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The Weak Ideal Property and Topological
Dimension Zero

Cornel Pasnicu and N. Christopher Phillips

Abstract. Following up on previous work, we prove a number of results for C*-algebras with the
weak ideal property or topological dimension zero, and some results for C*-algebras with related
properties. Some of the more important results include the following:

¢ The weak ideal property implies topological dimension zero.

* For a separable C*-algebra A, topological dimension zero is equivalent to RR(O; ® A) = 0, to
D ® A having the ideal property for some (or any) Kirchberg algebra D, and to A being residually
hereditarily in the class of all C*-algebras B such that O ® B contains a nonzero projection.

¢ Extending the known result for Z,, the classes of C*-algebras with residual (SP), which are resid-
ually hereditarily (properly) infinite, or which are purely infinite and have the ideal property, are
closed under crossed products by arbitrary actions of abelian 2-groups.

* If A and B are separable, one of them is exact, A has the ideal property, and B has the weak ideal
property, then A ®min B has the weak ideal property.

* If X is a totally disconnected locally compact Hausdorff space and A is a Co(X)-algebra all of
whose fibers have one of the weak ideal property, topological dimension zero, residual (SP), or
the combination of pure infiniteness and the ideal property, then A also has the corresponding
property (for topological dimension zero, provided A is separable).

* Topological dimension zero, the weak ideal property, and the ideal property are all equivalent for
a substantial class of separable C*-algebras, including all separable locally AH algebras.

¢ The weak ideal property does not imply the ideal property for separable Z-stable C*-algebras.

We give other related results, as well as counterexamples to several other statements one might
conjecture.

1 Introduction

The weak ideal property, introduced by the authors in [33], see Definition 2.3, is the
property for which there are good permanence results that seem to be closest to the
ideal property; see [33, §8]. (The ideal property fails to pass to extensions [26, Theo-
rem 5.1], to corners [32, Example 2.8], and, by [32, Example 2.7], to fixed point algebras
under actions of Z,. The weak ideal property does all of these.) Topological dimen-
sion zero [6] is a non-Hausdorff version of total disconnectedness of the primitive
ideal space of a C*-algebra. These two properties are related, although not identical,
and the purpose of this paper is to study them and their connections further. Some
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of our results also involve the ideal property, real rank zero, and several forms of pure
infiniteness (pure infiniteness [20, Definition 4.1], strong pure infiniteness [21, Defi-
nition 5.1], and residual hereditary (proper) infiniteness [33, Definitions 6.1, 6.2]).

For simple C*-algebras, there is a fairly short list of regularity properties generally
considered to be important and which often appear as hypotheses or conclusions in
important theorems. They include real rank zero, Property (SP), Z-stability, strict
comparison, and pure infiniteness. (By contrast, the property of being the linear span
of its projections, while considered in early work, seems much less important.) These
properties are by now fairly well understood. For nonsimple C*-algebras, there are
more regularity properties. They are less well understood, there are fewer theorems,
and we do not yet know which regularity properties will turn out to be important. This
paper is a contribution towards a better understanding of some of these properties,
and, we hope, towards eventually identifying which ones are important.

Even though it is not yet clear which regularity properties will be important in
the nonsimple case, the properties we consider (topological dimension zero, the weak
ideal property, and the ideal property) have at least proved to be valuable. We illustrate
this by giving some already known results in which these properties are used.

For topological dimension zero, if X is the primitive ideal space of a separable
C*-algebra, then X has topological dimension zero if and only if X is the primitive
ideal space of an AF algebra. (See [4, §3] and the theorem in [4, §5].) If A is a separable
purely infinite C*-algebra, then A has real rank zero if and only if A has topological
dimension zero and is Kj-liftable [35, Theorem 4.2 ].

Turning to the ideal property (every ideal is generated, as an ideal, by its projec-
tions), we consider AH algebras (in the sense of [25]: the spaces used are connected
finite complexes) with the ideal property and with slow dimension growth. Such alge-
bras have stable rank one [25, Theorem 4.1], and can be classified up to shape equiv-
alence by a K-theoretic invariant [25, Theorem 2.15]. If such an algebra A has very
slow dimension growth and K, (A) is torsion free, then A is an AT algebra, that is, a
direct limit of finite direct sums of matrix algebras over C(S') [14, Theorem 3.6 ]. The
stable rank one and AT algebra results fail without the ideal property. (Counterexam-
ples are easy, but too long for this introduction; we present them at the beginning of
Section 7.) Also, a separable purely infinite C*-algebra has the ideal property if and
only if it has topological dimension zero [35, Proposition 2.11].

The weak ideal property is much more recent. As noted above, it has better per-
manence properties than the ideal property. Moreover, under the hypotheses of the
theorems above for the ideal property, the weak ideal property actually implies the
ideal property. (See Theorem 715 and Theorem 2.10.)

We now describe our results. We prove in Section 2 that the weak ideal property
implies topological dimension zero in complete generality. For separable C*-algebras
which are purely infinite in the sense of [20], it is equivalent to the ideal property
and to topological dimension zero. A general separable C*-algebra A has topological
dimension zero if and only if O, ® A has real rank zero; this is also equivalent to
D ® A having the ideal property for some (or any) Kirchberg algebra D. We rule out
by example other results in this direction which one might conjecture. Topological
dimension zero, at least for separable C*-algebras, is also equivalent to a property of
the sort considered in [33]. That is, there is an upwards directed class € such that a
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separable C*-algebra A has topological dimension zero if and only if A is residually
hereditarily in C. (See the end of the introduction for other examples of this kind of
property.)

In Section 3, we improve the closure properties under crossed products of the class
of C*-algebras residually hereditarily in a class C by replacing an arbitrary action of
Z with an arbitrary action of a finite abelian 2-group (Corollary 3.3). This refinement
was overlooked in [33]. It applies to residual hereditary (proper) infiniteness as well as
to residual (SP) and to the combination of pure infiniteness and the ideal property. For
the weak ideal property and for topological dimension zero, better results are already
known [33, Corollary 8.10], [32, Theorem 3.17]. However, for topological dimension
zero, in the separable case we remove the technical hypothesis in [32, Theorem 3.14],
and show that if a finite group acts on a separable C*-algebra A and the fixed point
algebra has topological dimension zero, then A has topological dimension zero.

Section 4 considers minimal tensor products. For a tensor product to have the
weak ideal property or topological dimension zero, it is usually necessary that both
tensor factors have the corresponding property. In the separable case and with one
factor exact, this is sufficient for topological dimension zero. We show by example
that this result fails without the exactness hypothesis. For the weak ideal property,
we get only partial results: if both factors are separable, one is exact, and one actually
has the ideal property, or if one factor is exact and one factor has finite or Hausdorff
primitive ideal space, then the tensor product has the weak ideal property.

Proceeding to a Cy(X)-algebra A, we show that if X is totally disconnected and
the fibers all have the weak ideal property, topological dimension zero, residual (SP),
or the combination of pure infiniteness and the ideal property, then A also has the
corresponding property (for topological dimension zero, provided A is separable).
This result is the analog for these properties of [29, Theorem 2.1] (for real rank zero)
and [30, Theorem 2.1] (for the ideal property), but we do not assume that the Co(X)-
algebra is continuous. If A is a separable continuous Cy(X)-algebra with nonzero
fibers and X is second countable, then total disconnectedness of X is also necessary.
This is in Section 5. In the short Section 6, we consider locally trivial Cy(X)-algebras
with fibers that are strongly purely infinite in the sense of [21, Definition 5.1], and show
(slightly generalizing the known result for Cy (X, B)) that A is again strongly purely
infinite. In particular, this applies if the fibers are separable, purely infinite, and have
topological dimension zero.

Section 7 gives a substantial class of C*-algebras for which the ideal property, the
weak ideal property, and topological dimension zero are all equivalent. This class in-
cludes all separable locally AH algebras, as well as a further generalization, the separa-
ble LS algebras. We also prove that the weak ideal property implies the ideal property
for stable C*-algebras A such that Prim(A) is Hausdorff. However, we show by ex-
ample that there is a Z-stable C*-algebra with just one nontrivial ideal which has the
weak ideal property but not the ideal property.

Ideals in C*-algebras are assumed to be closed and two sided. We write Z,, for
Z[nZ, since the p-adic integers will not appear. If a: G - Aut(A) is an action of a
group G on a C*-algebra A, then A% denotes the fixed point algebra.

Because of the role they play in this paper, we recall the following definitions [33].
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Definition 1.1 ([33, Definition 5.1]) Let C be a class of C*-algebras. We say that C is
upwards directed if, whenever A is a C*-algebra that contains a subalgebra isomorphic
to an algebra in C, we have A € C.

Definition 1.2 ([33, Definition 5.2]) Let C be an upwards directed class of C*-alge-
bras, and let A be a C*-algebra. We say that A is hereditarily in C if every nonzero
hereditary subalgebra of A is in C. We say that A is residually hereditarily in C if A/I
is hereditarily in C for every ideal I c A with I # A.

We gave permanence properties for a general condition defined this way [33, §5].
We recall the conditions of this type considered in [33], and add one more to be proved
here.

(1) Let C be the class of all C*-algebras which contain an infinite projection. Then
C is upwards directed (clear) and a C*-algebra A is purely infinite and has the ideal
property if and only if A is residually hereditarily in €. See the equivalence of condi-
tions (ii) and (iv) of [35, Proposition 2.11] (valid, as shown there, even when A is not
separable).

(2) Let C be the class of all C*-algebras that contain an infinite element. Then C
is upwards directed (clear) and a C*-algebra A is (residually) hereditarily infinite 33,
Definition 6.1] if and only if A is (residually) hereditarily in C. (See [33, Corollary 6.5].
We should point out that, by [20, Lemma 2.2 (iii)], if D is a C*-algebra, B c D isa
hereditary subalgebra, and a and b are positive elements of B such that a is Cuntz
subequivalent to b relative to D, then a is Cuntz subequivalent to b relative to B.)

(3) Let C be the class of all C*-algebras that contain a properly infinite element.
Then € is upwards directed (clear) and a C*-algebra A is (residually) hereditarily
properly infinite [33, Definition 6.2]) if and only if A is (residually) hereditarily in C.
(Lemma 2.2(iii) of [20] plays the same role here as in (2).)

(4) Let C be the class of all C*-algebras that contain a nonzero projection. Then
C is upwards directed (clear). A C*-algebra A has Property (SP) if and only if A is
hereditarily in C, and has residual (SP) [33, Definition 71] if and only if A is residually
hereditarily in €. (Both statements are clear. Residual (SP) appears, without the name,
as a hypothesis in the discussion after [21, Proposition 4.18].)

(5) Let C be the class of all C*-algebras B such that K ® B contains a nonzero
projection. Then C is upwards directed (clear) and a C*-algebra A has the weak ideal
property [33, Definition 8.1] if and only if A is residually hereditarily in €. (This is
shown at the beginning of the proof of [33, Theorem 8.5].)

(6) Let C be the class of all C*-algebras B such that O, ® B contains a nonzero
projection. Then C is upwards directed. (This is clear.) A separable C*-algebra A has
topological dimension zero if and only if A is residually hereditarily in C. (This will
be proved in Theorem 2.10.)

2 Topological Dimension Zero

In this section, we prove that the weak ideal property implies topological dimension
zero for general C*-algebras (Theorem 2.8). We then give characterizations of topo-
logical dimension zero for separable C*-algebras (Theorem 2.10) and purely infinite
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separable C*-algebras (Theorem 2.9), in terms of other properties of the algebra, in
terms of properties of its tensor products with suitable Kirchberg algebras, and (for
general separable C*-algebras) of the form of being residually hereditarily in suitable
upwards directed classes. We also give two related counterexamples. In particular,
there is a separable purely infinite unital nuclear C*-algebra A with one nontrivial
ideal such that O, ® A ~ A and RR(A) = 0, and an action a:Z, — Aut(A), such that
RR(C*(Z,, A, a)) #0.

We recall two definitions [32]. We call a not necessarily Hausdorff space locally
compact if the compact (but not necessarily closed) neighborhoods of every point
x € X form a neighborhood base at x.

Definition 2.1 ([6, Remark 2.5 (vi) ], [32, Definition 3.2]) Let X be a locally com-
pact but not necessarily Hausdorft topological space. We say that X has topological
dimension zero if for every x € X and every open set U c X such that x € U, there
exists a compact open (but not necessarily closed) subset Y ¢ X such thatx € Y c U.
(Equivalently, X has a base for its topology consisting of subsets which are compact
and open, but not necessarily closed.) We further say that a C*-algebra A has topolog-
ical dimension zero if Prim(A) has topological dimension zero.

Definition 2.2 ([32, Definition 3.4]) Let X be a not necessarily Hausdorff topolog-
ical space. A compact open exhaustion of X is an increasing net (Y} ) ca of compact
open subsets Y, c X such that X = Ucp Y.

