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Free space solutions of the Dirac equation

In this chapter we display the plane wave solutions of the Dirac equation. We show
that a Dirac particle has intrinsic spin h/2, and we shall see how the Dirac equation
predicts the existence of antiparticles.

6.1 A Dirac particle at rest

In Chapter 5 we showed that the Dirac equation for a particle in free space is
equivalent to the coupled two-component equations

iσ̃ μ∂μψL − mψR = 0,

iσμ∂μψR − mψL = 0.
(6.1)

These equations have plane wave solutions of the form

ψL = uLei(p · r−Et), ψR = uRei(p · r−Et), (6.2)

where uL and uR are two-component spinors. Since solutions of the Dirac equation
also satisfy the Klein–Gordon equation (3.19), we must have

E2 = p2 + m2. (6.3)

It is simplest to find the solution in a frame K ′ in which the particle is at rest, and
then obtain the solution in a frame in which the particle is moving with velocity v

by making a Lorentz boost. Using primes to denote quantities in the frame K ′, the
momentum p′ = 0, so that equations (6.1) and (6.3) become

i∂ ′
0ψ

′
L = mψ ′

R, i∂ ′
0ψR = mψ ′

L,

and

E ′2 = m2, E ′ = ±m. (6.4)
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6.2 The intrinsic spin of a Dirac particle 59

The solutions with positive energy E ′ = m are

ψ ′
L = ue−imt ′

, ψ ′
R = ue−imt ′

, (6.5)

where

u =
(

u1

u2

)
= u1

(
1
0

)
+ u2

(
0
1

)

is an arbitrary two-component spinor and we are adopting the standard convention
of quantum mechanics that the time dependence of an energy eigenstate is given
by the phase factor e−iEt .

In the rest frame K ′, the left-handed and right-handed positive energy spinors
are identical. As a consequence this solution is invariant under space inversion (see
Section 5.3). It is said to have positive parity.

6.2 The intrinsic spin of a Dirac particle

The intrinsic spin operator S of a particle with mass is defined to be its angular
momentum operator in a frame in which it is at rest. The component of S along the
z-direction is given by

Sz = ih lim
φ→0

[Rz(φ) − 1] / φ,

where Rz(φ) is the operator that rotates the state of the particle through an angle φ

about Oz (cf. Section 4.7). A rotation of the state through an angle φ, is equivalent to
rotating the axes through an angle −φ, and then ψL → MψL, ψR → NψR where,
from (5.22),

M = N =
(

e−iφ/2 0
0 eiφ/2

)
.

Hence

Sz = ih lim
φ→0

1

φ

(
e−iφ/2 − 1 0
0 eiφ/2 − 1

)
= h

2

(
1 0
0 −1

)
= h

2
σz.

In the state with u1 = 1, u2 = 0,

Szψ
′
L = (h/2)ψ ′

L

and

Szψ
′
R = (h/2)ψ ′

R.
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60 Free space solutions of the Dirac equation

Acting on the Dirac wave function, we have

Sz

(
ψ ′

L

ψ ′
R

)
= (h/2)

(
ψ ′

L

ψ ′
R

)
. (6.6)

Similarly, in the state with u1 = 0, u2 = 1,

Sz

(
ψ ′

L

ψ ′
R

)
= −(h/2)

(
ψ ′

L

ψ ′
R

)
. (6.7)

Thus in the rest frame of the particle there are two independent states which
are eigenstates of Sz with eigenvalues ± (h/2). The operator Sz on a Dirac wave
function is represented by the matrix

Σz = (h/2)

(
σz 0
0 σz

)
. (6.8)

More generally, S is represented by

Σ = (h/2)

(
σ 0
0 σ

)
. (6.9)

Also, every Dirac wave function is an eigenstate of the square of the spin oper-
ator,

Σ2 = (3/4)h2I,

with eigenvalue (3/4)h2= (1/2)((1/2) + 1)h2. Recalling that the square J 2 of the
angular momentum for a state with angular momentum j is j( j + 1)h2; it is appro-
priate to say that a Dirac particle has intrinsic spin h/2.

