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Abstract

Inspired by methods of queueing theory, we propose a Markov model for the spread
of viruses in an open population with an exogenous flow of infectives. We apply it to
the diffusion of AIDS and hepatitis C diseases among drug users. From a mathematical
point of view, the difference between the two viruses is shown in two parameters: the
probability of curing the disease (which is 0 for AIDS but positive for hepatitis C) and
the infection probability, which seems to be much higher for hepatitis. This model bears
some resemblance to the M/M/∞ queueing system and is thus rather different from the
models based on branching processes commonly used in the epidemiological literature.
We carry out an asymptotic analysis (large initial population) and show that the Markov
process is close to the solution of a nonlinear autonomous differential system. We prove
both a law of large numbers and a functional central limit theorem to determine the speed
of convergence towards the limiting system. The deterministic system itself converges,
as time tends to ∞, to an equilibrium point. We then show that the sequence of stationary
probabilities of the stochastic models shrinks to a Dirac measure at this point. This means
that in a large population and for long-term analysis, we may replace the individual-based
microscopic stochastic model with the macroscopic deterministic system without loss of
precision. Moreover, we show how to compute the sensitivity of any functional of the
Markov process with respect to a slight variation of any parameter of the model. This
approach is applied to the spread of diseases among drug users, but could be applied to
many other case studies in epidemiology.
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1. Motivations

The hepatitis C virus (HCV for short) is spread primarily by direct contact with human blood.
In developed countries that have safe blood supplies, the population infected by HCV is closely
related to injecting drug users (IDUs). It is estimated that 90% of infections are due to IDUs
[12]. In order to reduce the number of new hepatitis C cases, preventing infections in IDUs is
then a priority. Programs exist all over the world which try to reduce the prevalence of many
infectious diseases, such as HIV or hepatitis C, among IDUs. They are mainly based on needle
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exchanges. It turns out that after several years of such programs, the HIV prevalence seems to
be now rather low, whereas the percentage of IDUs who are HCV positive remains about 60%
[12], [15]. We were asked by epidemiologists to provide a mathematical model which could
quantitatively evaluate the differences between the two diseases. From a medical point of view,
there are two main differences between HIV and HCV. On the one hand, we can cure hepatitis C
patients to the point where the patient becomes seronegative; on the other hand, HCV resists air
contact much more than HIV and, thus, is more contagious during needle sharing. The actual
question raised by epidemiologists was whether this can be the only explanation for the high
prevalence of the HCV or whether there exists another parameter which could be more easily
controlled to reduce this prevalence.

It is always a challenge to analyze an epidemic problem because there are many real-
life situations that should be incorporated while keeping the mathematical model tractable.
Moreover, epidemic field studies are expensive and hard to organize, so parameter estimates
are rare and often imprecise. It is thus necessary to deal with parsimonious models whose
parameters have clear and visible meanings. To the best of the authors’ knowledge, the only
models which have been developed for the dynamics of HCV transmission are found in [8] and
[19]. It is a deterministic model with more than twenty-five parameters, for which the authors
do not have explicit results for the asymptotics and only estimate them by simulations.

In our paper, we thus propose a Markovian model for the spread of HCV/HIV in an open
local population of IDUs. That is, we consider one household (see [1] and the references
therein for epidemiologiocal vocabulary and classical models); the effect of other households
is summarized by a parameter r which represents the incidence of infectives coming from
the outside, i.e. other households. Our model differs from the classical SIR, SIRS, SIS, etc.
models in several aspects (see [2], [5], [6], and [13] for the most similar models). There are
two ‘degrees’ of susceptibility. The first category of susceptibility are the people who can
potentially become IDUs, i.e. everybody. A second category is composed of IDUs not yet
infected. Hence, the system is open: there exists a continuous influx of new IDUs. Another
difference with usual models is that some IDUs arrive in the studied population as infected
and, thus, do not pass through the usual state of susceptibility. Moreover, there is no recovered
category in our model since we cannot measure their number (when they are no longer an
IDU, they cannot be counted in studies focused on drug users), but some infected users can
recover (from the HCV) and return to the state of susceptible IDUs. Some epidemic models
use branching processes. It seems rather hard to proceed along this line here, notably because
the rate of infection changes with the situation of the whole population and is not determined
locally for each leaf. Here, we have an approach inspired by queueing theory. Specifically, our
model bears some strong resemblance to the M/M/∞ queue. As is usual for such processes,
with the Markov model being intractable in the sense that we cannot compute its stationary
distribution, we resort to a large population analysis. We prove that in such a situation, the
prevalence can be well represented by a deterministic differential system. Borrowing ideas
from statistical physics, this means that, for a large population, the macroscopic dynamic of
the disease can be well approximated by that of a deterministic system. Furthermore, it turns
out that the deterministic system has a unique limiting point. We then devote some time to
prove that the stationary distribution of the finite-population Markov processes converges to
a Dirac measure located at this fixed point. This says that, as far as the long-time behavior
is concerned, the statistics of the Markov process are close to that of the fixed point of the
deterministic system.
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To keep the Markovian character of our model, we make the following usual and reasonable
hypothesis. Exogenous antibody-positive and antibody-negative drug users arrive in this local
population according to Poisson processes. If initiated by an antibody-positive drug addict,
a new IDU acquires the virus very rapidly after the initiation [3], [10]. HCV or HIV then
spreads in the population through the sharing of syringes, needles, and other accessories (cotton,
boilers, etc.). Each individual of the population stays in his state (infected/noninfected) for an
exponentially distributed time. We present the model in Section 3. The difference between
HIV and HCV diffusions lies only in the parameters: the probability of curing the disease
(which is 0 for AIDS but positive for hepatitis C) and the infection probability, which seems
to be much higher for hepatitis. If we respectively denote by X1(t) and X2(t) the numbers of
antibody-positive and antibody-negative individuals in the local population at time t , we prove
that the process X = (X1, X2) is an ergodic Markov process. In Section 4 we give a related
deterministic differential system connected with this Markov process. We study its asymptotic
behavior and give an explicit expression of the limit of the solution. In Section 5 we give a
mean-field approximation of the processX: for large populations, we prove that the processX
is close to the solution ψ of the deterministic differential system. In Section 6 we prove that,
for large populations, the invariant distribution for the Markov process X can be approximated
by the Dirac measure which only charges ψ(∞). Hence, we can give an explicit limit of the
prevalence of a virus in the population. In Section 7 we give a central limit theorem for the
approximation of X by ψ when the population tends to ∞. In Section 8 we show that even for
relatively small values (around one hundred) of the initial population, there is a good accordance
between the prevalence computed on the deterministic limit and the prevalence observed in the
stochastic model. We also show that this can be extended to the sensitivity of the model with
respect to slight variations of some parameters.

