .0 and Q = λx
ρ1

1 · · · xρnn .1, and

• Extψ = {(E, ψ1 · · ·ψn)}, where E = λxε(φ).x.

Therefore, for all (Mi,Ni) ∈ Chrψi (1 6 i 6 n), EPM1 · · ·Mn 6'obsEQN1 · · ·Nn.

φ = φ1 → · · · → φn → δnat, n > 0. Since φ 66 ψ it must be that n > 1, ψ = ψ1 →
· · · → ψn → δnat, and, for some j ∈ {1, . . . , n}, ψj 66 φj . By induction hypothesis

there are (P ′, Q′) ∈ Chrψj and (E ′, φ′1 · · ·φ′k) ∈ Extφi such that, for some (M ′1, N ′1) ∈
Chrφ

′
1 , . . ., (M ′k, N ′k) ∈ Chrφ

′
k ,

E ′P ′M ′1 · · ·M ′k 6'obsE
′Q′N ′1 · · ·N ′k.

Let P = λx
ε(φ1)
1 · · · xε(φn)n .E ′xiM ′1 · · ·M ′k and Q = λx

ε(φ1)
1 · · · xε(φn)n .E ′xiN ′1 · · ·N ′k . It is

immediate to see that (P ,Q) ∈ Chrφ. Since Extψ = (λxε(ψ).x, ψ1 · · ·ψn), we have

that, for any (Mi,Ni) ∈ Chrψi (1 6 i 6= j 6 n),

(λxε(ψ).x)PM1 · · ·Mj−1P
′Mj+1 · · ·Mn 6'obs(λx

ε(ψ).x)QN1 · · ·Nj−1Q
′Nj+1 · · ·Nn,

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

552 F. Damiani and P. Giannini

• If φ = ωρ1→···→ρn→nat, n > 0, then

Chrφ = {(λxρ1
1 · · · λxρnn .0, λxρ1

1 · · · λxρnn .1)}
• If φ = ωρ1→···→ρn→σ×σ′ , n > 0, then

Chrφ = { (λx1 · · · λxn.〈P x1 · · · xn, P ′ x1 · · · xn〉,
λx1 · · · λxn.〈Qx1 · · · xn, Q′ x1 · · · xn〉) |
(P ,Q) ∈ Chrω

ρ1→···→ρn→σ
and (P ′, Q′) ∈ Chrω

ρ1→···→ρn→σ′ }
• If φ = φ1 → · · · → φn → δnat, n > 0, then

Chrφ = {(λxε(φ1)
1 · · · λxε(φn)

n .0, λx
ε(φ1)
1 · · · λxε(φn)

n .0)}∪
∪i∈{1,...,n}{(λxε(φ1)

1 · · · λxε(φn)
n .ExiM1 · · ·Mki ,

λx
ε(φ1)
1 · · · λxε(φn)

n .ExiN1 · · ·Nki) |
(E, φi1 · · ·φiki) ∈ Extφi and ∀j ∈ {1, . . . , ki}.(Mj,Nj) ∈ Chrφ

i
j }

• If φ = φ1 → · · · → φn → ψ × ψ′, n > 0, then

Chrφ = { (λx1 · · · λxn.〈P x1 · · · xn, P ′ x1 · · · xn〉,
λx1 · · · λxn.〈Qx1 · · · xn, Q′ x1 · · · xn〉) |
(P ,Q) ∈ Chrχ and (P ′, Q′) ∈ Chrχ

′ }
where

χ =

{
φ1 → · · · → φn → ψ, if ψ 6∈ Lω

ωε(φ1→···→φn→ψ), if ψ ∈ Lω

χ′ =

{
φ1 → · · · → φn → ψ′, if ψ′ 6∈ Lω

ωε(φ1→···→φn→ψ′), if ψ′ ∈ Lω

Fig. A 2. Set Chrφ.

which proves the result.

φ = φ1 → · · · → φn → φ′ × φ′′, n > 0. Since φ 66 ψ it must be that ψ = ψ1 → · · · →
ψn → ψ′ × ψ′′, and:

1. either φ1 → · · · → φn → φ′ 66 ψ1 → · · · → ψn → ψ′,
2. or φ1 → · · · → φn → φ′′ 66 ψ1 → · · · → ψn → ψ′′.

