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For positive integral n let C denote the n-dimensional 
^ n 

unit cube with ver t ices (5 ,, 5 - , . . . , Ô ) where 5. = 0 or 1 for 
1 2 n l 

i = 1, 2 / . . . , n . Call two ver t ices of C adjacent if the distance 
n — 

between them is 1 . By a Hamiltonian circuit in C is meant 

21 

n 
an ordered set r = ( P . P . . . . , P } of distinct ver t ices of 

1 2 ^nJ 

C such that 
n 

(i) P . and P . a re adjacent for i = 1, 2, . . . , 2 -1 . 
l l + l 

(ii) P and P a re adjacent. 
1 2 n 

By a Hamiltonian path in C is meant an ordered set 
c n 

/?= {P , P , . , . , P } of distinct ver t ices of C satisfying (i) . 

Since there is no danger of confusion we shall drop the word 
"Hamiltonian11 and use only the words "ci rcui t" and "path". 
Note that a circuit is a path but the converse is not necessa r i ly 
t rue . If a path is not a circuit we shall call it a proper path. 
Two circuits will be considered equal if it is possible to obtain 
one from the other by cyclic permutation of the points or by r e ­
versing the order of the points or by a combination of these oper­
at ions. Two proper paths will be considered equal if one can be 
obtained from the other by revers ing the order of the points . 
The circuits in C can be divided into equivalence c lasses , two n ^ 
circui ts being placed in the same class if it is possible to obtain 

one from the other by applying to C a suitable symmetry op­

eration of the group of symmetr ies of C . I n the same way the 
n 

proper paths in C can be divided into equivalence c l a s ses . 
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Denote by h(n) the number of c i rcui ts in C and by 
n 

h*(n) the number of equivalence c lasses of c i rcu i t s . Let k(n) 
be the number of proper paths in C and k*(n) the number of 

n 
equivalence c lasses of proper pa ths . It is not difficult to evalu­
ate these functions for n = 1, 2, 3 . The values are given in the 
table below. 

n 

1 

2 

3 

h(n) 

1 

1 

6 

h*(n) 

1 

1 

1 

k(n) 

0 

0 

24 

k*(n) 1 

0 

0 

1 
i 

However, the evaluation of these functions for n > 4 appears 
to be quite difficult. (See Gilbert [ l ] where it is shown that 
h*(4) = 9.) In [ l ] it is also shown that 

(1) h*(n) > C(n - 2)1 n " 1 / 2 

where C is a constant. We mention also that, since the number 
of elements of the symmetry group of C is ni 2 n , 

n 

(2) h ( n ) > h * ( n ) > - ^ , k ( n ) > k * ( n ) > ^ . 
ni2 n'.2 

The main resu l t s that we wish to es tabl ish in this paper a re 
the following: 

THEOREM 1. For all positive in tegers n 

(3) h(n) > ( 7^) 

and for all n > 3 

2 n - 4 

(4) k(n) > ( 7NT6~ ) 
2 n - 2 0 

THEOREM 2. Let f be any one of the functions defined 

2~n 

above. Then lim f(n) exists and is independent of f . 
n-**oo 

Note that Theorem 1 and (2) yield a lower bound for h*(n) 
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which is substantially larger than that given by (1). We remark 
also that, in connection with Theorem 2, we cannot decide whether 
the limit is finite or infinite. 

To prove the above theorems we need some lemmas. 

LEMMA 1. If T denotes the number of circuits which 
n 

traverse a given edge of C , then 
n 

(5) T = ^ & . 

Proof. Clearly T is independent of the edge chosen. 
n- 1 

Since the number of edges in C is n2 , the number of cir-
n 

cuits, counting multiplicities, is nT 2 . Each circuit is 

counted with 2 edges. The number of circuits in C is there-

n T / " 1 nTn 

fore h(n) = = . This implies (5). 
2n 2 

LEMMA 2. For r = 1, 2, . . . , [ ^ j let T (2r + 1) 
2 n 

denote the number of proper paths in C with end points P and 

Q where P and Q differ in 2r + 1 coordinates. Then 

[ ^ ] 
(6) Z 2 n _ 1 ( \ ) T (2r +1) = k(n). 

2r + 1 n 
r = l 

Proof. Consider the set of all unordered pairs (P, Q) 
where P and Q are points of C which differ in 2r + 1 co­

il 
ordinates. P can be chosen in 2n ways and then Q can be 

chosen in ( ^ ) ways. The total number of such pairs is 
v 2r + 1 ' ^ 

therefore 2 ( _ ) . Each such pair forms the end points 
2r + 1 r r 

of T (2r + 1) proper paths. This clearly implies (6). 
n 

LEMMA 3. Let S = MAX A T (2r + 1). Then 
n a r n - 1 T n 
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r= i 4 