2. Preliminaries

Let us denote by D([0, T ],R2) the set of càdlàg functions (those that are continuous from
the right with left limits) equipped with its usual topology. In this section we recall some
results about càdlàg semimartingales; for details, we refer the reader to [16]. We assume that
we are given (�, (Ft , t ≥ 0),P), a filtered probability space satisfying the so-called usual
hypothesis. On (�, (Ft , t ≥ 0),P), let X and Y be two real-valued càdlàg square integrable
semimartingales. The mutual variation of X and Y , denoted by [X, Y ], is the right-continuous
process with finite variation such that the following integration by parts formula is satisfied:

X(t)Y (t)−X(0)Y (0) =
∫
(0,t]

X(s−) dY (s)+
∫
(0,t]

Y (s−) dX(s)+ [X, Y ]t .

The Meyer process of the couple (X, Y ), or its square bracket, denoted by 〈X, Y 〉, is the unique
right-continuous with finite variation predictable process such that

X(t)Y (t)−X(0)Y (0)− 〈X, Y 〉t
is a martingale. Alternatively, 〈X, Y 〉 is the unique right-continuous, predictable process with
finite variation such that [X, Y ] − 〈X, Y 〉 is a martingale. For a vector-valued semimartingale
X = (X1, X2), where X1 and X2 are real-valued martingales, we denote by 〈〈X〉〉, its square
bracket, defined by

〈〈X〉〉t =
( 〈X1〉t 〈X1, X2〉t

〈X1, X2〉t 〈X2〉t
)
.
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In the sequel, if x is a vector or M is a matrix, we denote by ‖x‖ or, respectively, ‖M‖ its
L1-norm.

Let E be a discrete denumerable space. Let (X(t), t ≥ 0) be an E-valued, pure-jump
Markov process, with infinitesimal generatorQ = (qxy, (x, y) ∈ E×E). For any F : E → R,
Dynkin’s lemma states that the process

F(X(t))− F(X(0))−
∫ t

0
QF(Xs) ds

is a local martingale, where

QF(x) =
∑
y 	=x

(F (y)− F(x))qxy.

Here and hereafter, we identify the matrix Q and the operator Q defined as above.

3. Markov model

We consider the dynamics of HCV/HIV among a local open population. There is a constant
rate r of immigration of antibody-positive drug users from other communities. These arrivals
are modeled as a Poisson process of intensity r . We let X1(t) and X2(t) respectively denote
the numbers of antibody-positive and antibody-negative users at time t in the population under
consideration. The new susceptible drug users arrive as a Poisson process of intensity λ. We
assume that, for their first injection, they are initiated by an older IDU who has a probability
q(t) = X1(t)(X1(t)+X2(t))

−1 of being infected. For different reasons, even in this situation,
the probability of being infected is not exactly 1 and is denoted by pI. Each time an antibody-
negative IDU injects he/she may share some of his paraphernalia and may become infected if
the sharing occurs with an infected IDU. We summarize all these probabilities by saying that
at each injection, the probability of becoming infected is pq(t), where p is a parameter to be
estimated, as is pI. If we denote by α the rate at which an IDU injects drugs, and if αp is
small, we can assume that the rate at which a sane IDU in the population is infected is given by
αpq(t). Once infected, an IDU may either die, stop drug usage, or self heal. The time for this
to happen is modeled by an exponential distribution of parameter µ1. There is a probability
γ that the first two events happen and, thus, a probability of 1 − γ that he/she self heals and
then appears in the system as a new seronegative. For an antibody-negative IDU, the only way
to exit the population is by stopping injecting drugs or dying, which is supposed to happen
after an exponentially distributed duration with parameter µ2. In summary, the transitions are
described in Figure 1.

Remark 3.1. Note that the main difference between the hepatitis C and AIDS viruses lies in
the values of p and pI (which is supposed to be much less for the AIDS virus) and in the value
of γ , which is a priori 0 for the AIDS virus.

In what follows, we set

q1(n1, n2) = r + λpI
n1

n1 + n2
, q2(n1, n2) = γµ1n1, q3(n1, n2) = αpn2

n1

n1 + n2
,

q4(n1, n2) = λ

(
1 − pI

n1

n1 + n2

)
, q5(n1, n2) = µ2n2, q6(n1, n2) = (1 − γ )µ1n1.

Note that here and hereafter, we use the convention 0/0 = 0.
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VHC–

VHC+
r + λ pI

n1

γµ1n1n1 + n2

n1

(1 – γ)µ1n1

αpn2
n1

n1 + n2

n2n1

n1 + n2
1 – pI






λ
µ2n2

Figure 1: Transitions of the Markov process from and to state (n1, n2), where VHC+ and VHC-
respectively refer to infected and uninfected viral hepatitis C users.

Lemma 3.1. Let x0 = (x0
1 , x

0
2 ). Conditionally on X(0) = x0, the process

W(t) = X1(t)+X2(t)− (x0
1 + x0

2 )

is dominated (for the strong stochastic order of processes) by a Poisson process of intensity
r + λ. In particular, for any p ≥ 1, there exists a universal constant Cp such that, for any
T > 0,

E
[
sup
t≤T

‖X(t)‖p
∣∣∣ X(0) = x0

]
≤ Cp(‖x0‖p + (r + λ)pT p).

Proof. It suffices to say that by suppressing all the departures we obtain another system with
a population larger than that of the system under consideration, at any time, for any trajectory.
Then, X1(t)+X2(t)− (x0

1 + x0
2 ) is less than the number of arrivals of a Poisson process of

intensity r + λ. Since a Poisson process has increasing paths, its supremum over [0, T ] is its
value at time T . The second assertion follows.

Theorem 3.1. The Markov process X = (X1, X2) is ergodic. For r > 0, the process X is
irreducible. For r = 0, the set {(n1, n2) ∈ N × N, n1 = 0} is a proper closed subset.

Proof. Let S be the function defined on N × N by

S(n1, n2) = ‖(n1, n2)‖ = n1 + n2.

If we denote by Q the infinitesimal generator of X, we have

QS(n1, n2) = λ+ r − γµ1n1 − µ2n2.