Assume that φ, φ′, ψ, ψ′ 6∈ Lω and that condition (1) holds (a similar proof can be

given if (2) holds). By inductive hypothesis there are (P ′, Q′) ∈ Chrφ1→···→φn→φ′ and

(E ′, ψ1 · · ·ψnψ′1 · · ·ψ′k) ∈ Extψ1→···→ψn→ψ′ (n, k > 0), such that for some (Mi,Ni) ∈
Chrψi (1 6 i 6 n) and (M ′j , N ′j) ∈ Chrψ

′
j (1 6 j 6 k)

E ′P ′M1 · · ·MnM
′
1 · · ·M ′k 6'obsE

′Q′N1 · · ·NnN
′
1 · · ·N ′k.

Let

• P = λx
ε(φ1)
1 · · · xε(φn)n .〈(P ′x1 · · · xn), (P ′′x1 · · · xn)〉, and

• Q = λx
ε(φ1)
1 · · · xε(φn)n .〈(Q′x1 · · · xn), (Q′′x1 · · · xn)〉,

for some (P ′′, Q′′) ∈ Chrφ1→···→φn→φ′′ . It is easy to check that (P ,Q) ∈ Chrφ. Let

(E,−→ψ) = (λxε(ψ).λy
ε(ψ1)
1 . · · · λyε(ψn)n .E ′(prj1(xy1 · · · yn)), ψ1 · · ·ψnψ′1 · · ·ψ′k),

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

Automatic useless-code elimination 553

then (E,−→ψ) ∈ Extψ . However

EPM1 · · ·MnM
′
1 · · ·M ′k 'obs E ′P ′M1 · · ·MnM

′
1 · · ·M ′k, and

EQN1 · · ·NnN
′
1 · · ·N ′k 'obs E ′Q′N1 · · ·NnN

′
1 · · ·N ′k,

so EPM1 · · ·MnM
′
1 · · ·M ′k 6'obsEQN1 · · ·NnN

′
1 · · ·N ′k , and the result is proved.

φ = ωρ1→···→ρn→σ×σ′ . Similar.

q

From Proposition A.3 and Lemma A.5 we can prove Lemma 4.6.

Proof of Lemma 4.6

1. By induction on φ.

2. By absurd. Assume φ 66 ψ. By Lemma A.5 there are (P ,Q) ∈ Chrφ and

(E, ψ1 · · ·ψn) ∈ Extψ , such that for some (M1, N1) ∈ Chrψ1 , . . ., (Mn,Nn) ∈
Chrψn ,

EPM1 · · ·Mn 6'obsEQN1 · · ·Nn.

However, from Point 1. we get ([Mi], [Ni]) ∈ [[ψi]] (1 6 i 6 n), which, by

Proposition A.3, implies (P ,Q) 6∈ [[ψ]].

q

B An incremental useless-code detection an elimination procedure

In this appendix we show how the useless-code detection algorithms developed in

section 7 can be used to build an incremental useless-code detection and elimination

procedure.

B.1 `1 and `2 inference in a single step

We first show how to modify the algorithm W1 to infer a compact representation

of both the `1-typings of M and the `2-typings of Oε
1(M) (see section 8). To do this

we have to keep track of the constraints generated by uses of 6 in the type rules

for variables and recursive terms. We do it by replacing in the text of the algorithm

W in figure 18 (but not in the definition of the function cs6 in figure 15) every

occurrence of ⇒ by ⇒•. The ‘marked connectives’ ⇒• keep track of the conditional

constraints associated with a potential application of the (ω) rule to some subterm,

whereas the unmarked ⇒ are associated with the uses of 6 in rules (Var) and (Fix)

of `1.

The e-constraints that may contain occurrences of ⇒ marked by • are called

•-e-constraints. Define W• to be the algorithm obtained from the algorithm W1 in

figure 17 by making to the algorithmW in figure 18 the change previously described.

As shown in section 8, the best way to use the simplifications induced by `1 and

`2 on a term M is: first apply Oε
1 to M and then Oε

2 to the result. So the idea

behind solving the •-e-constraints associated to a term M is that, in the solution

procedure, we first detect which variables are forced to be δ by the maximal solution

for all the constraints (marked and unmarked), then all the marked conditional

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

554 F. Damiani and P. Giannini

(≡)
E[δ/α]↪→•I1,I2

E, cns↪→•I1 ∪ {α},I2
cns ∈ {α ≡ δ, δ ≡ α} (v)