We further recall ([32, Lemma 3.10]; see [32, Definition 3.9] or [35, p. 53] for the
original definition) that if A is a C*-algebra and I c A is an ideal, then I is compact if
and only if Prim(I) is a compact open (but not necessarily closed) subset of Prim(A).

Finally, we recall the definition of the weak ideal property.

Definition 2.3 ([33, Definition 8.1]) Let A be a C*-algebra. We say that A has the
weak ideal property if, whenever I c ] ¢ K ® A are ideals in K ® A such that I # J, it
follows that J/I contains a nonzero projection.

Lemma 2.4 Let A be a C*-algebra with the weak ideal property. Let ] c A be an ideal
with | # A. Then there exists an ideal N ¢ A with ] ¢ N and such that K ® (N/]) is
generated as an ideal in K ® (A]]) by a single nonzero projection.

Proof Since A has the weak ideal property and K ® (A/]) # 0, there is a nonzero
projection e € K® (A/]). Let M c K ® (A/]) be the ideal generated by e. Then there
is an ideal N ¢ Awith ] ¢ N c A such that M = K ® (N/]). Since N/J # 0, it follows
that N # J. [ |

Lemma 2.5 Let A be a C*-algebra, let F c A be a finite set of projections, and let
I c A be the ideal generated by F. Then Prim(I) is a compact open subset of Prim(A).

Proof This can be shown by using the same argument as in (iii) implies (i) in the

proof of Proposition 2.7 of [35]. However, we can give a more direct proof (not in-
volving the Pedersen ideal). As there, we prove that I is compact (as recalled after
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Definition 2.2). So let (I ) e be an increasing net of ideals in A such that Uy I} = I
Standard functional calculus arguments produce € > 0 such that if B is a C*-algebra,
C c Bis a subalgebra, and p € B is a projection such that dist(p, C) < ¢, then there is
a projection g € C such that |g - p| < 1, and in particular g is Murray-von Neumann
equivalent to p. Write F = {py, p2,..., pn}. Choose A € A such that dist(p;,I)) < ¢
for j = 1,2,...,n. Let q1,92,...,qu € I be projections obtained from the choice
of . Then there are partial isometries s,s2,...,s, € A such that p; = s;q;s7 for
j=12,...,n.50 p1, P2,..., Pn € I), whence I = I. This completes the proof. |

Lemma 2.6 Let A be a C*-algebra, and let I c A be an ideal. Suppose that there is a
collection (I} ) e (not necessarily a net) of ideals in A such that I is the ideal generated
by Ujea Iy and such that Prim(I) has a compact open exhaustion (Definition 2.2) for
every A € A. Then Prim(I) has a compact open exhaustion.

Proof It is easily checked that a union of open sets with compact open exhaustions
also has a compact open exhaustion. ]

Proposition 2.7 Let A be a C*-algebra. Then there is a largest ideal I c A such that
Prim(I) has a compact open exhaustion.

Proof Let I be the closure of the union of all ideals J ¢ A such that Prim(J) has
a compact open exhaustion. Then Prim(I) has a compact open exhaustion by Lem-
ma 2.6. |

Theorem 2.8 Let A be a C*-algebra with the weak ideal property. Then A has topo-
logical dimension zero.

Proof We will show that for every ideal I c A, the subset Prim(I) has a compact
open exhaustion. The desired conclusion will then follow [32, Lemma 3.6].

So let I c A be an ideal. By Proposition 2.7, there is a largest ideal J c I such
that Prim(J) has a compact open exhaustion. We prove that J] = I. Suppose not.
Use Lemma 2.4 with I in place of A to find an ideal N c I with ] & N and such
that K ® (N/J) is generated by one nonzero projection. Then Prim(K ® (N/])) isa
compact open subset of Prim(K ® (I/])) by Lemma 2.5. So Prim(N/]) is a compact
open subset of Prim(I/]). Since Prim(J) has a compact open exhaustion, we can
apply [32, Lemma 3.7] (taking U = Prim(J)) to deduce that Prim(N) has a compact
open exhaustion. Since J ¢ N, we have a contradiction. Thus J = I, and Prim(I) has
a compact open exhaustion. [ |

The list of equivalent conditions in the next theorem extends the list in [35, Corol-
lary 4.3], by adding condition (v). As discussed in the introduction, this condition is
better behaved than the related condition (iv).

Theorem 2.9 Let A be a separable C*-algebra that is purely infinite in the sense of
[20, Definition 4.1]. Then the following are equivalent.

(i) O, ® A has real rank zero.
(ii) O, ® A has the ideal property.

https://doi.org/10.4153/CJM-2017-012-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-012-4

The Weak Ideal Property and Topological Dimension Zero 1391

(iii) A has topological dimension zero.
(iv) A has the ideal property.
(v) A has the weak ideal property.

Proof The equivalence of conditions (i)-(iv) is [35, Corollary 4.3]. That (iv) im-
plies (v) is trivial. That (v) implies (iii) is Theorem 2.8. [ |

We presume that Theorem 2.9 holds without separability. However, some of the
results used in the proof of [35, Corollary 4.3] are only known in the separable case,
and it seems likely to require some work to generalize them.

Recall that a Kirchberg algebra is a simple separable nuclear purely infinite C*-al-
gebra.

Theorem 2.10  Let A be a separable C*-algebra. Then the following are equivalent.

(i) A has topological dimension zero.

(i) O, ® A has real rank zero.

(iii) O, ® A has the ideal property.

(iv) Oz ® A has the weak ideal property.

(v)  Oo ® A has the ideal property.

(vi) Ooo ® A has the weak ideal property.

(vil) There exists a Kirchberg algebra D such that D ® A has the weak ideal property.

(viii) For every Kirchberg algebra D, the algebra D ® A has the ideal property.

(ix) Adisresidually hereditarily in the class of all C*-algebras B such that O, ® B contains
a nonzero projection.

(x) A is residually hereditarily in the class of all C*-algebras B such that K ® O, ® B
contains a nonzero projection.

(xi) A is residually hereditarily in the class of all C*-algebras B such that O ® B con-
tains a nonzero projection.

We presume that Theorem 2.10 also holds without separability.

To put conditions (ix)-(xi) in context, we point out that it is clear that the classes
used in them are upwards directed in the sense of Definition 1.1. Applying the results
of [33, §5] does not give any closure properties for the collection of C*-algebras with
topological dimension zero which are not already known. We do get something new,
which is at least implicitly related to this characterization; see Theorem 3.6.

The conditions in Theorem 2.10 are not equivalent to A having the weak ideal prop-
erty, since there are nonzero simple separable C*-algebras A, such as those classified
in [40], for which K ® A has no nonzero projections. They are also not equivalent to
RR(Oq ® A) = 0. See Example 2.13.

Proof of Theorem 2.10  Since A has topological dimension zero if and only if O, ® A
has topological dimension zero, and since O, ® A is purely infinite [20, Proposi-
tion 4.5], the equivalence of (i)-(iv) follows by applying Theorem 2.9 to O, ® A. Since
Oo ® A s purely infinite [20, Proposition 4.5] and O, ® O = O,, the equivalence of
(iii), (v), and (vi) follows by applying Theorem 2.9 to O ® A.

We prove the equivalence of (i) and (ix). Let C be the class of all C*-algebras B such
that O, ® B contains a nonzero projection.
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Assume that A has topological dimension zero; we prove that A is residually hered-
itarily in C. Let I c A be an ideal, and let B ¢ A/I be a nonzero hereditary subalgebra.
Then A/I has topological dimension zero by [6, Proposition 2.6] and [32, Lemma 3.6].
It follows from [32, Lemma 3.3] that B has topological dimension zero. Use (iii) im-
plies (i) in Theorem 2.9 to conclude that O, ® B contains a nonzero projection.

Conversely, assume that A is residually hereditarily in €. We actually prove that
O, ® A has the weak ideal property. By (v) implies (iii) in Theorem 2.9, and since
0, ® A is purely infinite [20, Proposition 4.5], it will follow that O, ® A has topological
dimension zero. Since Prim(0, ® A) = Prim(A), it will follow that A has topological
dimension zero.

Thus, let I ¢ ] ¢ O, ® A be ideals such that J # I; we must show that K ® (J/I)
contains a nonzero projection. Since O, is simple and nuclear, there are ideals I, c
Jo c Asuchthat] = O,®Ipand ] = O, ® Jo; moreover, J /I = O, ® (Jo/Io). Since Jo /Iy
is a nonzero hereditary subalgebra of A/I,, the definition of being hereditarily in €
implies that O,®(Jo/Io) contains a nonzero projection, so K& (J/I) =~ K®0,&(Jo/Io)
does also. This completes the proof of the equivalence of (i) and (ix).

We prove the equivalence of (ix) and (xi) by showing that the two classes involved
are equal, that is, by showing that if B is any C*-algebra, then O, ® B contains a
nonzero projection if and only if O, ® B contains a nonzero projection. If O, ® B con-
tains a nonzero projection, use an injective (nonunital) homomorphism O; - O to
produce an injective homomorphism of the minimal tensor products O; ®min B —
O ®min B. Since O, and O are nuclear, we have an injective homomorphism
0, ® B - O ® B, and hence a nonzero projection in O ® B. Using an injec-
tive (unital) homomorphism from O, to O, the same argument also shows that if
O ® B contains a nonzero projection, then so does O, ® B.

The proof of the equivalence of (ix) and (x) is essentially the same as in the previous
paragraph, using injective homomorphisms

0O, — K®0O, and K®Oz—>02®02—;>02.

We have now proved the equivalence of all the conditions except (vii) and (viii).

It is trivial that (vi) implies (vii) and that (viii) implies (v).

Assume (vii), so that there is a Kirchberg algebra Dy such that Dy ® A has the weak
ideal property. We prove (viii). Let D be any Kirchberg algebra. By Theorem 2.8, the
algebra Dy ® A has topological dimension zero. Since

Prim(Dy ® A) 2 Prim(A) 2 Prim(D ® A),

D ® A has topological dimension zero. Apply the already proved implication from (i)
to (v) with D ® A in place of A, concluding that O, ® D ® A has the ideal property.
Since O ®D = D (by [19, Theorem 3.15]), we see that D® A has the ideal property. M

A naive look at condition (i) of Theorem 2.9 and the permanence properties for
C*-algebras which are residually hereditarily in some class € (see [33, Corollary 5.6
and Theorem 5.3]) might suggest that if O ® A has real rank zero and one has an
arbitrary action of Z; on O ® A or a spectrally free [33, Definition 1.3] action of
any discrete group on O, ® A, then the crossed product should also have real rank
zero. This is false. We give an example of a nonsimple purely infinite unital nuclear
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C*-algebra A satisfying the Universal Coefficient Theorem (in fact, with O, ® A = A),
with exactly one nontrivial ideal, and such that RR(A) = 0, and a spectrally free action
a:Zy — Aut(A), such that C*(Z,, A, a) does not have real rank zero.

To put our example in context, we recall the following. First, [10, Example 9] gives
an example of a pointwise outer action « of Z, on a simple unital AF algebra A such
that C*(Z,, A, ) does not have real rank zero. Second, if A is purely infinite and sim-
ple, then for any action a:Z, — Aut(A) the crossed product is again purely infinite
[16, Corollary 4.4]. If « is pointwise outer, then C*(Z,, A, «) is again simple, so auto-
matically has real rank zero. Otherwise, @ must be an inner action. (See Lemma 2.11.)
Then C*(Z,, A, a) @ A @ A, so has real rank zero. Thus, no such example is possible
when A is purely infinite and simple. Third, it is possible for A to satisfy O, ® A = A but
to have O, ® C*(Z,, A, a) % C*(Z,, A, ). See [15, Lemma 4.7], where this happens
with A = O,.

The following lemma is well known, but we are not aware of a reference.

Lemma 2.11 Let A be a simple C*-algebra, let G be a finite cyclic group, and let a: G —
Aut(A) be an action of G on A. Let gy € G be a generator of G. If ay, is inner, then a is
an inner action, that is, there is a homomorphism g v ug from G to the unitary group
of M(A) such that ag(a) = ugauy forall g € G and a € A.

Proof Let n be the order of G. By hypothesis, there is a unitary v € M(A) such that
ag,(a) =vav* foralla € A. Then a = ag (a) = v"av™" for all a € A. Simplicity of
A implies that the center of M(A) contains only scalars, so there is A € S' such that
v" = A-1. Now choose w € §' such that 0" = 17, giving (wv)" = 1. Define u = wkvk
fork=0,1,...,n -1 ]

Example 2.12  There are a separable purely infinite unital nuclear C*-algebra A and
an action a: Z, — Aut(A) with the following properties. The algebra A has exactly one
nontrivial ideal I and satisfies the Universal Coefficient Theorem; moreover, 0, ® A =
A and RR(A) = 0. The action « is strongly pointwise outer [39, Definition 4.11],
[33, Definition 1.1] and spectrally free [33, Definition 1.3], but RR(C*(Z,, A, «)) # 0.