LetK be real and strictly greater than (λ+r+1)/µ−, whereµ− = min(γµ1, µ2), and consider
the following finite subset of the state space:

DK = {(n1, n2) ∈ N × N, n1 + n2 ≤ K}.
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If (n1, n2) belongs to Dc
K then

QS(n1, n2) ≤ λ+ r − µ−(n1 + n2) < −1.

Lemma 3.1 implies that both

E
[

sup
s∈[0,1]

S(X(s))
]

and E

[∫ 1

0
|QS(X(s))| ds

]

are finite. Then, according to [17, Proposition 8.14], X is ergodic.
The second and third assertions are immediate through inspection of the transition rates.

With the nonlinearity appearing in the transitions, it seems hopeless to find an exact expres-
sion for the stationary probability of the Markov process (X1, X2). As is usual in queueing
theory [17], we then resort to an asymptotic analysis in order to gain some insights into the
evolution of this system. This means that we let the initial population grow larger and larger.
Keeping other quantities of the same order of magnitude, we are thus led to increase r and
λ at the same speed, i.e. keeping the ratio i = (r + λ)/(x0

1 + x0
2 ) constant. Note that in the

epidemiological terminology, i is the incidence of a new susceptible. It is measured in the
percentage of individuals per year.

4. A deterministic differential system

The mean-field approximation will lead us to investigate the solutions of the following
differential system with initial condition x0 = (x0

1 , x
0
2 ) ∈ (R+ × R+) \ {(0, 0)}:

ψ ′
1(t) = r + λpI

ψ1(t)

ψ1(t)+ ψ2(t)
− µ1ψ1(t)+ αp

ψ1(t)ψ2(t)

ψ1(t)+ ψ2(t)
,

ψ1(0) = x0
1 ,

ψ ′
2(t) = λ

(
1 − pI

ψ1(t)

ψ1(t)+ ψ2(t)

)
− µ2ψ2(t)− αp

ψ1(t)ψ2(t)

ψ1(t)+ ψ2(t)
+ (1 − γ )µ1ψ1(t),

ψ2(0) = x0
2 .

We denote this system by Sr(x0).

Theorem 4.1. For any x0 = (x0
1 , x

0
2 ) ∈ (R+ × R+) \ {(0, 0)}, there exists a unique solution

to Sr(x0). Furthermore, this solution is defined for any time. For r > 0, the differential system
has a unique fixed point (ξ1, ξ2) in R+ × R+, defined by

ξ2 = 1

µ2
(r+λ−γµ1ξ1), 0 = µ1(γ (αp−µ1)+µ2)ξ

2
1 −bξ1 + r(λ+ r), and ξ1 ≥ 0,

(4.1)
where

b = λ(αp − µ1 + pIµ2)+ r(µ2 − (1 + γ )µ1 + αp).

Moreover, for r > 0 and any x0 ∈ R
2+ \ {0, 0},

lim
t→+∞(ψ1(t), ψ2(t)) = (ξ1, ξ2).
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Proof. We denote by f1 and f2 the functions that allow Sr(x
0) to be written as

ψ ′
1(t) = f1(ψ1(t), ψ2(t)) and ψ ′

1(t) = f2(ψ1(t), ψ2(t)).

Since f1 and f2 are locally Lipschitz, there exists a local solution for any starting point x0

belonging to (R+ × R+) \ {(0, 0)}. Moreover, for any (x1, x2) ∈ (R+ × R+) \ {(0, 0)},
r − µ1x1 ≤ f1(x1, x2) ≤ r + λpI + αpx1,

and λ(1 − pI)− µ2x2 ≤ f2(x1, x2) ≤ λ+ (1 − γ )µ1x1.

By standard theorems about the comparison of solutions of differential equations, we can show
that every local solutionψ can be extended to R and that, for any t ∈ R, ψ(t) = (ψ1(t), ψ2(t))

belongs to (R+ × R+) \ {(0, 0)}. Furthermore, with direct calculations, we have

d

dt
(ψ1(t)+ ψ2(t)) = r + λ− γµ1ψ1(t)− µ2ψ2(t). (4.2)

For ε > 0, consider

Aε± = {(x1, x2) ∈ R+ × R+, 0 ≤ ±(r + λ− γµ1x1 − µ2x2) < ε},
Bε+ = {(x1, x2) ∈ R+ × R+, r + λ− γµ1x1 − µ2x2 ≥ ε},
Bε− = {(x1, x2) ∈ R+ × R+, r + λ− γµ1x1 − µ2x2 ≤ −ε},

and
A0 = {(x1, x2) ∈ R+ × R+, r + λ− γµ1x1 − µ2x2 = 0}.

According to (4.2), on Bε+, the derivative of ψ1 + ψ2 = ‖(ψ1, ψ2)‖ is greater than ε; hence,
for a starting point in Aε+, the trajectory has an L1 increasing norm. Reasoning along the same
lines on Bε−, we see that, for any η > 0, for any starting point outside A0, the trajectory of the
differential system enters, in a finite time, the setAη+ orAη−.Moreover, after this time, the orbit
stays in the compact Aη+ ∪ Aη− forever. It follows that (see, for instance, [18])

lim
t→+∞ dist((ψ1(t), ψ2(t)), A

0) = 0.

This implies that any invariant setM must be included inA0. We then seek a maximal invariant
set. It is given by the intersection of the sets Zi = {(x1, x2), fi(x1, x2) = 0}, i = 1, 2. We
then remark that this system of equations is equivalent to the system f1 + f2 = 0 and f1 = 0.
It turns out that

(f1 + f2)(x1, x2) = r + λ− γµ1x1 − µ2x2 = 0.

The equation f1(x1, x2) = 0 yields

x2 = µ1x1(x1 − (λpI + r)/µ1)

r + (αp − µ1)x1
= h(x1).

Assume first that r > 0 if αp−µ1 ≥ 0. Then h is negative for x1 ∈ [0, c) and c = (λpI+r)/µ1,
and h is strictly increasing and nonnegative for x1 ≥ c. Then there exists one and only one
equilibrium point whose coordinates (ξ1, ξ2) are thus given by the solution of (4.1)—see Figure 2
for an illustration.

If αp − µ1 < 0 then h has an infinite branch at z1 = −r/(αp − µ1). Then z2 =
(r + λpI)/µ1 ≤ z1 and h is negative before z2 and after z1, and h is a strictly increasing
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λ

µ2

λ + r
µ2

 

x2

λ(1 – pI)
αp + r

{f1 + f2 = 0} {f1 = 0}

(ξ1, ξ2)

{f2 = 0}

λpI + r
µ1

λ + r
µ1

x1

Figure 2: Determination of the fixed point.

homeomorphism from [z2, z1) onto R
+; thus, there exists one and only one solution to (4.1).