E[δ/α]↪→•I1,I2

E, α v δ↪→•I1 ∪ {α},I2

(⇒)
E ∪ E′′↪→•I1,I2

E, (δ in G)⇒? E′′↪→•I1,I2

δ ∈ G and ⇒?∈ {⇒,⇒•}

(CHANGE)
no other ↪→•-rule can be applied change(E) ↪→ I

E↪→•∅,I

Fig. B 1. ‘Natural semantics’ rules for •-e-constraints solution (system ↪→•).

constraints that are trivially satisfied by the solution can be removed (in fact, since

they corresponding to applications of the rule (ω), the corresponding subterm is

removed by the mapping Oε
1). After that, to identify which variables are forced to

be δ by the optimal faithful `2-typing of Oε
1(M), we have to replace the constraints

generated by cs6 with the constraints generated by cs= (all the unmarked conditional

constraints are generated by cs6). To this aim, define for a set of •-e-constraint E,

change(E) to be the set of e-constraint obtained from E by

• removing all the marked conditional constraints,

• ‘opening’ all the conditional constraints, i.e. repeatedly replacing a set of

e-constraints of the form E′, (δ inG)⇒ E′′ with E′ ∪ E′′, and

• replacing every occurrence of v by ≡.

Note that change(E) contains only e-constraints of the form ζ1 ≡ ζ2, for ζ1, ζ2 ∈
A ∪ {δ}.

Let faithful•(Θ, θ) be the set of •-e-constraints obtained from faithful(Θ, θ) (as

defined in Theorem 7.14) by replacing each occurrence of ⇒ by ⇒•. We now define

an algorithm for finding both the maximal solutions w.r.t. `1 and `2 of the •-e-

constraints generated by the algorithm W•. The algorithm is presented in natural

semantics style, using judgements E↪→•I1,I2 (see figure B 1, where the symbol ↪→
in rule (CHANGE) refers to the derivation system described in figure 13.). We can

see that all the rules except (CHANGE) correspond to the standard solution of the

constraints of figure 13. Once finished the application of such rules the resulting set

of constraints is changed and solved again. We have that, for every PCFP term M

of type ρ, if W•(M) = 〈Θ,M ′θ,E〉 and E ∪ faithful•(Θ, θ)↪→•I1,I2, then

1. the instantiation represented by I1, i1, is such that i1(Θ) `1 i1(M ′θ) is the

optimal faithful `1-typing of M, and

2. if M ′′θ is the e-pattern decorated term obtained from M ′θ by replacing all

subterms decorated by ω-e-types in i1(M ′θ) with fresh dummy variables, i.e.

ε(M ′′θ) = O1(i1(M ′θ)) = Oε
1(M), then the instantiation represented by I1∪I2,

i2, is such that

i2(Θ− {xσ : η | i1(η) = ωσ}) ∪ {dσ : ωσ | dσ ∈ DV(ε(M ′′θ))} `2 i2(M ′′θ)

is the optimal faithful `2-typing of ε(M ′′θ).

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

Automatic useless-code elimination 555

Remark B.1 (Complexity of algorithm ↪→•)
According to Remark 7.11, given a finite set of •-e-constraints E we can find I1

and I2 such that E↪→•I1,I2 in a time linear in |E|.

B.2 Useless-code elimination on pattern-decorated terms

Let M ∈ Λρ, W•(M) = 〈Θ,M ′θ,E〉 and E ∪ faithful•(Θ, θ)↪→•I1,I2. Let i1 and i2
be the instantiations represented by I1 and I1 ∪I2.

1. Define

• OI1

1 (M ′θ) to be the term obtained from M ′θ following Definition 5.8, that

is, by replacing all the maximal subterms of M ′θ which are assigned an

e-pattern η such that i1(η) ∈ Lω with a fresh dummy variable of type ε(η),

and

• OI1

1 (Θ) = {x : η | x : η ∈ Σ and i1(η) 6∈ Lω}.
We have that i1(OI1

1 (Θ)) ∪ Σ′ `1 i1(OI1

1 (M ′θ)), where Σ′ = {dσ : ωσ | dσ ∈
DV(ε(OI1

1 (M ′θ)))}.
2. Similarly, define10

• OI1 ,I2

3 (M ′θ) to be the (pattern decorated) term obtained from OI1

1 (M ′θ)
by removing, following Definition 6.7, the subterms which are assigned an

e-pattern η such that i2(η) ∈ Lω , and

• OI1 ,I2

3 (Θ) = OI1

1 (Θ).