Proof. This follows from (6) and the fact that 

i l l 
2 î ] 

r = l 

In what follows if P = ( 6 J , 5 . , . . . > 6 ) is a ve r t ex of C 
1 2 a a 

and Q = (Ô ' , 6 ! , . . . , 5 ' ) is a ve r tex of C then (P, Q) denotes 
1 2 b b 

the ve r tex (5 , ô . . . . , 5 , 5 ' , . . . , 6 ' ) of C . 
1 2 a 1 b a+D 

LEMMA 4. For ail positive in tegers m and n we have 

1 2 m 

(8) h(n + m) > n 2*1" T h(m) 
— n 

2 m 

(9) h(n + m) > S h(m) 
n 
2 m 

(10) k(n + m) > S k(m) 
~~ n 

1 2 m 

(11) k(n + m) > n 2 n " T k(m) . 
~ n 

Proof. To prove (8) let € be an edge of C with end 
n 

points P and Q and let P. = {P, P . , , . . . , P , Q} , i = 1, 2, . 
l i l i s 

n 
i = 1, 2, . . . , T , 

n 
be the c i rcui ts in C which t r ave r se 6 . (s = 2 -2) . Let 

n 
f= {P P . . . , P } be a circui t in C . (r = 2 m ) . Then for 1 2 r J m 
1 < i , i , . . . , i < T the following sequence of points is a circui t 

" " 1 2 r " " n 
in C , : 

n+m 

{ ( P j . P ) . ( P 4 . P i 4 ) . ( ^ . P . 2) ( P ^ P . s ) . ( P . . Q ) . 
1 1 1 

( P 2 . Q ) . ( P 2 . P i 2 . ) . P r * ^ ) ( p
2 ' p i 2 l )> (p

2'p>> 
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( P V P ) , ( P V P . J , ( P . , P . ), . . . , ( P V P . ), ( P V Q ) , 
3 3 i l 3 id 3 i s 3 

(P ,Q) , (P , P . ), (P , P . ), . . . , (P , P . ), (P , P ) } 
r r l s r l s - 1 r I 1 r 

r r r 
2 m 

The numbers i , i , . . . , i can be chosen in T ways , £ can 
1 2 r n 

be c h o s e n in n 2 ways and f can be chosen in h(m) w a y s . 
The total number of c ircui t s constructed in this manner i s there -

- 1 2 m 

fore n 2 n " T h(m) . This proves (8) . 
n 

The proofs of (9), (10) and (11) are s i m i l a r to the proof of 
(8) and we omit the d e t a i l s . 

We are now in a pos i t ion to prove T h e o r e m s 1 and 2 . F r o m 
(9) and the fact that S = 6 we have 

2 m 

(12) h(m + 3) > 6 h(m) 

and it i s e a s y to ver i fy that (12) impl i e s (3). S imi lar ly (10) i m ­
p l i e s (4). Thus Theorem 1 i s proved . 

2 2 
Let j * = l i m inf h(n) £ l im sup h(n) = a . We show 

n-** oo n-**oo 

that £ = ~ot . F r o m (8) and (5) it fo l lows that for al l pos i t ive in­
t e g e r s a and b , 

. , ^ , 2Mb] ^ 2 a b " b
 w u ^ , 2 h ( b ) , 2 a b - b 

h(ab) > (—g-1 ) h(ab-b) > (—-g-1) 

Thus 

2 " a b 2 2 " b 2" b 

(13) h ( a b r > ( - ) Mb)" . 

Suppose f i rs t that a< oo and let e > 0 be g iven . Let b 

2 " b 2 2 " b 

be the l eas t integer for which h(b) > â - € and (—) > 1 - € . 
b 
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Then (13) implies 

-ab 
(14) h(ab) > {a- € )(1 - e) . 

Let n = ab + r where 1 < r < b-1 . Then by (8) we have 

, / , , , , v , 2h(ab),2 r , , x , 2h(ab),2 r 

h(n) = h(ab + r) > ( ^ ) h(r) > ( ^ ') 

Thus 

2 " n 2 2 " a b 2 " a b 2 
(15) h(n)£ > (—) h(ab) > ( f f - € ) ( l - 0 . 

(14) and (15) imply that a_ - a . 

Suppose now that a = oo and let A be a positive number . 

2 - b 

Let b be the least integer for which h(b) > 4A . Then (13) 
2" 

and some straightforward calculations show that h(n) > A 
for all sufficiently large n . It follows that £ = co and hence 

2 " n 

a - l im h(n) ex is t s . 
n-*-oo 

2 " n 

That (3 = lim k(n) exists can be established in a s imi-
n - ^ 0 0 

lar manner , using (10) and (7) instead of (8) and (5). The same 
type of argument starting with (11) and (5) can be used to show 
that (3 > a . Finally the fact that |3 £ a can be proved using (9) 
and (7). It follows that a- (3 . This, with (2), completes the 
proof of Theorem 2. 

In conclusion we r e m a r k that the best known upper bounds 

2 n 2 n 

for h(n) and k(n) are h(n) < n and k(n) < n 
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