Alternatively, z2 > z1 and so h is positive only between z1 and z2; thus, again, there exists a
unique fixed point.

SinceA0 is a line, it is invariant if and only if at any time the tangent vector is null or colinear
to (µ2,−γµ1). It is trivially true for (x0

1 , x
0
2 ) = (ξ1, ξ2). For any (x0

1 , x
0
2 ) ∈ A0 \ {(ξ1, ξ2)},

in view of (4.2), (ψ ′
1(0), ψ

′
2(0)) is colinear to (1,−1).

We then distinguish two situations: either γµ1 = µ2 or not. If γµ1 	= µ2, we see
that A0 \ {(ξ1, ξ2)} is not invariant and, thus, according to the Poincaré–Bendixson theorem,
M = {(ξ1, ξ2)}. If γµ1 = µ2 then A0 is invariant. However, ψ1 + ψ2 is a solution of the
differential equation

v′(t) = r + λ− 2γµ1v(t), v(0) = x0
1 + x0

2 .

By direct integration, this yields

(ψ1 + ψ2)(t) = (x0
1 + x0

2 )e
−2γµ1t + r + λ

2γµ1
(1 − e−2γµ1t ).

Since A0 is compact, there exists a minimum invariant set, sayM . According to the Poincaré–
Bendixson theorem,M is either a periodic orbit or a critical point. Sinceψ1+ψ2 is not periodic,
M is also reduced to (ξ1, ξ2). This completes the proof.

For the sake of completeness, we also describe what happens for r = 0. This corresponds to
an IDU population where only sane new IDUs arrive. The proof is similar to that of Theorem 4.1.

Theorem 4.2. With the same notation as above, if r = 0 and x0
1 = 0, then

ψ1(t) = 0 for all t , lim
t→+∞(ψ1(t), ψ2(t)) =

(
0,

λ

µ2

)
.
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If r = 0 and ρ = −γ (αp−µ1)−µ2 > 0, then there exists two equilibrium points: (0, λ/µ2)

and

ξ1 = λ

ρ

αp − µ1 + µ2pI

µ1
, ξ2 = λ

ρ
(1 + γpI).

If x0
1 > 0 then

lim
t→+∞(ψ1(t), ψ2(t)) = (ξ1, ξ2).

If r = 0 and ρ > 0, then, for any x0 with positive x0
1 ,

lim
t→+∞(ψ1(t), ψ2(t)) =

(
0,

λ

µ2

)
.

In what follows, we denote by ψ∞ the unique point to which the system converges in each
case. We denote by 
 the measurable function such that 
(x0, t) is the value of the solution
to Sr(x0) at time t .

5. Mean-field approximation

We now consider a sequence (XN(t) = (XN1 (t), X
N
2 (t)), t ≥ 0) of Markov processes with

the same transitions as above but with different rates given by (with self-evident notation):

qN1 (n1, n2) = rN + λNpI
n1

n1 + n2
,

qN2 (n1, n2) = γµ1n1,

qN3 (n1, n2) = αpn2
n1

n1 + n2
,

qN4 (n1, n2) = λN

(
1 − pI

n1

n1 + n2

)
,

qN5 (n1, n2) = µ2n2,

qN6 (n1, n2) = (1 − γ )µ1n1.

The main result of this section is the following mean-field approximation of the system XN .

Theorem 5.1. Assume that, as N → +∞,

E

[∥∥∥∥ 1

N
XN(0)− x0

∥∥∥∥
2]

→ 0,
1

N
rN → r ≥ 0,

1

N
λN → λ.

Let 
(x0, ·) = (
1(x
0, ·),
2(x

0, ·)) be the solution of the differential system Sr(x
0). Then,

for any T > 0,

E

[
sup
t≤T

∥∥∥∥ 1

N
XN(t)−
(x0, t)

∥∥∥∥
2]

→ 0 as N → +∞.

Before proving Theorem 5.1, we give the martingale problem satisfied by the process XN .

Theorem 5.2. For anyN > 0, the processXN is a vector-valued semimartingale with decom-
position

XN1 (t) = XN1 (0)+
∫ t

0
(qN1 + qN3 − qN2 − qN6 )(X

N(s)) ds +MN
1 (t),

XN2 (t) = XN2 (0)+
∫ t

0
(qN4 − qN3 − qN5 + qN6 )(X

N(s)) ds +MN
2 (t),
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where MN = (MN
1 ,M

N
2 ) is a local martingale vanishing at 0 with square bracket given by

〈〈MN 〉〉t

=

⎛
⎜⎜⎝

∫ t

0
(qN1 + qN3 + qN2 + qN6 )(X

N(s)) ds −
∫ t

0
(qN3 + qN6 )(X

N(s)) ds

−
∫ t

0
(qN3 + qN6 )(X

N(s)) ds
∫ t

0
(qN4 + qN3 + qN5 + qN6 )(X

N(s)) ds

⎞
⎟⎟⎠ .

Proof. Using the martingale problem associated with the Markov process XN , we obtain,
for t ≥ 0,

XN(t) = XN(0)+

⎛
⎜⎜⎝

∫ t

0
(qN1 + qN3 − qN2 − qN6 )(X

N(s)) ds∫ t

0
(qN4 − qN3 − qN5 + qN6 )(X

N(s)) ds

⎞
⎟⎟⎠ +MN(t),

where MN = (MN
1 ,M

N
2 ) is a two-dimensional local martingale vanishing at 0.

We now compute its square bracket. First of all, we consider 〈MN
1 ,M

N
2 〉. Using integration

by parts, we obtain, for t ≥ 0,

XN1 (t)X
N
2 (t) = XN1 (0)X

N
2 (0)+

∫
(0,t]

XN1 (s−) dXN2 (s)+
∫
(0,t]

XN2 (s−) dXN1 (s)

+ [XN1 , XN2 ]t ,

where [XN1 , XN2 ] denotes the mutual variation of XN1 and XN2 . Hence,

XN1 (t)X
N
2 (t) = XN1 (0)X

N
2 (0)+

∫ t

0
XN1 (s)(q

N
4 − qN3 − qN5 + qN6 )(X

N(s)) ds

+
∫ t

0
XN2 (s)(q

N
1 + qN3 − qN2 − qN6 )(X

N(s)) ds + [XN1 , XN2 ]t
+ local martingale.