To start the construction, let v:Z, — Aut(O,) be the action considered in [15,
Lemma 4.7]. Define B = C*(Z,, O,, v); [15, Lemma 4.7] implies that B is a Kirchberg
algebra (simple, separable, nuclear, and purely infinite) that is unital and satisfies the
Universal Coefficient Theorem, and moreover that Ko(B) = Z[3] and K;(B) = 0.

Let P be the unital Kirchberg algebra satisfying the Universal Coeflicient Theorem,
Ko(P) = 0, and K;(P) = Z. The Kiinneth formula [43, Theorem 4.1] implies that
K()(P ® (94) =0and KI(P ® (94) ~ 7s.

The algebras O4 and P ® O4 are both in the classifiable class € of purely infinite
simple separable nuclear C*-algebras defined in the introduction to [41, § 3]. It follows
from [41, Proposition 5.4] that every possible six term exact sequence

(2.1) Ko(P® 04) M Ko(O4)
aT Texp
K1(04) Ml K](P®O4)
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(for any possible choice of abelian groups M, and M; and homomorphisms exp and 0)
is realized as the K-theory of an exact sequence
(2.2) 0— 15 E 2 D—o,
in which I and D are stable C*-algebras in C, and

Ko(I) 2K (P®0Oy), Ki.(D)2K.(04), Ko(Eo)=M, Ki(Eo)= M.
Moreover, as in the introduction to [41, $4], we may require that the extension be in

the standard form described there. In particular, it will then be essential. Choose the
exact sequence (2.2) such that the connecting map

(2.3) exp: Ko (04) = Ki( P ® Oy4)

is an isomorphism. Classification in the simple case (see [18], [38, Theorem 4.2.4])
gives 2 K® P ® O4 and D 2 K ® O4. The algebra E; has a countable approximate
identity consisting of projections [41, Proposition 4.4]. In particular, there exists a
projection p € Eq such that 7o (p) # 0. Since the extension is essential, p is full.

We identify the algebras 7o (p) Do (p) and ppo(I)p in the extension

(2.4) 0 —> ppo(1)p > pEop —*> mo(p) Do (p) — 0.
Since exp in (2.1) has been chosen to be an isomorphism, [79(p)] = 0 in Ko(D).
Therefore classification in the simple case implies that 7o (p) Do (p) = M3(O4) (see
(18], [38, Theorem 4.2.4]). Since p is full, puo(I)p # 0. The extension (2.4) does not
split, because exp # 0in (2.1), so puo(I)p is not unital. Therefore puo(I)p is stable. So
ppo(I)p 2 K® P ® O4. Setting E = pE,p, the extension (2.4) is therefore isomorphic
to an extension
(2.5) 0—K®P®0O; —>E -5 Ms(0,) — 0,
whose K-theory is as in (2.1) with the choice (2.3).

Define A= 0, ® E. Let

10:Zy > Aut(K® P® O4), 1:Zy - Aut(E), and 1:7Z; - Aut(M3(04))
be the trivial actions, and let

A =v®19:Zy > Aut(0, ® KQP® Oy), a=v®1:Z, > Aut(A),
and
a1 =v®1:Zy - Aut(0, ® M3(04))

be the obvious actions on the tensor products. Tensoring the sequence (2.5) with O,
and equipping the algebras with these actions gives an equivariant exact sequence

(2.6) 0—>02®K®P®O4—>A—>02®M3(O4)—>0.

Using the isomorphisms O, @ M3(04) 2 O, and 0,®P®04 2 O,, we can rewrite (2.6)
as0 - K® O, - A - Oy — 0. Therefore, [5, Theorem 3.14, Corollary 3.16] imply that
RR(A) = 0. It follows from [37, Lemma 2.8.2] that taking crossed products in (2.6)
gives an exact sequence

0— C*(Z2,0, @ K®P® Oy,0t0) —> C*(Zp, A, ) —>
C*(Zz,OZ ®M3(O4),(X1) — 0.
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This sequence reduces to
(2.7) 0—B®K®P®Oy —B®E — B® M3(04) — 0,

in which the maps are obtained from those of (2.5) by tensoring them with idg. It
follows from the Kiinneth formula [43, Theorem 4.1] that

Ko(B® M3(04)) 2K (B®K®P®0O,) 2 Z[1]® Zs 2 Zs.

Consider the connecting map Ko(B ® M3(04)) - K1(B® K ® P ® O,) associ-
ated with (2.7). By naturality, it is the tensor product of the isomorphism (2.3) with
idz1/2]> and is hence nonzero. Since every class in Ko(B® M3(0,)) is represented by
a projection in B ® M3(0y), it follows from the six term exact sequence in K-theory
that there are projections in B ® M3(04) which do not lift to projections in B ® E.
Therefore, [5, Theorem 3.14] implies that RR(BQE) # 0. Thus RR(C*(Z,, A, a)) # 0.

It remains to prove the claim that « is strongly pointwise outer and spectrally free.
Since the group Z, is finite, these are equivalent by [33, Theorem 1.16], so we prove
strong pointwise outerness. Let g € Z, be the nontrivial element. This then reduces
to proving that the automorphisms (®g)g = v, ® idkgrgo, € Aut(0; ® K® P ® O4)
and (&) = vg ® idpg,(0,) € Aut(O, ® M3(04)) are outer. The automorphism v, €
Aut(0,) is outer, since otherwise the action v would be inner by Lemma 2.1, so the
crossed product would be O, ® O,. We can now apply [33, Proposition 1.19 (2)] twice,
both times using v:Z, — Aut(0,) in place of a: G - Aut(A), and in one case using
K ® P ® O4 in place of B and in the other case using M3(O4).

We would like to get outerness of (@), € Aut(O, ® K® P ® 04) from [45, Theo-
rem 1], but that theorem is only stated for unital C*-algebras.

Example 2.13 There is a separable purely infinite unital nuclear C*-algebra A with
exactly one nontrivial ideal and which has the ideal property but such that O,, ® A
does not have real rank zero.

Let E be as in (2.5) in Example 2.12, with the property that the connecting map
in (2.3) is nonzero. Set A = O, ®E. Since Qoo ® K P® 04 and O, ® M3(04) have the
weak ideal property (for trivial reasons), it follows from [33, Theorem 8.5 (5)] that A
has the weak ideal property, and then from Theorem 2.9 that A has the ideal property.
However, A is by construction not Ky-liftable in the sense of [35, Definition 3.1], so
[35, Corollary 4.3(i)] implies that O, ® A (which is of course isomorphic to A) does
not have real rank zero.

3 Permanence Properties for Crossed Products

We proved [33] that if C is an upwards directed class of C*-algebras, « is a completely
arbitrary action of Z, on a C*-algebra A, and A* is (residually) hereditarily in €, then
A is (residually) hereditarily in C. (See [33, Theorem 5.5].) In particular, by consid-
ering dual actions, it follows [33, Corollary 5.6] that crossed products by arbitrary
actions of Z, preserve the class of C*-algebras that are (residually) hereditarily in C.
Here we show how one can easily extend the first result to arbitrary groups of order
a power of 2 and the second result to arbitrary abelian groups of order a power of 2.
This should have been done in [33], but was overlooked there. We believe these results

https://doi.org/10.4153/CJM-2017-012-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-012-4

1396 C. Pasnicu and N. C. Phillips

should be true for any finite group in place of Z,, or at least any finite abelian group,
but we do not know how to prove them in this generality.
The following lemma is surely well known.

Lemma 3.1 Let G be a topological group, let A be a C*-algebra, and let a: G — Aut(A)
be an action of G on A. Let N c G be a closed normal subgroup. Then there is an action
@:G/N — Aut(A*) such that for g € G and a € AW we have Ggn(a) = az(a).
Moreover, (AN ) = A%,

Proof The only thing requiring proof is that if ¢ € G and a € A*¥, then ag(a) €
AN Soletk € N. Since g7'kg € N, we get ay (ag(a)) = ag(agirg(a)) = ag(a). M

Theorem 3.2  Let C be an upwards directed class of C*-algebras. Let G be a finite
2-group, and let a: G - Aut(A) be an arbitrary action of G on a C*-algebra A.

(i) If A% is hereditarily in C, then A is hereditarily in C.

(ii) If A% is residually hereditarily in C, then A is residually hereditarily in C.

Proof We prove both parts at once. We use induction on the number n € Z5, such
that the order of G is 2". When n = 0, the statement is trivial. So assume that n ¢
Zsy, that the statement is known for all groups of order 2", that G is a group with
card(G) = 2"*!, that A is a C*-algebra, that a: G — Aut(A) is an action, and that A*
is (residually) hereditarily in €. The Sylow theorems provide a subgroup N c G such
that card(N) = 2. Since N has index 2, N must be normal. Let @: G/N — Aut(A%~)
be as in Lemma 3.1. Then (A%V)® = A% is (residually) hereditarily in €. Since G/N =
7, it follows from [33, Theorem 5.5] that A% is (residually) hereditarily in C. The
induction hypothesis now implies that A is (residually) hereditarily in C. ]

Corollary 3.3 Let C be an upwards directed class of C*-algebras. Let G be a finite
abelian 2-group, and let a: G — Aut(A) be an arbitrary action of G on a C*-algebra A.

(i) If Ais hereditarily in C, then C*(G, A, a) and A% are hereditarily in C.
(i) If Ais residually hereditarily in C, then C* (G, A, a) and A* are residually hered-
itarily in C.

Proof For C*(G, A, «), apply Theorem 3.2 with C*(G, A, «) in place of A and the
dual action @ in place of a.

For A%, use the proposition in [42] to see that A* is isomorphic to a corner of
C*(G, A, a), and apply [33, Proposition 5.10]. [ |

Presumably Corollary 3.3 is valid for crossed products by coactions of not neces-
sarily abelian 2-groups. Indeed, possibly the appropriate context is that of actions of
finite dimensional Hopf C*-algebras. We will not pursue this direction here.

Corollary 3.4 Let G be a finite 2-group, and let a:G — Aut(A) be an arbitrary
action of G on a C*-algebra A. Suppose A* has one of the following properties: resid-
ual hereditary infiniteness, residual hereditary proper infiniteness, residual (SP), or the
combination of the ideal property and pure infiniteness. Then A has the same property.
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Proof As discussed in the introduction, for each of these properties there is an up-
wards directed class C such that a C*-algebra has the property if and only if it is resid-
ually hereditarily in the class C. Apply Theorem 3.2. ]

Corollary 3.5 Let G be a finite abelian 2-group, and let a: G — Aut(A) be an ar-
bitrary action of G on a C*-algebra A. Suppose A has one of the following properties:
residual hereditary infiniteness, residual hereditary proper infiniteness, residual (SP), or
the combination of the ideal property and pure infiniteness. Then C*(G, A, a) and A®
have the same property.

Proof The proof is the same as that of Corollary 3.4, using Corollary 3.3 instead of
Theorem 3.2. u

We omit the weak ideal property in Corollary 3.4 and Corollary 3.5, because bet-
ter results are already known [33, Theorem 8.9, Corollary 8.10]. We also already know
[32, Theorem 3.17] that topological dimension zero is preserved by crossed products
by actions of arbitrary finite abelian groups, not just abelian 2-groups. The result anal-
ogous to Corollary 3.4 is [32, Theorem 3.14], but it has an extra technical hypothesis.
In the separable case, we remove this hypothesis.

Theorem 3.6 Let a:G — Aut(A) be an action of a finite group G on a separable
C*-algebra A. Suppose that A* has topological dimension zero. Then A has topological
dimension zero.

Proof Define an action f:G — Aut(O, ® A) by 8, = ido, ® a, for g € G. The
implication from (i) to (iv) in Theorem 2.10 shows that (O, ® A)? = O, ® A* has the
weak ideal property. Theorem 8.9 of [33] now implies that O, ® A has the weak ideal
property. So A has topological dimension zero by the implication from (iv) to (i) in
Theorem 2.10. ]

4 Permanence Properties for Tensor Products

In this section, we consider permanence properties for tensor products. One of its
purposes is to serve as motivation for the results on Cy(X)-algebras in Section 5.
The new positive result is Theorem 4.4: if A and B are nonzero separable C*-algebras
and A is exact, then A ®nin B has topological dimension zero if and only if A and B
have topological dimension zero. The exactness hypothesis is necessary (Example 4.1).
Still assuming this exactness hypothesis, we also give partial results for the weak ideal
property, when one of the tensor factors actually has the ideal property and both are
separable (Theorem 4.8), and when one of them has finite or Hausdorff primitive ideal
space (Proposition 4.10 and Proposition 4.11).