Since OI1 ,I2

3 (Θ) contain exactly all the free non-dummy variables in

OI1 ,I2

3 (M ′θ) we have that i2(OI1 ,I2

3 (Θ)) ∪ Σ′′ `2 i2(OI1 ,I2

3 (M ′θ)), where Σ′′ =

{dσ : ωσ | dσ ∈ DV(ε(OI1 ,I2

3 (M ′θ)))}.
The following result holds.

Theorem B.2 (O·,·3 computes the best simplification w.r.t. `1 and `2)

Let M ∈ Λρ, W•(M) = 〈Θ,M ′θ,E〉 and E ∪ faithful•(Θ, θ)↪→•I1,I2. Then

ε(OI1 ,I2

3 (M ′θ)) is the best simplification of M that can be obtained by a combined

use of the mappings Oε
1 and Oε

2. That is: ε(OI1 ,I2

3 (M ′θ)) = Oε
2(Oε

1(M)).

Example B.3

By applying algorithm W• to the term

N = (λxnat.prj1〈ynat, x〉)znat

of Examples 7.15 and 7.17 we get W•(N) = 〈Θ, N ′′α′1 ,E〉, where Θ and N ′′α
′
1 are as

in Example 7.15, while

E = {(δ in {α′1})⇒• {α1 v α′1}, (δ in {β′1})⇒• {β1 v β′1}, (δ in {β1})⇒• {α2 v β1}}.
We also have

faithful•(Θ, α′1) = {(δ in {α1})⇒• {α1 ≡ δ}, (δ in {α2})⇒• {α2 ≡ δ}, α′1 ≡ δ}.

10 We choose the name O
·,·
3 for this simplification mapping, since if performs the ‘sum’ of the simplifications

of the mappings O1 and O2.

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

556 F. Damiani and P. Giannini

Compare the sets E and faithful•(Θ, α′1) above with the sets E1 and faithful(Θ, α′1)

in Example 7.15. By applying the algorithm shown in figure B 1, we get E ∪
faithful•(Θ, α′1)↪→•I1,I2, where I1 and I2 are as in Examples 7.15 and 7.17,

respectively (i.e. I1 = I2 = {α′1, α1})11.

Because of Theorem B.2 we can use the mapping OI1 ,I2

3 to remove the useless-

code directly from the e-pattern decorated term N ′′α
′
1 (without instantiating the basic

variables). So we get

1. OI1

1 (N ′′α
′
1) = ((λx.prj1〈y, d1〉β′1)dβ1

2)α
′
1 ,

2. OI1 ,I2

3 (Θ) = OI1

1 (Θ) = {y : α1} , and

OI1 ,I2

3 (N ′′α
′
1) = yα

′
1 .

B.3 The procedure

We have now all the components for the definition of an incremental useless-code

detection and elimination procedure on PCFP terms. Let M ∈ Λρ, W•(M) =

〈Θ,M ′θ,E〉, E ∪ faithful(Θ, θ)↪→•I1,I2. The simplification algorithm O(M) returns

〈OI1 ,I2

3 (Θ),OI1 ,I2

3 (M ′θ),E〉.
The term simplified is ε(OI1 ,I2

3 (M ′θ)) and the triple 〈OI1 ,I2

3 (Θ),OI1 ,I2

3 (M ′θ),E〉 is

all we need to perform further analysis of a program containing M, since the

simplification performed by O are those which are possible in any context. For

instance M could be applied to a term or could be itself the argument of function.

In such contexts further simplifications of M could be possible.

Remark B.4 (Complexity of the useless-code detection and elimination procedure)

According to Remarks 7.16 and B.1 we have that the execution time of the simpli-

fication procedure is of order width(M) |M|, where M is the PCFP term in input.

B.4 Constraints simplification

We now give a constraints simplification algorithm that can be used to simplify the

constraints E produced by the algorithm O applied to a term M. The simplification

preserves the maximum solution of E w.r.t. `1 and `2. This implies that, for the

purpose of eliminating the useless-code in any term containing M as a subexpression,

the simplified set of constraints E′ contains the same information of the original set E.

Proposition B.5 (Constraints simplification algorithm)

Let M ∈ Λρ, W•(M) = 〈Θ,M ′θ,E〉 and E ∪ faithful•(Θ, θ)↪→•I1,I2. Let E′ be

obtained from E by performing (at the top level and, recursively, in the right-

hand-side of every conditional constraints in E) the following three simplification

steps:

11 In the simple example that we are considering we have I1 = I2, but in general these sets are different
since the system `1 allows to detect more useless-code than `2.