Now, writing the martingale problem associated with the process XN1 X
N
2 , we have

XN1 (t)X
N
2 (t) = XN1 (0)X

N
2 (0)+

∫ t

0
XN1 (s)(q

N
4 − qN5 )(X

N(s)) ds

+
∫ t

0
XN2 (s)(q

N
1 − qN2 )(X

N(s)) ds

+
∫ t

0
(XN2 (s)−XN1 (s)− 1)qN3 (X

N(s)) ds

+
∫ t

0
(XN1 (s)−XN2 (s)− 1)qN6 (X

N(s)) ds + local martingale.

We conclude that

〈XN1 , XN2 〉t = −
∫ t

0
(qN3 + qN6 )(XN(s)) ds.
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Similar arguments show that

〈XN1 〉t =
∫ t

0
(qN1 + qN3 + qN2 + qN6 )(X

N(s)) ds,

and 〈XN2 〉t =
∫ t

0
(qN4 + qN3 + qN5 + qN6 )(X

N(s)) ds,

which completes the proof.

Proof of Theorem 5.1. According to Theorem 4.1, for any x0 ∈ R+ × R+ \ {(0, 0)},
infs∈R+ ‖
(x0, s)‖ > 0. Then, Theorem 5.1 is a consequence of the following lemma.

Lemma 5.1. There exists a constant C depending only on r , λ, pI, µ1, µ2, and αp such that,
for any x0 ∈ R+ ×R+ \{(0, 0)}, any (XM(0))M∈N sequence of random variables taking values
in R × R \ {(0, 0)}, any N ∈ N

∗, and any T > 0,

E

[
sup
t≤T

∥∥∥∥ 1

N
XN(t)−
(x0, t)

∥∥∥∥
2 ∣∣∣∣ σ(XM(0), M ∈ N)

]

≤
(∥∥∥∥ 1

N
XN(0)− x0

∥∥∥∥
2

+ 1

N

(
T + T 2 1

N
‖XN(0)‖

))

× exp

(
T

∫ T

0

(
1 + 1

‖
(x0, s)‖
)2

ds

)
.

Proof. Let us fix T > 0. Using Theorem 5.2, we have

1

N
XN1 (t) = 1

N
XN1 (0)+

∫ t

0

1

N
(qN1 + qN3 − qN2 − qN6 )(X

N(s)) ds + 1

N
MN

1 (t),

1

N
XN2 (t) = 1

N
XN2 (0)+

∫ t

0

1

N
(qN4 − qN3 − qN5 + qN6 )(X

N(s)) ds + 1

N
MN

2 (t).

Moreover,

ψ1(t) =
∫ t

0
(q1 + q3 − q2 − q6)(ψ(s)) ds, ψ2(t) =

∫ t

0
(q4 − q3 − q5 + q6)(ψ(s)) ds.

Note that, for x = (x1, x2) in R+ × R+ and y = (y1, y2) in R+ × R+ \ {(0, 0)},∣∣∣∣ x1

x1 + x2
− y1

y1 + y2

∣∣∣∣ ≤
∣∣∣∣x1 − y1

y1 + y2

∣∣∣∣ +
∣∣∣∣ x1

x1 + x2
− x1

y1 + y2

∣∣∣∣
=

∣∣∣∣x1 − y1

y1 + y2

∣∣∣∣ +
∣∣∣∣ x1

x1 + x2

y1 − x1 + y2 − x2

y1 + y2

∣∣∣∣
≤ 2

‖x − y‖
‖y‖ .

We also have ∣∣∣∣ x1x2

x1 + x2
− y1y2

y1 + y2

∣∣∣∣ ≤ 2‖x − y‖.
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From now on, we use C to denote a positive constant which depends only on r , λ, pI, µ1, γ ,
µ2, and αp, and which may vary from line to line. For 0 ≤ t ≤ T ,

∥∥∥∥ 1

N
XN(t)−
(x0, t)

∥∥∥∥
2

≤ C

(∥∥∥∥ 1

N
XN(0)−
(x0, 0)

∥∥∥∥
2

+ T 2
∣∣∣∣r − rN

N

∣∣∣∣
2

+ T 2
∣∣∣∣λ− λN

N

∣∣∣∣
2

+ T

∫ t

0

(
1 + 1

‖
(x0, s)‖
)2∥∥∥∥ 1

N
XN(s)−
(x0, s)

∥∥∥∥
2

ds + 1

N2

∥∥∥∥MN(t)

∥∥∥∥
2)
.

(5.1)

Using the Burkholder–Davis–Gundy inequality [16], we obtain

E
[

sup
t∈[0,T ]

‖MN(t)‖2
∣∣∣ σ(XM(0), M ∈ N)

]
≤ C E[|〈〈MN 〉〉T | | σ(XM(0), M ∈ N)],

where, for a square matrix A, |A| = |trace(A)|. As a consequence of Lemma 3.1, we obtain,
for i ∈ {1, 2, 3, 4, 5},

E
[
sup
t≤T

qNi (Xs)
]

≤ C(‖XN(0)‖ + (rN + λN)T ) (5.2)

and
E[|〈〈MN 〉〉T | | σ(XM(0), M ∈ N)] ≤ CT (E[‖XN(0)‖] + (rN + λN)T ).

Hence, using Gronwall’s lemma, (5.1) implies that

E

[
sup
t≤T

∥∥∥∥ 1

N
XN(t)−
(x0, t)

∥∥∥∥
2 ∣∣∣∣ σ(XM(0), M ∈ N)

]

≤
(∥∥∥∥ 1

N
XN(0)− x0

∥∥∥∥
2

+ 1

N

(
T + T 2 1

N
‖XN(0)‖

))

× exp

(
T

∫ T

0

(
1 + 1

‖
(x0, s)‖
)2

ds

)
.

This completes the proof.

6. Stationary regime

We have proved so far that the processN−1XN converges, asN tends to ∞, to a deterministic
R

2-valued function. This function converges, as t tends to ∞, to a fixed point ψ∞. On the
other hand, for eachN , the Markov processXN is ergodic and, thus, has a limiting distribution
as t tends to ∞. This raises the natural question of whether this limiting distribution converges
to the Dirac mass atψ∞ asN tends to ∞. Let us denote by PYN ,ν the distribution of the process
YN = N−1XN under initial distribution ν. We denote by Pψ,ν the distribution of the process
whose initial state is chosen according to ν and whose deterministic evolution is then given by
the differential system Sr(x

0). According to Theorem 3.1, we know that XN has a stationary
probability whose value is irrespective of the initial distribution of XN . We denote by YN(∞)
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a random variable whose distribution is the stationary measure of YN . What we already know
can be summarized in the following diagram.