6.3 Plane waves and helicity

We now transform to a frame K in which the frame K ′, and the particle, are moving
with velocity v. For simplicity we take v = (0, 0, v), along the z-axis with v > 0,
and consider the state with u1 = 1, u2 = 0.

Transformations between K and K ′ are then given by (5.23), along with (5.24).
Using (5.19) and (5.20),

ψL = M−1ψ ′
L =

(
e−θ/2 0
0 eθ/2

)
e−imt ′

(
1
0

)
= e−imt ′

e−θ/2

(
1
0

)
,

ψR = N−1ψ ′
R =

(
eθ/2 0
0 e−θ/2

)
e−imt ′

(
1
0

)
= e−imt ′

eθ/2

(
1
0

)
.
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6.3 Plane waves and helicity 61

Finally, substituting t ′ = t cosh θ − z sinh θ (and noting that m cosh θ = γ m =
E, m sinh θ = γ mν = p, where γ = (1 − v2/c2)−1/2 we have

ψL = ei(pz−Et)

(
e−θ/2

0

)
, ψR = ei(pz−Et)

(
eθ/2

0

)
. (6.10)

The helicity operator is useful in classifying plane wave states. It is defined by

helicity = Σ · p
|p| . (6.11)

The expectation value of this operator in a given state is a measure of the alignment
of a particle’s intrinsic spin with its direction of motion in that state. For p =
(0, 0, p), p > 0, the helicity operator Σ · p/|p| =	z . Thus the state (6.10) is an
eigenstate of the helicity operator with positive helicity 1/2, which we can write as
a Dirac spinor

ψ+ = 1√
2

ei(pz−Et)

⎛
⎜⎜⎝

e−θ/2

0
eθ/2

0

⎞
⎟⎟⎠ , p > 0. (6.12)

We have inserted the normalisation factor 1/
√

2 to conform with the standard
normalisation of the Lorentz scalar ψ̄ψ :

ψ̄ψ = ψ†γ 0ψ = ψ
†
LψR + ψ

†
RψL = 1.

Similarly, taking u1 = 0, u2 = 1, we can construct an eigenstate of negative
helicity −1/2:

ψ− = 1√
2

ei(pz−Et)

⎛
⎜⎜⎝

0
eθ/2

0
e−θ/2

⎞
⎟⎟⎠ , p > 0. (6.13)

All plane waves with positive energy can be generated by applying rotations to the
states we have found. The helicity of a state is unchanged by a rotation, since it is
defined by a scalar product. The evident generalisations of (6.12) and (6.13) to a
wave with wave vector p are

ψ+ = ei(p·r−Et)u+(p) (6.14)

where

u+(p) = 1√
2

(
e−θ/2 |+〉
eθ/2 |+〉

)
,
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62 Free space solutions of the Dirac equation

and

ψ− = ei(p · r−Et)u−(p) (6.15)

where

u−(p) = 1√
2

(
eθ/2 |−〉

e−θ/2 |−〉
)

.

The Pauli spin states |±〉 are here the eigenstates of the operators σ · p/|p| with
eigenvalues ±1 (Problem 6.6). A general state of positive energy can be constructed
as a superposition of plane waves.

6.4 Negative energy solutions

In the frame K ′ in which the particle is at rest, there are also negative energy
solutions of (6.4) with E ′ = −m:

ψ ′
L = veimt ′

, ψ ′
R = −veimt ′

. (6.16)

In this case the left-handed and right-handed spinors v differ in sign. Thus the
negative energy solution changes sign under space inversion (see Section 5.3). It is
said to have negative parity.