The properties we are considering are certainly not preserved by taking tensor
products with arbitrary C*-algebras. For example, the algebra C has all of topological
dimension zero, the ideal property, the weak ideal property, and residual (SP), but
C([0,1]) ® C has none of these. The algebra O, is purely infinite and has the ideal
property, but C([0,1]) ® O, does not have the ideal property.
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There is thus no hope of any general theorem about tensor products for properties
of the form “residually hereditarily in €” when only one tensor factor has the prop-
erty. Permanence theorems will therefore have to assume that both factors have the
property in question. The following example shows that we will also need to assume
that at least one tensor factor is exact.

Example 4.1 We show that there are separable unital C*-algebras A and C (neither
of which is exact) that have topological dimension zero and such that A ®,;, C does
not have topological dimension zero. In fact, A and C even have real rank zero, and C
is simple. We also show that there are separable unital C*-algebras B and D that are
purely infinite and have the ideal property, but such that B ® i, D does not have the
ideal property. In fact, B and D even tensorially absorb O,, and D is simple.

Since topological dimension zero and the weak ideal property are preserved by
passing to quotients, it follows that no other tensor product of A and C has topological
dimension zero. Also using the implication from (iv) to (iii) in Theorem 2.10, it follows
that no other tensor product of B and D even has the weak ideal property.

Let A and C be as in [34, Theorem 2.6]. As there, A and C are separable unital
C*-algebras with real rank zero. Real rank zero passes to ideals and quotients, and
therefore clearly implies the weak ideal property. So A and C have topological di-
mension zero by Theorem 2.8. Also, C is simple and A ® min C does not have the ideal
property [34, Theorem 2.6]. These are the same algebras A and C as used in the proof
of [35, Proposition 4.5]. Thus, A ®yin C does not have topological dimension zero
[35, Proposition 4.5 (1)]. This shows that A and C have the required properties. Also,
02 ® A ®min C does not have the ideal property [35, Proposition 4.5 (2)]. Thus taking
B=0,®Aand D = O, ® C gives algebras B and D with the required properties.

We have several positive results, but no answers for several obvious questions. We
recall known results, then give the new result we can prove (on topological dimension
zero) and our partial results for the weak ideal property. We conclude with open
questions.

In order to get

(4.1) Prim(A ®min B) = Prim(A) x Prim(B),

we will assume one of the algebras is exact and both are separable. In Theorem 4.4,
Theorem 4.8, and Corollary 4.9, these assumptions can be replaced by any other hy-
potheses which imply a natural homeomorphism as in (4.1). Proposition 2.17 of [3]
gives a number of conditions that imply this for the spaces of prime ideals in place of
the primitive ideal spaces, but for separable C*-algebras this is the same thing.

Theorem 4.2 ([34, Corollary 1.3]) Let A and B be C*-algebras with the ideal property.
Assume that A is exact. Then A ®in B has the ideal property.

Theorem 4.3 ([35, Proposition 4.6]) Let A and B be C*-algebras with the ideal prop-

erty. Assume that B is purely infinite and A is exact. Then A ®uyin B is purely infinite
and has the ideal property.
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Theorem 4.4 Let A and B be nonzero separable C*-algebras. Assume that A is exact.
Then A®yin B has topological dimension zero if and only if both A and B have topological
dimension zero.

Proof By [3, Proposition 2.17] (see [3, Remark 2.11] for the notation in [3, Proposi-
tion 2.16], to which it refers), the spaces of closed prime ideals satisfy

prime(A ®min B) = prime(A) x prime(B),

with the homeomorphism being implemented in the obvious way ([3, Proposition
2.16 (iii)]). Since A, B, and A ®,;, B are all separable, [36, Proposition 4.3.6] implies
that prime ideals are primitive; the reverse is well known. So

(4.2) Prim(A ®min B) = Prim(A) x Prim(B).

Assume A and B have topological dimension zero. Then (see Definition 2.1) we
need to prove that if X and Y are locally compact, but not necessarily Hausdorft spaces
that have topological dimension zero, then X x Y has topological dimension zero. So
let (x,y) € XxY,andlet W c X x Y be an open set with (x, y) € W. By the definition
of the product topology, there are open subsets Uy c X and V; c Y such that x € U,
y € Vo, and Uy x Vy ¢ W. By the definition of topological dimension zero, there
are compact (but not necessarily closed) open subsets U ¢ X and V c Y such that
xeUcUjand y € V c V. Then U x V is a compact open subset of X x Y such that
(x,y)eUxVcW.

Now assume A ®,in B has topological dimension zero. We prove that B has topo-
logical dimension zero; the proof that A has topological dimension zero is the same.
By (4.2), it is enough to prove that if X and Y are nonempty locally compact, but not
necessarily Hausdorft spaces, and X x Y has topological dimension zero, then X has
topological dimension zero. So let x € X and let U c X be an open set that contains x.
Fix any point yo € Y. Then U x Y is an open subset of X x Y that contains (x, yo).
Therefore there is a compact (but not necessarily closed) open subset W c U x Y
such that (x,y) € W. Let p: X x Y — X be the projection to the first coordinate.
Then p is a continuous open map. Therefore the set V = p(W) is a compact (but not
necessarily closed) open subset of X, and clearly x e V. c U. ]

The first result for the weak ideal property requires some preparation.

Notation 4.5 Let Abea C*-algebra. Foranopenset U c Prim(A), weletI,(U) c A
be the corresponding ideal. Thus

Prim(I,(U)) 2 U and Prim(A/I4(U)) 2 Prim(A) \ U.
Lemma 4.6  Let A be a C*-algebra, let U c Prim(A) be open, and let p € A/I,(U)
be a projection. Then there exist an open subset V c Prim(A), a compact (but not

necessarily closed) subset L ¢ Prim(A), and a projection q € AJI4(V), such that
V ¢ L c U and the image of q in A/14(U) is equal to p.

Proof For P € Prim(A), let mp: A — A/P be the quotient map, and for an open
subset W c Prim(A), let ky: A - A/I4(W) be the quotient map. Choose a € A,
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such that xy(a) = p. Define

V= {PePrim(4): |mp(a® - a)] > 1}
and

L={PePrim(A):|np(a®-a)|>1}.

We apply results in [9] to these sets. These results are actually stated in terms of func-
tions on the space A of unitary equivalence classes of irreducible representations of A,
with the topology being the inverse image of the topology on Prim(A) under the stan-
dard surjection A — Prim(A), but they clearly apply to Prim(A). It follows that V is
open [9, Proposition 3.3.2], and that L is compact [9, Proposition 3.3.7]. Obviously
V c L. Clearly 7p(a* — a) = 0 forall P € Prim(A) \ U,so L c U.

Lemma 3.3.6 of [9] implies that |xy (a®—a)| < 3. Therefore 5 ¢ sp(xv(a)). Thus
we can define a projection g € A/I,(V) by q = X(1,00)(kv(a)). The image of q in
A[I4(U) is clearly equal to p. [ |

Lemma 4.7 Let X; and X, be topological spaces, let W c X; x X, be an open subset,
let x € Xy, let L ¢ X, be compact, and suppose that {x} x L ¢ W. Then there exists an
open set U c Xy suchthatx e Uand UxLc W.

We do not assume that X; and X, are Hausdorff. In particular, L need not be closed.

Proof of Lemma 4.7 For each y € L, choose open sets V;(y) ¢ X; and V2(y) ¢ X,
such that (x, y) € Vi(») x V2(y) ¢ W. Use compactness of L to choose n € Z, and
V1> Y25 -+ -» ¥n € L such that Vo(31), Va(¥2), ..., Va(y,) cover L. Take

=

U= NVl L

J

Theorem 4.8 Let Ay and A, be separable C*-algebras. Assume that A; or A, is exact,
that A, has the ideal property, and that A, has the weak ideal property. Then A; ®min A2
has the weak ideal property.

In the diagram (4.5) in the proof below, one should think of the subquotients as
corresponding to locally closed subsets of Prim(A;) x Prim(A;). Thus, the alge-
bra in the middle of the top row corresponds to V; x (V5 \ T). It contains a useful
nonzero projection, obtained as the tensor product of suitable projections in I4, (V)
and I4,(V2)/14,(T). This subset is not open, so the algebra is not a subalgebra of
Ay ®min A2. A main point in the proof is that, given V, and a nonzero projection

€ € IAz(VZ)/IAz (SZ)

(see (4.3) for the definition of S;), the sets V] and T have been chosen so that there is
a projection p, € I4,(V2)/14,(T) whose image is e,, and so that the set

YU[le(Vz\T)]

is open.
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We do not get a proof that the tensor product of two algebras with the weak ideal
property again has the weak ideal property, because we do not know how to reduce the
size of V;, (to go with an analogous subset T; ¢ V;) without changing the projection e,.

Proof of Theorem 4.8 Replacing A, by K ® A,, we may assume thatifI, ] c A, are
ideals such that I & J, then J/I contains a nonzero projection.

Define X; = Prim(A;) for j = 1,2. Using [3] in the same way as in the proof of
Theorem 4.4, we identify Prim(A; ®min A2) = Xi x X,. The identification is given
by the map from Xj x X, to Prim(A; ®uin A,) sending (P, P;) € X; x X, to the
primitive ideal obtained as the kernel of A; ®min A2 = (A1/P1) ®min (A2/P>). The
lattice of ideals of A; ®min A, can thus be canonically identified with the lattice of
open subsets of X; x X, when this space is equipped with the product topology. We
simplify Notation 4.5 by writing I;(U) for I,,(U) when U c X; is open, and I(W)
for In,@,.,4,(W) when W c X; x X, is open. We then get canonical isomorphisms
L(U1) ®min [(Uz) 2 I(U; x Uy) for open subsets U; ¢ X and U, ¢ X,.

We need to show that if ¥, Z c X; x X, are open subsets such that Y & Z, then
I(Z)/I(Y) contains a nonzero projection.

Choose x; € Xj and x, € X, such that (x1,x;) € Z \ Y. Choose open sets U c X;
and V, c X, such that x; € U, x, € V5, and U x V, ¢ Z Define

(43) S={yeVy:(x,y)eY},

which is an open proper subset of V. By the reduction at the beginning of the proof,
there is a nonzero projection e, € I,(V3)/1,(S,). Use Lemma 4.6 with A = I,( V) and
with S, in place of U to choose subsets T c L c S, such that L is compact, T is open,
and there is a projection p, € I,(V,2)/I(T) whose image in I,(V3)/1,(S) is equal
to e,. Use Lemma 4.7 to choose an open set V; c U such that x; € Viand Vi x L c Y.
Define S; = Vi n (X ~ {x;1}), which is an open proper subset of V;. Since A; has
the ideal property, there is a projection p; € I;(V;) whose image e; € I;(V1)/L(S;) is
nonzero.
We claim that

(4.4) YA[(Vis§1) x (VaN Sy)] = 2.
The definitions of the sets involved imply that
VixSic{x} and VanSy={yeVa:(x,y)¢Y}.
Therefore
(VinS) x (Van8) e {xi}t x (Va1 8,) and [{x} x (Vax$)]nY = 2.

Since Y is open, the claim follows.
We now want to construct a commutative diagram as follows:

45)  I(Vix Va) = I(Vy x V) [I(V x T) — (Vs x V) [I(R)

| | |

1(2) ———= (2)/1(Y) ———=I(Z)/I(Y UR).
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The maps 7 and o are the obvious quotient maps, and 1 is the obvious inclusion, com-
ing from V; x V, ¢ U x V, ¢ Z. We define R = (V; x §;) U (8 x V3), which is an
open subset of V; x V,. In particular, R ¢ Z. The map « is then the quotient map
arising from the inclusion V; x T ¢ V; x §, c R, and p is the quotient map arising
from the inclusion Y ¢ Y u R. Since 7 is surjective, the map ¢ is unique if it exists.
For existence, we must show that Ker(7r) c Ker(o o ). This inclusion follows from

Ker(m) =I(Vy x T), Ker(oo1)=I((VixV;)nY),
VixTcVixLcY, and TcS,cV,.
It remains to construct y. Since « is surjective, the map v is unique if it exists.

We claim that Ker(x) = Ker(p o ¢). Since 7 is surjective, it suffices to prove that
Ker(x o ) = Ker(p o ¢ o 7). We easily check that

Ker(kom)=I(R) and Ker(pogom)=I((YUR)N(VixV,)).

It follows from (4.4) that (YUR)n(V; x V) = R, proving the claim. The claim implies
not only that there is a map y making the right hand square commute, but also that
Y is injective.

The identification Prim(A; ®min A2) = X x X, gives identifications

I(Vi x V2)[I(Vi x T) = Ti(V1) ®min [12(V2)/12(T)]
and
I(Vi x V2)/I(R) = [L(V1)/1i($1)] ®min [12(V2)/12(S2)],
with respect to which x becomes the tensor product of the quotient maps
L(Vi) > L(W)/1(S1) and  L(V2)/L(T) — L(V2)/12(S2).