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

Automatic useless-code elimination 557

1. remove all the constraints of the form (δ in G)⇒ E0 with I1 ∩ (G∪ {δ}) = ∅;
2. remove all the constraints of the form either ζ1 v ζ2 or ζ1 ≡ ζ2 with ζ1, ζ2 6∈
I1 ∪I2 ∪ {δ};

3. remove all the constraints of the form (δ in G)⇒ ∅.
E′ is such that for every finite set of constraints E0, if E ∪ E0↪→•I′1,I′2 and both

I′1 ⊆ I1 and I′2 ⊆ I2, then E′ ∪ E0↪→•I′1,I′2.

Proof

First observe that, by definition of ↪→•, we have that both I1 ∩ I2 = ∅ and

I′1 ∩ I′2 = ∅. Moreover, if E ∪ E0↪→•I′1,I′2 then, for every set E′′ obtained from E
by removing some constraints (either at the top level or in the in the right-hand-side

of some conditional constraints), we have that E′′ ∪ E0↪→•I′′1 ,I′′2 for some I′′1 ⊆ I′1
and I′′2 ⊆ I′2. Since by the hypotheses I′1 ⊆ I1 and I′2 ⊆ I2 we have that E′ is

obtained from E by removing only constraints that do not force any basic variable

in I′1 ∪I′2 to δ, we can conclude that, if E′′ = E′, then I′′1 = I′1 and I′′2 = I′2. q

Example B.6

Consider the output of the inference algorithm W• in Example B.3, i.e. the triple

〈Θ, N ′′α′1 ,E〉, and the sets I1 and I2 such that E ∪ faithful•(Θ, α′1)↪→•I1,I2. Ac-

cording to Proposition B.5 we can replace E by the simplified set of constraint

E′ = { (δ in {α′1})⇒• {α1 v α′1} }
without loss of information.

The triple 〈OI1 ,I2

3 (Θ),OI1 ,I2

3 (N ′′α
′
1),E′〉, where OI1 ,I2

3 (Θ) and OI1 ,I2

3 (N ′′α
′
1) are as

in Example B.3, is all we need in the analysis of programs that use M.

Remark B.7 (Complexity of the constraint simplification)

The constraint simplification described in Proposition B.5 can be performed in

quadratic time in the length, |E|, of the set E of constraints to be simplified.

Acknowledgements

We thank Stefano Berardi and Mario Coppo for discussions and comments, and

David Sands for giving us pointers to related work. The first author thanks also Jean-

Christophe Filliâtre for stimulating discussions on the topic of program extraction.

During the preparation of a first draft of this paper Ferruccio Damiani was

visiting the Laboratoire d’Informatique de l’École Polytechnique (LIX). He would

like to thank his host Radhia Cousot and the whole LIX for the ideal working

conditions they provided.

References

Abadi, M., Barnerjee, A., Heintze, N. and Riecke, J. G. (1999) A Core Calculus of Dependency.

POPL’99. ACM.

Barendsen, E. and Smetsers, S. (1995). A Derivation System for Uniqueness Typing. Segra-

gra’95. Elsevier.

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

558 F. Damiani and P. Giannini

Benton, P. N. (1992) Strictness Analysis of Lazy Functional Programs. PhD thesis, University

of Cambridge, Pembroke College.

Berardi, S. (1996) Pruning Simply Typed Lambda Terms. J. Logic and Computation, 6(5),

663–681.

Berardi, S. and Boerio, L. (1995) Using Subtyping in Program Optimization. TLCA’95:

Lecture Notes in Computer Science 902. Springer-Verlag.

Berardi, S. and Boerio, L. (1997) Minimum Information Code in a Pure Functional Language

with Data Types. TLCA’97: Lecture Notes in Computer Science 788, pp. 30–45. Springer-

Verlag.

Boerio, L. (1994) Extending Pruning Techniques to Polymorphic Second Order λ-calculus.

ESOP’94: Lecture Notes in Computer Science 788, pp. 120–134. Springer-Verlag.

Boerio, L. (1995) Optimizing Programs Extracted from Proofs. PhD thesis, Università di Torino.

Coppo, M., Damiani, F. and Giannini, P. (1996) Refinement Types for Program Analysis.

SAS’96: Lecture Notes in Computer Science 1145, pp. 143–158. Springer-Verlag.

Damiani, F. (1998) Non-standard Type Inference for Functional Programs. PhD thesis, Dipar-

timento di Informatica, Università di Torino.