The same Lorentz boost we used above in Section 6.3 gives solutions ψ+ and
ψ− with positive and negative helicity, respectively, which we can write as Dirac
spinors

ψ+ = 1√
2

ei(−pz+Et)

⎛
⎜⎜⎝

0
eθ/2

0
−e−θ/2

⎞
⎟⎟⎠ , ψ− = 1√

2
ei(−pz+Et)

⎛
⎜⎜⎝

−e−θ/2

0
eθ/2

0

⎞
⎟⎟⎠ , p > 0.

(6.17)
These solutions generalise to

ψ+ = ei(−p·r+Et)v+(p) (6.18)

where

υ+(p) = 1√
2

(
eθ/2 |−〉

−e−θ/2 |−〉
)

,

and

ψ− = ei(−p·r+Et)v−(p) (6.19)

where

v−(p) = 1√
2

(−eθ/2 |+〉
e−θ/2 |+〉

)
.

https://doi.org/10.1017/9781009401685.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401685.008


6.5 Energy and momentum of the Dirac field 63

|+〉 and |−〉 remain eigenstates of σ · p/|p| as defined below (6.15). Note that the
Lorentz invariant ψ̄ψ acquires a minus sign; in the case of the negative energy
solutions,

ψ̄ψ = ψ
†
LψR + ψ

†
RψL = −1.

Negative energy solutions of the Dirac equation appear at first sight to be an
embarrassment. In quantum theory a particle can make transitions between states.
Hence all Dirac states would seem to be unstable to a transition to lower energy.
Dirac’s solution to the difficulty was to assume that nearly all negative energy
states are occupied, so that the Pauli exclusion principle forbids transitions to them.
An unoccupied negative energy state, or hole, will behave as a positive energy
antiparticle, of the same mass but opposite momentum, spin, and electric charge.
Left unfilled, the negative energy state ψ+ of (6.17) corresponds to an antiparticle
of positive energy E and positive momentum p, and positive helicity, since the spin
of the hole is also opposite to that of the negative energy state.

A particle falling into an empty negative energy state will be seen as the simulta-
neous annihilation of a particle–antiparticle pair with the emission of electromag-
netic energy ≥ 2mc2. Conversely, the excitation of a particle from a negative energy
state to a positive energy state will be seen as pair production. The existence of the
positron, the antiparticle of the electron, was established experimentally in 1932,
and the observation of pair production soon followed.

The uniform background sea of occupied negative energy states, with its asso-
ciated infinite electric charge, is assumed to be unobservable. In any case, it is
clearly quite arbitrary whether, say, the electron is regarded as the particle and the
positron as antiparticle, or vice versa. Evidently our starting interpretation of the
Dirac equation as a single particle equation is not tenable. We are led, inevitably,
to a quantum field theory in which particles and antiparticles appear as the quanta
of the field, in somewhat the same way as photons appear as the quanta of the
electromagnetic field. We shall take up this theme in Chapter 8.

6.5 The energy and momentum of the Dirac field

The Lagrangian density of the Dirac field is given by (5.31), which we display in
more detail:

L = ψ̄(iγ μ∂μ − m)ψ
= iψ∗

a ∂0ψa + ψ̄b
(
iγ i

ba∂i − mδba
)
ψa.

(6.20)

As in Section 5.1 we may treat the fields ψa and ψa
∗ as independent, and take the

energy–momentum tensor to be

T μ
ν = ∂L

∂(∂μψa)
∂νψa − Lδμ

ν (6.21)

(L does not depend on ∂μψa
∗).
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64 Free space solutions of the Dirac equation

In particular, the energy density is

T 0
0 = iψ∗

a ∂0ψa − L

= ψ̄(−iγ i∂i + m)ψ (6.22)

and the momentum density is

T 0
i = iψ∗

a ∂iψa = iψ†∂iψ. (6.23)

The general solution of the free space Dirac equation is a superposition of all
possible plane waves, which we will write

ψ = 1√
V

∑
p,ε

√
m

Ep

(
bpεuε(p)ei(p·r−E pt) + d∗

pεvε(p)ei(−p·r+E pt)). (6.24)

ε is the helicity index, ±, and bpε and dpε are arbitrary complex numbers. The
factors