Define q € I(Z)/I(Y) by q = ¢(p1 ® p2). Then q is a projection. Moreover, p(q) =
(ox)(p1®p2) =y(e; ® ey). Since e; # 0, e5 # 0, and v is injective, it follows that
g # 0. Thus I(Z)/1(Y) contains a nonzero projection, as desired. [ |

Using results from Section 7 below, we can now give a case in which the tensor
product of C*-algebras with the weak ideal property again has this property.

Corollary 4.9 Let A and B be separable C*-algebras. Assume that A or B is exact,
and that A is in the class W of Theorem 715. If A and B have the weak ideal property,
then A ®min B has the weak ideal property.

The class W is the smallest class of separable C*-algebras that contains the sepa-
rable locally AH algebras, the separable LS algebras, the separable type I C*-algebras,
and the separable purely infinite C*-algebras, and is closed under finite and countable
direct sums and under minimal tensor products when one tensor factor is exact.

Proof of Corollary 4.9 By Theorem 2.8, the algebra A has topological dimension
zero. Combine Lemma 7.5, Lemma 7.6, Lemma 713, Lemma 7.12 (ii), Proposition 714,
and Theorem 2.9, to see that A is in the class P of Notation 7.3. Thus A has the ideal
property. SO A ®min B has the weak ideal property by Theorem 4.8. ]
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Combining Proposition 7.16 below with Theorem 4.8 and with [33, Theorem 8.5
(6)], one immediately sees that if A and B are separable C*-algebras with the weak
ideal property, one of which is exact, and Prim(A) is Hausdorff, then A ® i, B has
the weak ideal property. A different argument allows one to prove this without sep-
arability. We give it here, although it is based on material on Co(X)-algebras in the
next section. We first consider the case in which Prim(A) is finite but not necessarily
Hausdorff.

Proposition 4.10 Let A and B be C*-algebras with the weak ideal property such that
Prim(A) is finite and A or B is exact. Then A ®min B has the weak ideal property.

Proof First suppose that A is simple. Using [3, Proposition 2.17 (2)] and parts (ii)
and (iv) of [3, Proposition 2.16], we see that ] = A ®min J is a one-to-one correspon-
dence from the ideals of B to the ideals of A ® i, B; moreover, if J; ¢ J, ¢ B are
ideals, then (A ®min /2)/(A ®min J1) % A ®min (J2/J1)- Now let Ly, L, € A ®pmin B be
ideals with L; c L,. It follows that there exist ideals J;, J, ¢ B with J; c J, such that
Ly/L; ¥ A®min(J2/]1). There are nonzero projections p; € K® Aand p, € K®(J2/]1),
SO p1 ® p, is a nonzero projection in

[K®A] ®min [K® (]2/]1)] zKe® (LZ/LI)-

We prove the general case by induction on card(Prim(A)). We just did the case
card(Prim(A)) = 1. So let n € Zso and suppose the result is known whenever
card(Prim(A)) < n. Assume that card(Prim(A)) = n. Choose a nontrivial ideal
I c A. By [3, Proposition 2.17 (2)] and [3, Proposition 2.16 (iv)], the sequence

0— I®min B— A®min B—> (A/I) ®nin B— 0

is exact. The algebras I ®pmin B and (A/I) ®min B have the weak ideal property by the
induction hypothesis, so A ®in B has the weak ideal property by [33, Theorem 8.5
3] u

Much of the proof of the following proposition will be reused in the proof of Propo-
sition 7.16.

Proposition 4.11 Let A and B be C*-algebras such that A or B is exact and Prim(A)
is Hausdorff. If A and B have the weak ideal property, then A ® min B has the weak ideal

property.

Proof Set X = Prim(A). We first claim that A is a continuous Cy(X)-algebra with
fiber Ap = A/P for P € X. In the language of continuous fields, this is [13, Theo-
rem 2.3]. To get it in our language, apply [24, Theorem 3.3], taking a: Prim(A) — X to
be the identity map. Identifying continuous Cy (X )-algebras and continuous C*-bun-
dles as in Proposition 5.6 (iii), we use [22, Corollary 2.8] to see that A ®yin B is a
continuous Cy (X )-algebra, with fibers (A ®min B)p = (A/P) ®min B for P € X.

The algebra A has topological dimension zero by Theorem 2.8. Since X is Haus-
dorff, it follows that X is totally disconnected. For every P € X, the quotient A/P
is simple because {P} is closed, and has the weak ideal property by [33, Theorem
8.5 (5)]. So the fiber (A ®min B)p = (A/P) ®min B has the weak ideal property by
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Proposition 4.10. Theorem 5.14 (iii) now implies that A ®min B has the weak ideal
property. |

Question 4.12 Let A and B be C*-algebras with A exact. If A and B have the weak
ideal property, does A ®p,in B have the weak ideal property?

Question 4.13 Let A and B be C*-algebras with A exact. If A and B have resid-
ual (SP), does A ®pin B have residual (SP)?

5 Permanence Properties for Bundles Over Totally
Disconnected Spaces

We now turn to section algebras of continuous fields over totally disconnected base
spaces. We prove that if A is the section algebra of a bundle over a totally discon-
nected space, and the fibers all have one of the properties residual (SP), topological
dimension zero, the weak ideal property, or the combination of the ideal property and
pure infiniteness, then A also has the same property. Moreover, if A has one of these
properties, so do all the fibers.

The section algebra of a continuous field over a space that is not totally discon-
nected will not have the weak ideal property except in trivial cases, and the same is
true of the other properties involving the existence of projections in ideals. Indeed, we
prove that for a continuous field over a second countable locally compact Hausdorff
space with nonzero fibers, if the section algebra is separable and has one of the four
properties above, then the base space must be totally disconnected.

The fact that the properties we consider are equivalent to being residually heredi-
tarily in a suitable class € underlies some of our reasoning, but our proofs also require
a semiprojectivity condition. (See the proof of Lemma 5.13.) Proposition 5.19 gives
some hope that the results might still be true for a general property of this form.

Following standard notation, if A is a C*-algebra, then M(A) is its multiplier alge-
braand Z(A) is its center.

Definition 5.1 Let X be a locally compact Hausdorff space. If A is a C*-algebra
and :Cy(X) — Z(M(A)) is a homomorphism, we say that 1 is nondegenerate if

1(Co(X))A = A. A Co(X)-algebra is a C*-algebra A together with a nondegenerate
homomorphism i: Co(X) — Z(M(A)).

Unlike in Definition 2.1 of [24], we do not assume that ! is injective. This permits
a hereditary subalgebra of A to also be a Cy(X)-algebra, without having to replace X
by a closed subspace.

Notation 5.2 Let the notation be as in Definition 5.1. For an open set U c X, we
identify Co (U) with the obvious ideal of Co (X). Then 1(Co(U))Aisan ideal in A. For
x € X, we define A, = A/z(CO(X ~ {x}))A, and we let ev,: A > A, be the quotient
map. For a closed subset L c X, we define A|; = A/i(Co(X \ L))A. We equip it with
the Co(L)-algebra structure that comes from the fact that Co(X \ L) is contained in
the kernel of the composition Cy(X) = Z(M(A)) - Z(M(A|L)).
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Notation 5.2 entails in particular A, = Alf,y. Strictly speaking, A is the section
algebra of a bundle and A|y, is the section algebra of the restriction of this bundle to L,
but the abuse of notation is convenient.

Lemma 5.3 Let the notation be as in Definition 5.1 and Notation 5.2. Let a € A. Then
we have the following.

(@) [af = sup,cx [eve(a)]-

(ii) Foreverye >0, theset {x € X :|evy(a)| > e} c X is compact.
(iii) The function x — |levy(a)| is upper semicontinuous.

(iv) For f € Co(X) and x € X, we have ev,(1(f)a) = f(x)evy(a).

Proof Whenisinjective, the first three parts are [24, Corollary 2.2], and the last part
is contained in the proof of [24, Theorem 2.3]. (See [24, Lemma 1.1] for the notation.)
In the general case, let Y c X be the closed subset such that

Ker(1) = {f € Co(X): fly = 0}.

Then A is a Cy(Y)-algebra in the obvious way. We have A, = 0 for x ¢ Y, and the
function x — |evy(a)]|| associated with the Cy(X)-algebra structure is obtained by
extending the one associated with the Cy(Y')-algebra structure to be zero on X \ Y.
The first three parts then follow from those for the Cy(Y)-algebra structure, as does
the last when x € Y. The last part is trivial for x e X \ Y. ]

Definition 5.4 Let X be alocally compact Hausdorff space, and let Abe a Cy(X)-al-
gebra. We say that A is a continuous Co(X)-algebra if for all a € A, the map
x ~ |evy(a)| of Lemma 5.3 (iii) is continuous.

Proposition 5.5  Let X be alocally compact Hausdor(fspace and let A be a C*-algebra.
Then homomorphisms i: Co(X) - Z(M(A)) that make A into a continuous Cy(X)-al-
gebra correspond bijectively to isomorphisms of A with the algebra of continuous sections
vanishing at infinity of a continuous field of C*-algebras over X, as in [9, 10.4.1].

Proof This is essentially contained in [24, Theorem 2.3], referring to the definitions
at the end of [24, §1]. [ |

We will also need to use results from [22], so we compare definitions.

Proposition 5.6 Let X be a locally compact Hausdorff space.

(i) Let (X,(mx:A = Ay)xex>A) be a (not necessarily continuous) C*-bundle in
the sense of [22, Definition 11]. Then A is a Co(X)-algebra, with structure map
1:Co(X) - Z(M(A)) determined by the product in [22, Definition 1.1 (ii)], if
and only if for every a € A the function x — | m.(a)l|| is upper semicontinuous
and vanishes at infinity.

(ii) Let Abea Co(X)-algebra. Then (X, (evy:A — Ay)xex,A) is a C*-bundle in the
sense of [22, Definition 1.1] that satisfies the semicontinuity condition in (i).

(iii) In (i) and (ii), A is a continuous Co(X)-algebra if and only if the corresponding
C*-bundle is continuous in the sense of of [22, Definition 1.1 (iii)].
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Proof Theorem 2.3 of [24] and the preceding discussion give a one-to-one corre-
spondence between C(X)-algebras with injective structure maps and upper semi-
continuous bundles over X in the sense of the definitions at the end [24, §1] and
for which the set of points in X with nonzero fibers is dense. By substituting our
Lemma 5.3 for [24, Corollary 2.2] at appropriate places in the proof in [24], one sees
that the proof still works if one simultaneously drops injectivity of the structure map
and density of the points with nonzero fibers. (Some of the argument is also contained
in [22, Lemma 2.1].)

The difference between [22, Definition 1.1] and the definition of [24] is that [22]
omits the requirement (condition (iii) in [24]) that the set {x € X : |a(x)|| > r} be
compact for a € Aand r > 0. It is easy to check that a function f: X — [0,00) is
upper semicontinuous and vanishes at infinity if and only if for every r > 0 the set
{x € X: f(x) > r} is compact. Thus, the definitions of [24] and [22] are equivalent.
This completes the proofs of parts (i) and (ii).

Part (iii) is now immediate from the definitions. [ |

We prove results stating that if X is totally disconnected and the fibers of a
Co(X)-algebra A have a particular property, then so does A. These do not require
continuity. We return to continuity later in this section when we prove that if a con-
tinuous Cy (X )-algebra with nonzero fibers has one of our properties, then X is totally
disconnected. These results fail without continuity.

Lemma 5.7 Let the notation be as in Definition 5.1 and Notation 5.2. Let B c A be
a hereditary subalgebra. Let a € A. Then a € B if and only ifev,(a) € ev,(B) for all
xeX.

Proof The forward implication is immediate.

For the reverse implication, we first claim that if f € Co(X) and b € B, then
1(f)b € B. To prove the claim, it suffices to consider the case b > 0. In this case,
1(f)b = b"%1(f)b"?, and the claim follows from the fact that B is also a hereditary
subalgebra in M(A).

To prove the result, suppose that a € A satisfies ev,(a) € ev,(B) forall x € X. It is
enough to prove that for every € > 0 there is b € B such that |a — b|| < &. Solet ¢ > 0.
Define K ¢ X by K = {x € X : |evy(a)| > 5}. For x € K, choose ¢, € B such that
evx(cx) = evy(a), and define U, c X by U, = {y € X : [ev,(cx —a)| < 5}. It follows
from Lemma 5.3 (ii) that K is compact and from Lemma 5.3 (iii) that U, is open for
all x € K. Choose x1,x3,...,%, € K such that the sets Uy,, Uy,, ..., Uy, cover K.
Choose continuous functions fi: X — [0,1] with compact support contained in Uy,
for k =1,2,...,n, and such that for x € K we have >;_; fx(x) =land forx e X\ K
we have Y, fx(x) < 1. Define b € Aby b = Y i, ¢(fx ) cx,- Then b € B by the claim.
Moreover, if x € K, then, using Lemma 5.3 (iv) at the first step and levy (cx, —a)| < 5
whenever fi(x) # 0 at the second step, we have

leve(b - a)| €3 fi(o)lev(ey, ~a)l < <.
k=1
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Define f(x) =1- Y}, fi(x) for x € X. For x € X \ K, similar reasoning gives

levi(b—a)| < feve(b-[1-f(x)]a)| + | f(x)evs(a)]
< kifk(?f)levx(cxk —a)| + f(x)]evx(a)]

<= F@]5 + f©)leva(@)] < 5.