PYN (t),δ
x0

N→∞−−−−→ P
(·,t),δ
x0

t → ∞
⏐⏐� ⏐⏐� t → ∞

PYN (∞) −−−−→?

N→∞ δψ∞

The problem is then to prove that this is a commutative diagram, i.e. that YN(∞) converges
in distribution to the equilibrium point of the system Sr(x

0). We follow the proofs of [11] and
[20], but we take into consideration the special role of the point (0, 0), which is a singular point
for some of the qj .

Definition 6.1. We say that a probability measure ν on R+ × R+ belongs to P0 when
ν({0, 0}) = 0.

We will show that (i) for any sequence of initial distribution νN converging weakly to ν with
ν ∈ P0, PYN ,νN converges weakly to P
,ν , (ii) for any probability measure ν ∈ P0, P
(·,t),ν
converges weakly to δψ∞ , (iii) the sequence (YN(∞), N ≥ 1) is tight, and that (iv) any possible
accumulation point of (YN(∞), N ≥ 1) belongs to P0.

The proof is then short and elegant: since (YN(∞), n ≥ 1) is tight, it is sufficient to prove
that there is a unique possible limit to any convergent subsequence of (YN(∞)). We still denote
byYN(∞) such a converging subsequence (asN tends to ∞). Its limit is denoted by ν, known to
belong to P0. According to (i) above, PYN ,P

YN (∞)
converges weakly to P
,ν . Moreover, by the

properties of Markov processes, PYN ,P
YN (∞)

is the distribution of a stationary process; hence,


is also a stationary process when started from ν. This means that the distribution of
(·, t) is ν
for any t . Then, by (ii) above, ν = δψ∞ . We have thus proved that any convergent subsequence
of YN(∞) converges to δψ∞ . We now turn to the proofs of the three necessary theorems.

Theorem 6.1. For any sequence of initial distribution νN converging weakly to ν ∈ P0, PYN ,νN
converges weakly to P
,ν .

Proof. We will proceed in two steps: first we prove the tightness in D([0, T ],R2) and then
identify the limit. In fact, we will prove the slightly stronger results that PYN ,νN is tight and that
the limiting process is continuous. According to [4], we need to show that, for each positive ε
and η, there exist δ > 0 and n0 such that, for any N ≥ n0,

P
(

sup
|v−u|≤δ; v,u≤T

‖YN(v)− YN(u)‖ ≥ ε
)

≤ η.

We define

AN1 (t) = 1

N

∫ t

0
(qN1 + qN3 − qN2 − qN6 )(X

N(s)) ds,

AN2 (t) = 1

N

∫ t

0
(qN4 − qN3 − qN5 + qN6 )(X

N(s)) ds.

From Theorem 5.2 we know that

YNi (v) = ANi (v)+ 1

N
MN
i (v), i = 1, 2.
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Hence, for any positive a,

P
(

sup
|v−u|≤δ; v,u≤T

‖YN(v)− YN(u)‖ ≥ ε
)

≤ P(‖YN(0)‖ ≥ a)

+ P

(
sup

|v−u|≤δ; v,u≤T
‖AN(v)− AN(u)‖ ≥ ε

2
, ‖YN(0)‖ ≤ a

)

+ P

(
sup

|v−u|≤δ; v,u≤T
1

N
‖MN(v)−MN(u)‖ ≥ ε

2
, ‖YN(0)‖ ≤ a

)
. (6.1)

Equation (5.2) implies that

E

[
sup
s≤T

1

N2 ‖MN(s)‖2
∣∣∣∣ ‖YN(0)‖ ≤ a

]
≤ C(a + 1)

N
.

This means that (N−1MN, N ≥ 1) converges to 0 in L2(�; D([0, T ],R2),P· | ‖YN (0)‖≤a).
Hence, it converges in distribution in D([0, T ],R2) and, thus, is tight. This means that the last
summand of (6.1) can be made as small as needed for large N . Furthermore,

‖AN(v)− AN(u)‖ ≤ 2

N

∫ v

u

6∑
i=1

qi(X
N(s)) ds

≤ 2|v − u|
(
rN + λN

N
+ C

N
sup
s≤T

‖XN(s)‖
)
.

It follows from Lemma 3.1 that

E
[

sup
|v−u|≤δ; v,u≤T

‖AN(v)− AN(u)‖
∣∣∣ ‖YN(0)‖ ≤ a

]
≤ Cδ

(
rN + λN

N
T + a

)

≤ C((r + λ)T + a)δ.

This means that the second summand of (6.1) can also be made as small as needed. The
hypothesis on the initial condition means that this also holds for the first summand of (6.1).
Thus, we have proved so far that PYN ,νN is tight and that its limit belongs to the space of
continuous functions.

We now prove that the only possible limit is P
,ν . Assume that νN tends to ν and that PYN ,νN
tends to some PZ,ν . We suppose that the initial conditions XN(0) of the Markov processes are
distributed as νN and we introduce a random variable x0 distributed as ν. Recall that YN =
N−1XN . We fix M ∈ N

∗, (αk = (αk1, α
k
2))0≤k≤M ∈ R

2M+2, and 0 = t0 ≤ t1 ≤ · · · ≤ tM . We
introduce

GN = E

[
exp i

( M∑
k=0

〈αk, YN(tk)〉
)]
,

G̃N = E

[
exp i

( M∑
k=0

〈
, αk,


(
XN(0)

N
, tk

)〉)]
,

G = E

[
exp i

( M∑
k=0

〈αk,
(x0, tk)〉
)]
,
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where YN(−1) = 0 and YN = N−1XN , with initial condition XN(0) distributed as νN and
X0 as ν.

Let ε > 0. The sequence (νN)N∈N is tight; hence, there exists a compact set K ⊂ R+ ×
R+ \ {(0, 0)} such that ν(Kc)+ supN νN(K

c) ≤ ε. We also introduce

GNK = E

[
exp i

( M∑
k=0

〈αk, YN(tk)〉
)

1K

(
XN(0)

N

)]
,

G̃NK = E

[
exp i

( M∑
k=0

〈
αk,


(
XN(0)

N
, tk

)〉)
1K

(
XN(0)

N

)]
,

GK = E

[
exp i

( M∑
k=0

〈αk,
(x0, tk)〉
)

1K(x0)

]
.