Damiani, F. (1999) Useless-code Detection and Elimination for PCF with Algebraic Datatypes.

TLCA’99: Lecture Notes in Computer Science 1581, pp. 83–97. Springer-Verlag.

Damiani, F. (2000) Conjunctive Types and Useless-code Elimination. ITRS’00 Workshop.

Carleton-Scientific.

Damiani, F. and Prost, F. (1998) Detecting and Removing Dead Code using Rank 2 Inter-

section. TYPES’96: Lecture Notes in Computer Science 1512, pp. 66–87. Springer-Verlag.

Dussart, D., Henglein, F. and Mossin, C. (1995) Polymorphic Recursion and Subtype Quali-

fications: Polymorphic Binding-Time Analysis in Polynomial Time. SAS’95: Lecture Notes

in Computer Science 983, pp. 118–135. Springer-Verlag.

Fischbach, A. and Hannan, J. (1999) Type Systems and Algoritms for Useless-Variable Elimi-

nation. Available at http://www.cse.psu.edu/˜hannan.

Hankin, C. and Le Métayer, D. (1995) Lazy Type Inference and Program Analysis. Science

of Computer Programming, 25, 219–249.

Hunt, L. S. and Sands, D. (1991) Binding Time Analysis: A New PERspective. Partial

Evaluation and Semantics-based Program Manipulation. ACM.

Hunt, S. (1991) Abstract Interpretation of Functional Languages: From Theory to Practice.

PhD thesis, University of London, Imperial College.

Jensen, T. P. (1992) Abstract Interpretation in Logical Form. PhD thesis, University of London,

Imperial College.

Jensen, T. P. (1995) Conjunctive Type Systems and Abstract Interpretation of Higher-order

Functional Programs. J. Logic and Computation, 5(4), 397–421.

Kahn, G. (1988) Natural semantics. In: Fuchi, K. and Nivat, M. (eds), Programming Of Future

Generation Computer. Elsevier Science.

Kobayashi, N. (2000) Type-Based Useless Variable Elimination. Pepm’00. ACM.

Kuo, T. M. and Mishra, P. (1989) Strictness Analysis: a New Perspective Based on Type In-

ference. Functional Programming Languages and Computer Architecture, pp. 260–272. ACM.

Mossin, C. (1997) Flow analysis of Typed Higher-Order Programs. PhD thesis, DIKU, Uni-

versity of Copenhagen. Revised version.

Paulin-Mohring, C. (1989a) Extracting Fω ’s Programs from Proofs in the Calculus of Con-

structions. POPL’89. ACM.

Paulin-Mohring, C. (1989b) Extraction de Programme dans le Calcul des Constructions. PhD

thesis, Université Paris VII.

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

Automatic useless-code elimination 559

Pfenning, F. (1996) The Practice of Logical Frameworks. In: Kirchner, H. (ed.), Proceedings

of the Colloquium on Trees in Algebra and Programming: Lecture Notes in Computer Science

1059, pp. 119–134. Linköping, Sweden. Springer-Verlag.

Pitts, A. M. (1997) Operationally-based Theories of Program Equivalence. In: Pitts, A. M. and

Dybjer, P. (eds.), Semantics and Logics of Computation, pp. 241–298. Cambridge University

Press.

Plotkin, G. D. (1977) LCF Considered as a Programming Language. Theoretical Computer

Science, 5(3), 223–255.

Plotkin, G. D. (1981) A Structural Approach to Operational Semantics. Technical report DAIMI

FN-19, Aarhus University.

Prost, F. (2000) A Static Calculus of Dependencies for the λ-cube. LICS’00. IEEE Press.

Shivers, O. (1991) Control Flow Analysis of Higher-Order Languages. PhD thesis, Carnegie-

Mellon University.

Solberg, K. L. (1995) Annotated Type Systems for Program Analysis. PhD thesis, Aarhus

University, Denmark. Revised version.

Takayama, Y. (1991) Extraction of Redundancy-free Programs from Constructive Natural

Deduction Proofs. J. Symbolic Computation, 12, 29–69.

Wand, M. and Siveroni, I. (1999) Constraints Systems for Useless Variable Elimination.

POPL’99, pp. 291–302. ACM.

Wright, D. A. (1992) Reduction Types and Intensionality in the Lambda-Calculus. PhD thesis,

University of Tasmania.

Xi, H. (1999) Dead code Elimination Through Dependent Types. PADL’99, pp. 228–242.

https://doi.org/10.1017/S0956796800003786 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003786