It now follows from Lemma 5.3 (i) that |b — a| < e. This completes the proof. ]

Corollary 5.8 Let X be a locally compact Hausdor{f space, let A be a Cy(X)-algebra
with structure map 1: Co(X) — Z(M(A)), and let B c A be a hereditary subalgebra.
Then there is a homomorphism p: Co(X) — Z(M(B)) that makes B a Co(X)-algebra
and such that for all b € B and f € Co(X) we have u(f)b = 1(f)b. Moreover, B, =
evy(B) forall x € X.

Proof It follows from Lemma 5.7 that if f € Co(X) and b € B, then ((f)b € B. For
f € Co(X), we define Ty: B — B by T¢(b) = 1(f)b for b € B. It is easy to check that
(T, Ty) is a double centralizer of B, and that f + (Tj, Ty) defines a homomorphism
w:Co(X) - Z(M(B)). Nondegeneracy of u follows from nondegeneracy of 1. The
relations u(f)b = 1(f)b and B, = ev,(B) hold by construction. [ |

Lemma 5.9 Let X be a locally compact Hausdorff space, let A be a Co(X)-algebra
with structure map 1: Co(X) - Z(M(A)), let F c A be a finite set, and let € > 0. Then
thereis f € Co.(X) such that0< f <land |i(f)a—a| <eforallacF.

Proof Define K ¢ X by K = {x € X : thereis a € F such that [[ev(a)| > $}. It
follows from Lemma 5.3 (ii) that K is compact. Choose f € C.(X) suchthat0 < f <1
and f(x) =1forall x € K.

Fix a € F. Let x € X. If x € K, then, using Lemma 5.3 (iv), |[ev,(¢(f)a - a)| = 0.
Otherwise, again using Lemma 5.3 (iv),

leve(Na-a)] < () leva(@)] + leva(@)] < £ + £ = 5.

Clearly sup, .y [evs(1(f)a—a)| < % <& So [(f)a—a| < eby Lemma5.3 (i). ™

Lemma 510 Let X be a locally compact Hausdorff space, let A be a Co(X)-algebra
with structure map 1: Co(X) — Z(M(A)), let z € X, let F c Ker(ev;) be a finite set,
and let ¢ > 0. Then there is f € Cc(X N {z}) such that 0 < f <land |i(f)a—-a| <e
forallacF.

Proof The proof is essentially the same as that of Lemma 5.9. We define K as there,
observe that z ¢ K, and require that supp( f), in addition to being compact, be con-
tained in X \ {z}. ]

Lemma 5.11 Let X be a locally compact Hausdor(f space, let A be a Co(X)-algebra

with structure map 1: Co(X) — Z(M(A)), and let I c Abe anideal. Let m: A - A/l be
the quotient map. Then there is a homomorphism u: Co(X) — Z(M(A/I)) that makes

https://doi.org/10.4153/CJM-2017-012-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-012-4

1408 C. Pasnicu and N. C. Phillips

A/l a Cy(X)-algebra and such that for all a € A and f € Co(X) we have u(f)n(a) =
n(1(f)a). Moreover, giving I the Co(X)-algebra from Corollary 5.8, for every x € X,
we have (A/T), = A, /I,.

Proof Let m: M(A) — M(A/I) be the map on multiplier algebras induced by
m: A — A/l Define y = mwou. Itis clear that y is a homomorphism to Z(M(A/I)). We
prove nondegeneracy. So let b € A/I and let € > 0. Choose a € A such that 7(a) = b.
Use Lemma 5.9 to choose f € C.(X) such that 0 < f <land |¢(f)a - a| < e. Then

u(f)b - bl = | n(:(f)a-a)] <e.

This completes the proof of nondegeneracy.

It remains to prove the last statement. Let x € X. Let evy: A - A, be as in Nota-
tion 5.2, and let ev,: A/I - (A/I), be the corresponding map with A/I in place of A.
Alsoletr,: A, — A,/I, be the quotient map. Then 7, oev, and €V, o are surjective,
so it suffices to show that they have the same kernel.

Let a € A. Suppose first (7, o evy)(a) = 0. Let ¢ > 0. We will prove that
| (evy o )(a)| < e. Wehaveev,(a) € I,. So thereis b € I such thatev,(b) = ev,(a).
Then ev,(a — b) = 0. So Lemma 5.10 provides f € Cc(X ~ {x}) such that0 < f <1
and

[«(f)(a=b)-(a-b)| <e.

By Corollary 5.8, we have :(f)b € I. So n(:(f)b) = 0. We already know that 7(b) = 0,
$0

lu(f)n(a) =n(a)] = |n(1(f)(a=b) - (a-b))| <e.
Since ev, (p(f)n(a)) = 0, it follows that | (evy o 7)(a)| < e.

Now assume that (év, o 7)(a) = 0. Let &€ > 0. We prove that ||(7, o ev,)(a)]| < .
Apply Lemma 5.10 to the Co(X)-algebra A/I, getting f € C.(X \ {x}) such that
0 < f<1land |u(f)n(a) - n(a)| < e Thus |n(:(f)a —a)| < e Choose b € I
such that || [1(f)a — a] - b|| < &. It follows that | (7, o evs)(1(f)a—a - b)| < e
Since ev, (1(f)a) = 0 and (7, 0 ev,)(b) = 0, it follows that | (7, o evy)(a)| < ¢, as
desired. ]

The following result is closely related to [22].

Lemma 512  Let X be a locally compact Hausdor{f space, let A be a Co(X)-algebra
with structure map 1: Co(X) - Z(M(A)), and let D be a C*-algebra. Then there is a
homomorphism p: Co(X) — Z(M(D ®max A)) that makes D ®max A a Co(X)-algebra
and such that foralla € A, d € D, and f € Co(X) we have u(f)(d ® a) =d ® 1(f)a.
Moreover, for every x € X, we have (D ®max A)x = D @max Ax.

Proof The family
(X, (1dD ®max Tx* D ®max A—-D ®max Ax)xéXa D ®max A)

isa C*-bundle in the sense of [22, Definition 1.1]. (See (2) in [22, p. 678].) In particular,
for f € Co(X) and b € D ®pax A, the product f - b is defined, and fora € Aand d € D
it satisfies f - (d®a) =d ® 1(f)a.
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Let x € X. We know (see Notation 5.2) that the sequence

evy

0— 1(Co(X {x})A—A—">A, —0
is exact. The functor D ®,ax (—) is exact, so the sequence

idD®€Vx

(51) 0 — D ®max (Co(X N {x}))A— D ®nax A —— D ®paxy Ay —> 0

is exact. Nowlet d € D and let a € 1(Co(X ~ {x}))A. We claim that the image b of
d®ain D®yax Aisactuallyin Co(X ~ {x})(D ®myax A). To prove the claim, let e > 0
and use Lemma 5.10 to choose f € C.(X \ {x}) such that 0 < f <1and

&
l()a-al <

Then | f-b-b| < ||d||¢«(f)a—-a] < e Since € > 0 is arbitrary, the claim follows. Using
exactness of (5.1), we conclude that

(5.2) Ker(idp ® evy) € Co(X N {x})(D ®max A).

The reverse inclusion is clear. Combining equality in (5.2) with exactness of (5.1), we
get the exact sequence

0 —> Co(X ~ {x})(D ®max A) —> D ®max A 22 D @ nax Ay — 0.
Since this sequence is exact for all x € X, [22, Lemma 2.3] implies that for all
b € D ®max A, the function x — |ev, ()| is upper semicontinuous. It is clear that
for d € D and a € A the function x — |ev,(d ® a)|| vanishes at infinity, and it then
follows from density that for all b € D ®yax A the function x — |ev, ()| vanishes at
infinity. Now apply Proposition 5.6. ]

Lemma 5.13 Let X be a totally disconnected locally compact Hausdor(f space, let A
be a Co(X)-algebra with structure map 1: Co(X) - Z(M(A)), and let x € X.

(i) Let p € Ay be a projection. Then there is a projection e € A such that evy(e) = p.
(ii) Let p € Ay be an infinite projection. Then there is an infinite projection e € A such
that ev,(e) = p.

The proof is a semiprojectivity argument. It is slightly indirect, because we do not
know that there is a countable neighborhood base at x.

Proof of Lemma 5.13 We prove (i). Since C is semiprojective, there is ¢ > 0 such that
if Band C are C*-algebras, ¢: B — C is a homomorphism, b € B satisfies |[b* - b| < ¢,
|b* = b| < &, and @(b) is a projection, then there exists a projection e € B such
that ¢(e) = ¢(b). Since ev, is surjective, there is a € A such that ev,(a) = p. By
Lemma 5.3 (iii), there is an open set U c X with x € U such that for all y € U we

have |ev,(a* - a)| < £ and |ev,(a® - a)| < £. Since X is totally disconnected,

there is a compact open set K ¢ X such that x EZK c U. Define b = 1(yx)a. Using
Lemma 5.3 (iv), we get |lev,, (b* = b)| < % and [lev,(b*> - b)|| < £ when y € K, and
evy(b* - b) = evy(b* - b) = 0 when y € X \ K. It follows from Lemma 5.3 (i) that
|b* - b < £ < eand [b® - b|| < £ < &. Now obtain e by using the choice of & with

B=Aand C=A,.

https://doi.org/10.4153/CJM-2017-012-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-012-4

1410 C. Pasnicu and N. C. Phillips

We describe the changes needed for the proof of (ii). Let T be the Toeplitz alge-
bra, generated by an isometry s (so s*s = 1, but ss* # 1). By hypothesis, there is a
homomorphism ¢q: T — A, such that ¢o(1) = p and @o(1 - ss*) # 0. Since T is
semiprojective, an argument similar to that in the proof of (i) shows that there is a
homomorphism ¢: T — A such that ev, o ¢ = ¢¢. Set e = ¢(1). Then ¢(s)*¢(s) = e
and ¢(s)@(s)* < e. We have e — ¢(s)p(s)* # 0 because evy(e — ¢(s)p(s)*) # 0. So
e is an infinite projection. u

Theorem 5.14  Let X be a totally disconnected locally compact Hausdor(f space and
let A be a Cy(X)-algebra.

(i) Assume that A, has residual (SP) for all x € X. Then A has residual (SP).

(ii) Assume that A, is purely infinite and has the ideal property for all x € X. Then A
is purely infinite and has the ideal property.

(iii) Assume that Ay has the weak ideal property for all x € X. Then A has the weak
ideal property.

(iv) Assume that A is separable and A, has topological dimension zero for all x € X.
Then A has topological dimension zero.

Proof We prove (i). Recall [33, Definition 71] that a C*-algebra D has residual (SP)
if and only if D is residually hereditarily in the class C of all C*-algebras that contain
a nonzero projection. (See (4) in the introduction.)

We verify the definition directly. So let I c A be an ideal such that A/I # 0,
and let B ¢ A/I be a nonzero hereditary subalgebra. Combining Lemma 5.11 and
Corollary 5.8, we see that B is a Co(X)-algebra. Since B # 0, Lemma 5.3 (i) pro-
vides x € X such that B, # 0. Letev,:A/I - (A/I), be the map of Notation 5.2
for the Co(X)-algebra A/I. Then B, = ev,(B) by Corollary 5.8 and (A/I), = A, /I,
by Lemma 5.11. Thus B, is isomorphic to a nonzero hereditary subalgebra of A, /I.
Since A, has residual (SP), it follows that there is a nonzero projection p € B,. Lemma
5.13 (i) provides a projection e € B such that ev, (e) = p. Then e # 0 since ev, (e) # 0.
We have thus verified that A has residual (SP).

We next prove (ii). Let C be the class of all C*-algebras that contain an infinite
projection. By the equivalence of conditions (ii) and (iv) of Proposition 2.11 of [35]
(valid, as shown there, even when A is not separable), a C*-algebra D is purely infinite
and has the ideal property if and only if D is residually hereditarily in C. (See (1) in
the introduction.) The argument is now the same as for (i), except using Lemma 5.13
(ii) in place of Lemma 5.13 (i).