Then,
lim sup

N

|G−GN | ≤ 2ε + lim sup
N

|G̃NK −GNK | + lim sup
N

|G̃NK −GNK |.

From Theorem 4.1, the map (x, s) �→ 
(x, s) is continuous on (R+×R+\{(0, 0)})×[0, T ]
and inf(x,s)∈K×[0,T ] ‖
(x, s)‖ > 0. Since XN(0)/N takes values in the compact set K , then,
from Lemma 5.1, lim supN |G̃NK −GNK | = 0. Since the sequence of measures (νN) converges
weakly to ν, then lim supN |G̃NK −GNK | = 0. Hence,

lim sup
N

|G−GN | ≤ 2ε for all ε > 0.

This means that for any t0, . . . , tM ,

P(YN (t0),...,YN (tM)),νN → P(
(x0,t0),...,
(x0,tN )),ν
as N → 0.

Hence, all the accumulation points are the same and the convergence of PYN ,νN follows.

Theorem 6.2. For any probability measure ν ∈ P0, P
(·,t),ν converges weakly to δψ∞ as
t → ∞.

Proof. For any f continuous bounded function on R
2, we have∫

f dP
(·,t),ν =
∫

R2
f (
(x, t)) dν(x).

Theorem 4.1 says that, for any x ∈ R+ × R+ \ {(0, 0)},
f (
(x, t)) → f (ψ∞) as t → ∞.

The result follows by dominated convergence.

Theorem 6.3. The sequence (YN(∞), N ≥ 1) is tight and any accumulation point belongs
to P0.

We need a preliminary lemma which relies on the observation that when µ1 = µ2, the
process X1 + X2 has the dynamics of the process counting the number of customers in an
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M/M/∞ queue. Recall that µ− = min(γµ1, µ2), and set ζ = (r + λpI)/µ−. For any c ∈ R+
and any x ∈ N, define the function

hc(t, x) = (1 + ceµ−t )xe−ζc exp(µ−t).

Note that hc is increasing with respect to x. Moreover, according to [17, Chapter 6],

∂hc

∂t
(t, x)+ R(hc(t, ·))(x) = 0, (6.2)

where, for any w : N → R,

Rw(x) = (w(x + 1)− w(x))(r + λpI)+ (w(x − 1)− w(x))µ−x.

Lemma 6.1. For any nonnegative real c, the process Hc = (hc(t, X1(t)+X2(t)), t ≥ 0) is a
positive supermartingale.

Proof. According to Dynkin’s formula (see [17, Proposition C.5]), for any 0 ≤ s < t , we
have

0 = E

[
hc(t, ‖X(t)‖)− hc(s, ‖X(s)‖)−

∫ t

s

∂hc

∂t
(r, ‖X(r)‖) dr

− (r + λpI)

∫ t

s

(hc(r, ‖X(r)‖ + 1)− hc(r, ‖X(r)‖)) dr

−
∫ t

s

(hc(r, ‖X(r)‖ − 1)− hc(r, ‖X(r)‖))(γµ1X1(r)+ µ2X2(r)) dr

∣∣∣∣ Fs

]

≥ E

[
hc(t, ‖X(t)‖)− hc(s, ‖X(s)‖)−

∫ t

s

∂hc

∂t
(r, ‖X(r)‖) dr

− (r + λpI)

∫ t

s

(hc(r, ‖X(r)‖ + 1)− hc(r, ‖X(r)‖)) dr

−
∫ t

s

(hc(r, ‖X(r)‖ − 1)− hc(r, ‖X(r)‖))µ−(X1(r)+X2(r)) dr

∣∣∣∣ Fs

]
,

where the inequality follows from the monotonicity of hc and the definition of µ−. Hence, we
obtain

0 ≥ E

[
hc(t, ‖X(t)‖)− hc(s, ‖X(s)‖)

−
∫ t

s

(
∂hc

∂t
(r, ‖X(r)‖)+ R(hc(r, ·))(‖X(r)‖)

)
dr

∣∣∣∣ Fs

]
.

In view of (6.2), we obtain

0 ≥ E[hc(t, ‖X(t)‖)− hc(s, ‖X(s)‖) | Fs],
i.e. Hc is a supermartingale.

Now, let (YN(∞), N ≥ 1) be a subsequence which converges to ν. Since XN(∞) is a
random variable distributed according to the stationary law of the process XN ,

E[QNe−‖·‖(XN(∞))] = 0,
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where QN is the infinitesimal generator of XN . By a direct calculation we have

QNe−‖·‖(x) = e−‖x‖[(λN + rN)(e
−1 − 1)+ (γµ1x1 + µ2x2)(e − 1)].

Then

(λN + rN)(1 − e−1)E[e−N‖YN (∞)‖]
= N(e − 1)E[e−N‖YN (∞)‖(γµ1Y

N
1 (∞)+ µ2Y

N
2 (∞))].

Hence, (1 − e−1)(r + λ)ν({(0, 0)}) = 0, i.e. ν belongs to P0. This completes the proof.

Proof of Theorem 6.3. Let K be real. For any positive real θ , we have

P(‖YN(t)‖ > K) = P(‖XN(t)‖ > NK) ≤ e−θNK E[exp(θ‖XN(t)‖)].

Lemma 6.1 entails that

E[exp(θ‖XN(t)‖)] ≤ (1 + (eθ − 1)e−µ−t )N‖XN(0)‖ exp(Nζ(eθ − 1)(1 − e−µ−t )).

Hence,

P(‖YN(∞)‖ > K) = lim
t→∞ P(‖YN(t)‖ > K)

≤ inf
θ>0

lim
t→∞(1 + (eθ − 1)e−µ−t )N‖XN(0)‖

× exp(−θNK +Nζ(eθ − 1)(1 − e−µ−t ))

= inf
θ>0

exp(N(−θK + ζ(eθ − 1))

≤ exp
(− 1

2NK lnK
)

for large enough K . The tightness follows.

7. Central limit theorem

It turns out that we can also evaluate the order of the approximation when we replace XN

by 
. This is given by a central limit theorem such as the following.