Now we prove (iii). Let C be the class of all C*-algebras B such that K ® B contains
anonzero projection. It was shown at the beginning of the proof of [33, Theorem 8.5]
that a C*-algebra D has the weak ideal property if and only if D is residually heredi-
tarily in €. (See (5) in the introduction.)

We verify that A satisfies this condition. So let I ¢ A be an ideal such that A/I # 0,
and let B ¢ A/I be a nonzero hereditary subalgebra. As in the proof of (i), B is a
Co(X)-algebra and there is x € X such that B, is isomorphic to a nonzero hereditary
subalgebra of A/I,. Therefore K ® B, contains a nonzero projection p. Since K is
nuclear, Lemma 5.12 implies that K ® B is a Cy(X)-algebra with (K ® B), 2 K ® B,.
Letev,: K® B - (K® B), be the evaluation map at x for the Co(X)-algebra K® B, as
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in Notation 5.2. Lemma 5.13 (i) provides a projection e € K ® B such thatev,(e) = p.
Then e # 0 since evy(e) # 0. This shows that A is residually hereditarily in C, as
desired.

Finally we prove (iv). Since A is separable, by the equivalence of conditions (i)
and (ix) in Theorem 2.10, it suffices to show that A is residually hereditarily in the
class C of all C*-algebras D such that O, ® D contains a nonzero projection. Also, for
every x € X, the algebra A, is separable. So Theorem 2.10 implies that A is residually
hereditarily in C. The proof is now the same as for (iii), except using O, in place
of K. ]

We will next show that when the Cy(X)-algebra is continuous, the fibers are all
nonzero, and the algebra is separable, then the algebra has one of our properties if
and only if all the fibers have this property and X is totally disconnected.

Separability should not be necessary.

Having nonzero fibers is necessary. The zero C*-algebra is a Co(X)-algebra for
any X, and it certainly has all our properties. For a less trivial example, let X, be the
Cantor set, take X = X, 1 [0,1], and make C(Xy,0,) a C(X)-algebra via restriction
of functions in C(X) to Xj.

Continuity is also necessary. The following important example was suggested by
the referee; our original example, the C*-algebra product A = []c[o,1;] O2, Was not
separable.

Example 5.15 Let Y be the Cantor set, set A = C(Y,0,), and let
10:C(Y) = Z(M(A)) = Z(A)

be the obvious isomorphism, sending f € C(Y) to the function y — f(y) - 1e,. Set
X =[0,1]. Let h: Y — X be a surjective continuous function, and define y: C(X) —
C(Y)byw(f)=fohfor feC(X). Thendefine: =190 y:C(X) > Z(M(A)). This
map is clearly nondegenerate, so A becomes a C(X)-algebra (but not a continuous
C(X)-algebra). Also, 1 is injective.

We identify the fibers. Let x € X. Then

W(Co(X~ {x})) = { Foh: f € C(X) and f(x) = 0}.
Thus, all functions in ¥(Co(X \ {x})) vanish on h™'({x}). But for every point

y € Y N~ h™'({x}) there is some f € Co(X ~ {x}) such that y(f)(y) # 0. It fol-
lows from the locally compact version of the Stone-Weierstrass Theorem that

y(Co(X N {x}))C(Y) = Co( Y N h7'({x})).

It is now easy to see that

y(Co(X N {x}))A=Co(Y N h'({x}),02),

so the fiber A, is A, = C(h™'({x}),0,). Since h™'({x}) is compact and totally
disconnected (being a closed subset of the Cantor set Y) and O, is purely infinite
and has the ideal property, the weak ideal property, residual (SP), and topological
dimension zero, Theorem 5.14 implies that A, also has all these properties.

However, X = [0,1] is not totally disconnected. Thus, without continuity of the
C(X)-algebra structure, all four parts of Theorem 5.17 will fail.
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Lemma 5.16 Let X be a second countable locally compact Hausdor{f space, and let
A be a separable continuous Co(X)-algebra such that A, # 0 for all x € X. If A has
topological dimension zero, then X is totally disconnected.

We assume that X is second countable because we need A to be separable in The-
orem 2.9. Example 5.15 shows that continuity of the Cy(X)-algebra is necessary. In
fact, a much simpler version of Example 5.15 shows this: a surjective continuous map
from the Cantor set Y to [0,1] gives an injective map from C([0,1]) to C(Y) that
makes C(Y) a C([0,1])-algebra whose fibers are all nonzero and which has topolog-
ical dimension zero.

Proof of Lemma 5.16  Asin Proposition 5.6, we identify continuous Co (X)-algebras
and continuous C*-bundles. Now use [22, Corollary 2.8] to see that O, ® A is a contin-
uous Co(X)-algebra. It follows from Theorem 2.9 that O, ® A has the ideal property.
Since the set of points with nonzero fibers is all of X, [30, Theorem 2.1] implies that
X is totally disconnected. u

Theorem 5.17 Let X be a second countable locally compact Hausdorff space, and let
A be a separable continuous Co(X)-algebra such that A, # 0 forall x € X.

(i)  Ahasresidual (SP) if and only if X is totally disconnected and A has residual (SP)
forall x € X.

(ii) Aispurely infinite and has the ideal property if and only if X is totally disconnected
and A is purely infinite and has the ideal property for all x € X.

(iii) A has the weak ideal property if and only if X is totally disconnected and A, has
the weak ideal property for all x € X.

(iv) A has topological dimension zero if and only if X is totally disconnected and A
has topological dimension zero for all x € X.

Proof In all four parts, the reverse implications follow from Theorem 5.14. Also, in
all four parts, the fact that A, has the appropriate property for all x € X follows from
the general fact that the property passes to arbitrary quotients. See [33, Theorem 7.4
(7)] for residual (SP), [33, Theorem 6.8 (7)] for the combination of purely infiniteness
and the ideal property, [33, Theorem 8.5 (5)] for the weak ideal property, and combine
[33, Proposition 5.8] with the equivalence of conditions (i) and (ix) in Theorem 2.10
for the weak ideal property.

It remains to show that all four properties imply that X is totally disconnected. All
four properties imply topological dimension zero (using as necessary Theorem 2.8
and the fact that residual (SP) implies the weak ideal property), so this follows from
Lemma 5.16. |

The proofs in this section depend on properties of projections, and so do not work
for a general property defined by being residually hereditarily in an upwards directed
class of C*-algebras. However, we know of no counterexamples to either version of
the following question, and Proposition 5.19 gives hope that something along these
lines might be true.
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Question 5.18 Let C be an upwards directed class of C*-algebras, let X be a totally
disconnected locally compact space, and let A be a Cy(X)-algebra such that A, is
residually hereditarily in € for all x € X. Does it follow that A is residually hereditarily
in C? What if we assume that A is a continuous Cy (X )-algebra?

Proposition 5.19  Let C be an upwards directed class of C*-algebras. Let A be a C*-al-
gebra that is residually hereditarily in C and let X be a totally disconnected locally com-
pact metric space. Then Co(X, A) is residually hereditarily in C.

Proof Itiswell known that Cy(X) isan AF algebra. Being residually hereditarily in C
is preserved by tensoring with matrix algebras [33, Proposition 5.11 (2)], finite direct
sums [33, Proposition 5.8], and direct limits [33, Proposition 5.9 (2)]. Therefore, being
residually hereditarily in C is preserved by tensoring with AF algebras. ]

6 Strong Pure Infiniteness for Bundles

It seems to be unknown whether Cy(X) ® A is purely infinite when X is a locally
compact Hausdorff space and A is a general purely infinite C*-algebra, even when A
is additionally assumed to be simple. (To apply [20, Theorem 5.11], one also needs to
know that A is approximately divisible.) Efforts to prove this by working locally on X
seem to fail. Even in cases in which they work, such methods are messy. It therefore
seems worthwhile to give the following result, which, given what is already known,
has a simple proof.

Theorem 6.1 Let X be a locally compact Hausdorff space, and let A be a locally trivial
Co(X)-algebra whose fibers A, are strongly purely infinite [21, Definition 5.1]. Then A
is strongly purely infinite.

Since X is locally compact, local triviality is equivalent to the requirement that
every point x € X has a compact neighborhood L such that, using the C(L)-algebra
structure on A|; (Notation 5.2) and the obvious C(L)-algebra structure on C(L, A,),
these two algebras are isomorphic as C(L)-algebras. In this case we say that A| is
trivial.

Proof of Theorem 6.1 Let i: Co(X) — Z(M(A)) be the structure map.

We first prove the result when X is compact, by induction on the least n € Z. for
which there are open sets Uy, Us, . .., U, c X that cover X and such that A|7j is trivial
for j =1,2,...,n. If n = 1, there is a strongly purely infinite C*-algebra B such that
A = C(X, B), and A is strongly purely infinite [17, Corollary 5.3]. Assume the result is
known for some # € Z.,, and suppose that there are open sets Uy, Uy, ..., Uy € X
that cover X and such that A|7j is trivial for j=1,2,...,n +1. Define U = U}, U;. If

X \ U = g, then the induction hypothesis applies directly. Otherwise, use
X\NUc Un+1

to choose an open set W c X such that X\ U c W c W c U,,;. Define Y = X \ W
andL =W. ThenLuY =X,X~LcY,YcU,and L c Uy, Since L ¢ Ups1,
there is a strongly purely infinite C*-algebra B such that A|; = C(L, B). By definition
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(Notation 5.2), there is a short exact sequence
0— 1(Co(X~NL))A— A— Alp — 0.

We can identify the algebra 1(Co (X \ L))A with an ideal in A]y. Consideration of the
setsUynY, UynY,...,U, nY shows that the induction hypothesis applies to A|y,
which is therefore strongly purely infinite. So 1(Co(X ~ L))A is strongly purely infi-
nite [21, Proposition 5.11 (ii) ]. Also A|y is strongly purely infinite [17, Corollary 5.3],
so A is strongly purely infinite [17, Theorem 1.3]. This completes the induction step
and the proof of the theorem when X is compact.

We now prove the general case. Let (U) ))ca be an increasing net of open subsets
of X such that U, is compact for all A € A and Ujcp Uy = X. For A € A, the algebra
Al is strongly purely infinite by the case already done. So its ideal 1(Co(Up))A is
strongly purely infinite [21, Proposition 5.1 (ii)]. Using Lemma 5.9, one checks that
Azlim, 1(Co(Uy))A, so Ais strongly purely infinite [21, Proposition 5.11 (iv)]. W

Lemma 6.2 Let A be a separable C*-algebra. Then the following are equivalent.

(i)  Adis purely infinite and has topological dimension zero.
(ii) A is strongly purely infinite and has the ideal property.

Proof Condition (ii) implies condition (i) because strong pure infiniteness implies
pure infiniteness [21, Proposition 5.4], the ideal property implies the weak ideal prop-
erty, and the weak ideal property implies topological dimension zero (Theorem 2.8).

Now assume (i). Then A has the ideal property by Theorem 2.9. Apply [35, Propo-
sition 2.14]. [ |

Corollary 6.3  Let X be alocally compact Hausdorff space, and let A be a locally trivial
Co(X)-algebra whose fibers A, are all purely infinite, separable, and have topological
dimension zero. Then A is strongly purely infinite.

Proof Lemma 6.2 implies that the fibers are all strongly purely infinite, so that The-
orem 6.1 applies. ]

7 When Does the Weak Ideal Property Imply the Ideal Property?

The weak ideal property seems to be the property most closely related to the ideal
property that has good behavior on passing to hereditary subalgebras, fixed point al-
gebras, and extensions. (Example 2.7 of [32] gave a separable unital C*-algebra A with
the ideal property and an action of Z; on A such that the fixed point algebra does not
have the ideal property. Example 2.8 of [32] gave a separable unital C*-algebra A such
that M, (A) has the ideal property, but A does not have the ideal property. Theorem 5.1
of [26] gave an extension of separable C*-algebras with the ideal property such that
the extension does not have the ideal property.) On the other hand, the ideal property
came first, and in some ways seems more natural. Accordingly, it seems interesting
to find conditions under which the weak ideal property implies the ideal property.
Our main result in this direction is Theorem 7.15. It covers, in particular, separable
locally AH algebras (Definition 7.9). We also prove (Proposition 7.16) that the weak
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ideal property implies the ideal property for stable C*-algebras with Hausdorff primi-
tive ideal space. We give an example to show that this implication can fail for Z-stable
C*-algebras.

In the introduction, we illustrated the importance of the ideal property with several
theorems in which it is a hypothesis. We start by showing that two of these results can
otherwise fail: Theorem 4.1 of [25] (stable rank one for AH algebras with slow dimen-
sion growth) in Example 71, and Theorem 3.6 of [14] (AT structure for AH algebras
with very slow dimension growth and torsion free K-theory) in Example 72. In both
cases, however, Theorem 7.15 implies that one can replace the the ideal property with
the weak ideal property.

Example 7.1 Let D be the 2> UHF algebra. Then C([0,1]%, D) is an AH algebra,
even in the somewhat restrictive sense of [25, Definition 2.2], which has no dimension
growth. It follows from [23, Proposition 5.3] that C([0,1]%, D) does not have stable
rank one. Thus, [25, Theorem 4.1] fails without the ideal property.

Example 7.2 Let D be the 3°° UHF algebra, and let X = [0,1]°. Then C(X, D) is
an AH algebra with no dimension growth. We show that C(X, D) has torsion free
K-theory and is not an AT algebra. Thus, [14, Theorem 3.6] fails without the ideal
property.

We have Ko(C(X, D)) = Z[3] and K;(C(X,D)) = 0. Thus K, (C(X, D)) is
torsion free. Since the real projective space RP? is a compact 2-dimensional mani-
fold, there is a closed subspace Y ¢ X such that Y = RP2. By [1, Proposition 2.7.7],
K°(RP?) = Z & Z,. Therefore Ko(C(Y, D)) = Z[3] ® (Z & Z,) = Z[3] ® Z,. Since
this group has torsion, C(Y, D) is not an AT algebra. Since C(Y, D) is a quotient of
C(X, D), it follows that C(X, D) is not an AT algebra.

In fact, with D as in Example 7.2, even C([0,1]%, D) is not an AT algebra. (We are
grateful to the referee for pointing this out.) We use the implication from (i) to (iii)
of [44, Theorem 1.1], with A = D and with n = 2. Using the notation in the diagram
in condition (iii) there, if ¢ as described there exists, then (r o ¢).: K;(C(S')) —
Ki(C(S", D)) must be the zero map, while 1,: K; (C(S')) = K;(C(S', D)) is injective,
hence nonzero, a contradiction.

It is convenient to work with the following class of C*-algebras.

Notation 7.3 We denote by P the class of all separable C*-algebras for which topo-
logical dimension zero, the ideal property, and the weak ideal property are all equiv-
alent.

That is, a separable C*-algebra A is in P exactly when either A has all of the prop-
erties topological dimension zero, the ideal property, and the weak ideal property, or
none of them.

The class P is not particularly interesting in its own right. (For example, all cones
over nonzero C*-algebras are in P, because they have none of the three properties.)
However, proving results about it will make possible a result to the effect that these
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properties are all equivalent for the smallest class of separable C*-algebras that con-
tains the separable AH algebras (as well as some others) and is closed under certain
operations.

The following lemma isolates, for convenient reference, what we actually need to
prove to show that a separable C*-algebra is in P.

Lemma 74 Let A be a separable C*-algebra for which topological dimension zero
implies the ideal property. Then A € P.

Proof The ideal property implies the weak ideal property [33, Proposition 8.2]. The
weak ideal property implies topological dimension zero by Theorem 2.8. ]

We prove two closure properties for the class P. What can be done here is limited
by the failure of other closure properties for the class of C*-algebras with the ideal
property. See the introduction to this section. (It is hopeless to try to prove results
about quotients of algebras in P, since the cone over every C*-algebra is in P).

Lemma 7.5 Let (A))cn be a countable family of C*-algebras in P. Then

EBA)LET-

AeA

Proof Set A =@, A). Then A is separable, since A is countable and A is separa-
ble for all A € A. By Lemma 7.4, we need to show that if A has topological dimension
zero, then A has the ideal property. For A € A, the algebra A is a quotient of A, so
has topological dimension zero [6, Proposition 2.6], [32, Lemma 3.6]. Therefore A,
has the ideal property by hypothesis.

Itis clear that arbitrary direct sums of C*-algebras with the ideal property also have
the ideal property, so it follows that A has the ideal property. ]

Lemma 7.6 Let A and B be C*-algebras in P. Assume that A is exact. Then
A ®pin BeP.

Proof Since the zero C*-algebra is in P, we may assume that A and B are nonzero.
The algebra A ®min B is separable because A and B are. By Lemma 7.4, we need to
show that if A ®,in B has topological dimension zero, then A ®pi, B has the ideal
property. Now A and B have topological dimension zero by Theorem 4.4, and so have
the ideal property by hypothesis. It now follows that A ® nin B has the ideal property
[34, Corollary 1.3]. [ |

We now identify a basic collection of C*-algebras in . The main point of the first
class we consider is that it contains the separable AH algebras (as described below),
but in fact it is much larger.

There are conflicting definitions of AH algebras in the literature. We follow [2, Def-
inition 2.1]. (See the discussion after [2, Definition 1.2] for the meaning of locally ho-
mogeneous.) This definition does not assume the direct limit algebras are separable or
unital. It is quite general, excluding only uncountable direct systems and terms in the
direct system with nontrivial Dixmier-Douady invariant. We rewrite this definition
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without using direct sums by not requiring that the projections defining corners have
constant rank.

Definition 7.7 ([2, Definition 2.1]) Let A be a C*-algebra. We say that A isan AH al-
gebra if A is a direct limit of a sequence (A, ) ez, of C*-algebras A, each of which
has the form pC(X, My ) p for a compact Hausdorff space X, k € Z., and a projection
p € C(X, My), all depending on n.

Substituting compact metric spaces for compact Hausdorff spaces, one gets the
definition in the introduction to the simple and no dimension growth classification
paper [12], and in the introduction to [14]. This definition is probably the most com-
mon one. As we will see in Proposition 7.8, it covers all separable algebras given in
Definition 7.7. An even more restrictive definition of an AH algebra is found in the in-
troductions to [8,25,26], in which the spaces are required to be finite CW complexes.
As pointed out in [8], Proposition 2.3 of [2] shows that this definition actually gives
the same algebras as when one uses compact metric spaces.

We want all the spaces to have only finitely many connected components and all
the maps to be injective. One might call such an algebra a “restricted AH algebra”.
In the separable case, it is already known that AH algebras are automatically of this
form.

Proposition 7.8 Let A be an AH algebra (as in Definition 7.7) that is also separable.
Then A is a direct limit of a sequence (A )nez,, of C*-algebras A, each of which has
the form pC(X, My)p for a finite simplicial complex X, k € Zo, and a projection
p € C(X, My), all depending on n, and in which the maps A, - A, are all injective.

Proof Proposition 2.3 of [2] shows that we can require that every space X appearing
in the system be a finite disjoint union of polyhedra. It now follows from [11, Theo-
rem 2.1] that there is a direct system with direct limit A in which, in addition, all the
maps of the system are injective. [ |

The following definition is standard.

Definition 7.9 Let A be a C*-algebra. We say that A is a locally AH algebra if for
every finite set F ¢ A and every ¢ > 0, there exist a subalgebra B c A that is isomorphic
to an AH algebra and such that for all a € F there is b € B with ||b — a| < ¢.

In particular, AH algebras are locally AH algebras.

Lemma 710 Let A be a separable C*-algebra. Then A is a locally AH algebra if
and only if for every finite set F c A and every ¢ > 0 there exist a finite simpli-
cial complex X, k € Zso, a projection p € C(X, My), and an injective homomor-
phism ¢: pC(X, My)p — A such that for all a € F there is b € pC(X, My)p with
lo(b) - all < e

Proof The algebra B in Definition 7.9 must be separable, so that Proposition 7.8 can
be applied. ]
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Definition 7.11 Let A be a C*-algebra.

We say that A has the projection slicing property (“A is standard” in [7, Defini-
tion 2.7]) if Ais unital and if, whenever B is a simple unital C*-algebraand ] ¢ A®min B
is an ideal that is generated as an ideal by its projections, there is an ideal I c A that is
generated as an ideal by its projections and such that J = I ®yin B.

We say that A is an LS algebra [7, Definition 2.13] if for every finite set F c A
and every ¢ > 0, there exists a C*-algebra D with the projection slicing property and
an injective homomorphism ¢: D — A such that for all a € F there is b € D with

lo(b) - af <e.

Lemma 7.12 (i) Let X be a compact Hausdor{f space with only finitely many con-
nected components, let k € Zsq, and let p € C(X, My) be a projection. Then
pC(X, My)p has the projection slicing property.

(ii) If Ais a separable locally AH algebra, then A is an LS algebra.

Proof Part (i) is a special case of [7, Remark 2.9 (2)]. Part (ii) is immediate from
part (i) and Lemma 7.10. [ |

There are many more C*-algebras with the projection slicing property than in
Lemma 712 (i), and therefore many more LS algebras than in Lemma 7.12 (ii). For
example, in Definition 7.7 replace pC(X, My )p by a finite direct sum of C*-algebras
of the form pC(X, D)p for connected compact Hausdorff spaces X, simple unital
C*-algebras D, and projections p € C(X, D). Such a C*-algebra has the projection
slicing property [7, Remark 2.9 (2)], so a direct limit of a system of such algebras with
injective maps is an LS algebra. (When all the algebras D that occur are exact and the
direct system is countable, but the maps of the system are not necessarily injective,
such a direct limit is called an exceptional GAH algebra [28, Definitions 2.9 and 2.7].)

Lemma 7.13 (Definition 7.11) Let A be a separable LS algebra. Then A € P.

Proof As usual, we use Lemma 7.4. Assume A has topological dimension zero. By
the implication (i) = (iii) in Theorem 2.10, the algebra O, ® A has the ideal property.
Apply [7, Lemma 2.11] with B = O, to conclude that A has the ideal property. ]

Extending the list of properties in the discussion of type I C*-algebras in [30, Re-
mark 2.12] (and using essentially the same proof as there), we get the following longer
list of equivalent conditions on a separable type I C*-algebra.

Proposition 714  Let A be a separable type I C*-algebra. Then the following are equiv-
alent.

(i) A has topological dimension zero.

(ii) A has the weak ideal property.

(iii) A has the ideal property.

(iv) A has the projection property (every ideal in A has an increasing approximate
identity consisting of projections [27, Definition 1]).

(v) A has real rank zero.

(vi) Aisan AF algebra.
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Proof Itis clear that every condition on the list implies the previous one. So we need
only show that (i) implies (vi). Use [32, Lemma 3.6] to see that Prim(A) has a base
for its topology consisting of compact open sets. Then the theorem in Section 7 of [4]
implies that A is AE. u

Theorem 715 Let W be the smallest class of separable C*-algebras that contains the
separable LS algebras (including the separable locally AH algebras), the separable type I
C*-algebras, and the separable purely infinite C*-algebras, and is closed under finite
and countable direct sums and under minimal tensor products when one tensor factor
is exact. Then for any C*-algebra in ‘W, topological dimension zero, the weak ideal
property, and the ideal property are all equivalent.

Proof Combine Lemmas 7.5, 7.6, 7.13, Lemma 7.12 (ii), Proposition 714, and Theo-
rem 2.9. |

Proposition 716  Let A be a C*-algebra such that Prim(A) is Hausdorff. If A has the
weak ideal property, then K ® A has the ideal property.

In particular, the weak ideal property implies the ideal property for stable C*-alge-
bras with Hausdorff primitive ideal space.

Proof of Proposition 7.16 ~ Arguing as in the proof of Proposition 4.11, we see that
K ® A is a continuous Co (Prim(A))-algebra, with fibers (K ® A)p ~ K ® (A/P) for
P e Prim(A). Moreover, Prim(A) is totally disconnected, and for every P € Prim(A),
the quotient A/P is simple and has the weak ideal property.

For P € Prim(A), it follows that K® (A/P) is simple and has a nonzero projection,
so has the ideal property. This is true for all P € Prim(A), so K ® A has the ideal
property [30, Theorem 2.1]. ]

Let Z be the Jiang—Su algebra. It is unfortunately not true that the weak ideal prop-
erty implies the ideal property for Z-stable C*-algebras.

Example 7.17 We give a separable C*-algebra A such that A and Z ® A have the
weak ideal property, but such that neither A nor Z ® A has the ideal property.
Let D be a Bunce-Deddens algebra, and let the extension

0—K®D—>A—C—0

be as in the proof of [26, Theorem 5.1]. (The extension is as in the first paragraph
of that proof, using the choices suggested in the second paragraph.) In particular, as
proved in [26], A does not have the ideal property, and the connecting homomor-
phism exp: Ko (C) - K;(K ® D) is injective. Since K ® D and C have the weak ideal
property (for trivial reasons), it follows that A has the weak ideal property [33, Theo-
rem 8.5 (5)]. Clearly Z ® K ® D and Z ® C have the ideal property. However, it was
shown in the proof of [31, Theorem 2.9] that Z ® A does not have the ideal property.

The following question was motivated by a discussion with Guihua Gong.
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Question 718 Let A be a separable C*-algebra that is a direct limit of recursive
subhomogeneous C*-algebras. If A has the weak ideal property, does A have the ideal

property?
We suspect that the answer is no, but we do not have a counterexample.

Acknowledgements We are very grateful to an anonymous referee for suggesting a
number of improvements (especially Example 5.15), and noticing a number of errors
in the original version of this paper.
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