Theorem 7.1. Assume that the hypothesis of Theorem 5.1 holds. Assume further that√
N(YN(0)− x0) tends to 0 as N tends to ∞. Then, for any T > 0, the process

WN = √
N(YN −
(x0, ·))

tends in distribution in D([0, T ],R2) to a centered Gaussian process with covariance matrix
�(t) given by

�(t) =
(
�1(t) �12(t)

�12(t) �2(t)

)
,
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where

�1(t) = rt +
∫ t

0

(
λpI


1(x
0, s)


1(x0, s)+
2(x0, s)
+ µ1
1(x

0, s)

+ αp

1(x

0, s)
2(x
0, s)


1(x0, s)+
2(x0, s)

)
ds,

�2(t) =
∫ t

0

(
λ

(
1 − pI


1(x
0, s)


1(x0, s)+
2(x0, s)

)
+ µ2
2(x

0, s)

+ αp

1(x

0, s)
2(x
0, s)


1(x0, s)+
2(x0, s)

)
ds,

�12(t) = −αp
∫ t

0


1(x
0, s)
2(x

0, s)


1(x0, s)+
2(x0, s)
ds − (1 − γ )µ1

∫ t

0

1(x

0, s) ds.

Proof. According to [9, p. 339], it suffices to prove that

E
[
sup
t≤T

|WN(t)−WN(t−)|
]

→ 0 as N → +∞

and that
〈〈WN 〉〉t → �(t) as N → +∞.

Since the jumps of YN are bounded by 1/N , those of WN are bounded by N−1/2; hence, the
first point is proved. As to the second point, note that

〈〈WN 〉〉t = N−1〈〈MN 〉〉t
and then use Theorem 5.1.

8. Numerical investigation

Another approach to evaluate the order of approximation can be made by computer simula-
tion. We simulate the Markov process forN = 100 and compute the estimate of the prevalence
by a simple Monte Carlo method on 10 000 trajectories. For each sample path, the prevalence
is evaluated as the prevalence at a time large enough to have presumably attained the stationary
regime, i.e. we chose to stop after 10 000 transitions. For the parameters we chose, α = 1,
µ1 = 0.1, µ2 = 0.2, r = 1, λ = 5, and pI = 0.8, the results are strikingly good, as shown in
Figure 3. Note that the choice of parameters here is very delicate, since biological parameters
are not very well known (i.e.µ1,µ2, p, etc.) and population-dependent quantities are even more
obscure to determine. Here we chose parameters which seem reasonable and fit the observed
prevalence. Note that the initial condition does not matter since we are looking at the long-term
behavior. Since we have a Markov process, it is well known that the starting point does not
influence the stationary regime.

In such models, another quantity of interest is the relative importance of each parameter,
i.e. what affects the prevalence the most? In the deterministic system, this question is easily
solved by computing the derivative of the prevalence with respect to each of the parameters.
We now explain how to compute the sensitivity of the prevalence in the stochastic model. Say
we have a bounded function F which depends on the sample paths of X. We aim to compute

d

dp
Ep[F ],
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Figure 3: Prevalence with respect top. The solid line represents the value as computed by (4.1). The dots
represent the simulated values. The 95% confidence intervals are so small that they cannot be displayed.

where we put a p under the expectation symbol to emphasize the dependence of the underlying
probability with respect to p. Other ‘greeks’, as these quantities are called in mathematical
finance, can be derived analogously. We assume that we observe the Markov process on a time
window of size T , i.e. any functional is implicitly assumed to belong to FT = σ {X(s), 0 ≤
s ≤ T }.
Theorem 8.1. For any bounded F , F ∈ FT , we have

d

dp
Ep[F ] = 1

p
Ep

[
F

(∑
s≤T

1{(1,−1)}(�X(s))−
∫ T

0
q3(X(s−)) ds

)]

= 1

p
covp

(
F,

∑
s≤T

1{(1,−1)}(�X(s))
)
,

where �X(s) = X(s)−X(s−).

Proof. The proof relies on the Girsanov theorem, which is more easily expressed in the
framework of multivariate point measures. Since there are only six kinds of jump, we can
represent the dynamics of X as a point measure on R

+ × {1, . . . , 6}:
µ([0, t] × {i}) =

∑
s≤t

1{�X(s)=li },

where
l1 = (1, 0), l2 = (−1, 0), l3 = (1,−1),

l4 = (0, 1), l5 = (0,−1), l6 = (−1, 1).

In the reverse direction,

X(t) = X(0)+
6∑
i=1

µ([0, t] × {i})li .
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Figure 4: Prevalence greek with respect to p. Same conventions as above. The error bars represent the
95% confidence intervals.

It is immediate from the preceding results that νp, the Pp-predictable compensator of µ, is
given by dνp(t, i) = qi(X(t−)) dt. To compute (d/dp)Ep[F ] means to compute

lim
ε→0

1

ε
(Ep+ε[F ] − Ep[F ]).

Under Pp+ε, dνp+ε(t, i) = dνp(t, i) for i 	= 3 and dνp+ε(t, 3) = (1 + ε/p) dνp(t, 3). Let

U(t, i) =
{

0 if i 	= 3,

ε/p if i = 3.

According to the Girsanov theorem (see [7] and [14]), this means that

Ep+ε[F ] = Ep

[
FE

( 6∑
i=1

∫ t

0
U(s, i)(dµ(s, i)− dνp(s, i))

)]

= Ep

[
FE

(
ε

p
(µ([0, T ] × {3})− νp([0, T ] × {3}))

)]
,

where E denotes the Doléans-Dade exponential. It is known (see [7]) that a Doléans-Dade
exponential follows the same rule of derivation as a usual exponential. Moreover, since F is
bounded, we can differentiate inside the expectation, completing the proof.

With the parameters above, the simulated greek coincides pretty well with the sensitivity
computed by differentiating the expression of the stationary prevalence in the deterministic
system; see Figure 4. However, as usual with this method and unlike the above simulations,
the confidence intervals are rather large.

9. Conclusion

We analyzed the sensitivity with respect to all parameters for different sets of values. For the
tested values, it appears that the most important parameter is r , the rate of new infectious IDUs
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coming from the outside. This means that a sort of quarantine would guarantee, in the long
term, a decrease of the prevalence. However, this seems practically infeasible. More strikingly
is the fact that the second sensitive parameter is λ, the rate of new IDUs. This means that an
efficient way to diminish the prevalence would be to augment the number of IDUs and, thus,
mathematically speaking, to increase the denominator in the prevalence expression, more than
its numerator. Again, this solution is not socially acceptable. The third sensitive parameter
is p, the probability of infection at each injection. The influence of γ seems negligible: for the
whole range of possible values of γ from 0 to 1, the prevalence varies by less than 10%. Hence,
the possible healing of hepatitis C, which would intuitively help to decrease the prevalence, is
negligible. Our analysis thus corroborates the intuition of the epidemiologists, that the main
difference between the two viruses is explained by their infection strength.
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