√
(m/E p) take the place of the factors 1/

√
2ωk we inserted in the boson

field expansions of Chapter 3 and Chapter 4.
We can express the total energy and total momentum of the Dirac field in terms of

the wave amplitudes, by inserting the field expansion into T 0
0 and T 0

i , and integrating
over the normalisation volume V. The results are

H=
∑
p,ε

(
b∗

pεbpε − dpεd∗
pε

)
Ep, (6.25)

P=
∑
p,ε

(
b∗

pεbpε − dpεd∗
pε

)
p. (6.26)

ε = ±1 is the helicity index.
The (somewhat tedious) derivation of these results is left to the reader. Note that

each plane wave is a solution of the Dirac equation (5.32), which implies

(γ 0 E p − γ i pi )uε(p) = muε(p),

(γ 0 E p − γ i pi )vε(p) = −mvε(p).
(6.27)

It is also necessary to use various orthogonality relations, which are set out in
Problem 6.3.

For later convenience, we rewrite the Dirac field ψ (6.24) in terms of ψL and
ψR. Using (6.14), (6.15), (6.18) and (6.19) gives

ψL = 1√
V

∑
p

√
m

2E p

[(
bp+e−θ/2 |+〉 + bp−eθ/2 |−〉) ei(p·r−Et)

+ (
d∗

p+eθ/2 |−〉 − d∗
p−e−θ/2 |+〉) ei(−p·r+Et)] (6.28)

ψR = 1√
V

∑
p

√
m

2E p

[(
bp+eθ/2 |+〉 + bp−e−θ/2 |−〉) ei(p·r−Et)

+ (−d∗
p+e−θ/2 |−〉 + d∗

p−eθ/2 |+〉) ei(−p·r+Et)] (6.29)
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6.6 Dirac and Majorana fields

The expansion (6.24) is the general solution of the free field Dirac equation. For
every momentum p there are four independent complex coefficients: bp+, bp−, d∗

p+
and d∗

p−, which correspond to particles with helicities +1/2, −1/2 and antiparticles
with helicities +1/2, −1/2, respectively.

It will be of interest, in Chapter 21, to consider solutions in which we impose the
constraint that dp+ = bp+, dp− = bp−, and hence d∗

p+ = b∗
p+, d∗

p− = b∗
p−. These

solutions are known as Majorana fields. On quantisation, we shall see that the
Dirac fields create and annihilate particles, and antiparticles. For example, if ψ is
an electron field it creates positrons and annihilates electrons, ψ† creates electrons
and annihilates positrons. With the Majorana constraint, particles and antiparticles
are identical. Majorana fields are irrelevant for electrically charged particles, but it
is possible that the electrically neutral neutrino fields have this property. It is still
an open question whether neutrino fields are Dirac or Majorana.

6.7 The E � m limit, neutrinos

The coefficients of the plane waves in the expansions (6.25) and (6.26) may be
expressed as √(

m
/

2E
)
e±θ/2 = {(1 ± v/c) /2}1/2 , (6.30)

where v is the particle velocity (Problem 6.1). In the high energy limit, E � m, the
velocity v → c. The only significant terms in the field expansions which survive in
this limit are

ψL = 1√
V

∑
p

(
bp− |−〉 ei(p·r−Et) + d∗

p+ |−〉 ei(−p·r+Et)) , (6.31)

ψR = 1√
V

∑
p

(
bp+ |+〉 ei(p·r−Et) + d∗

p− |+〉 ei(−p·r+Et)) . (6.32)

In the limit, ψL and ψR are completely independent: ψL involves only nega-
tive helicity particles and positive helicity antiparticles; ψR involves only positive
helicity particles and negative helicity antiparticles.

Since neutrinos are electrically neutral, they are accessible to experimental inves-
tigation only through the weak interaction and we shall see in Chapter 9 that in the
weak interaction Nature only employs ψL. In practice neutrino energies are usually
many orders of magnitude greater than their mass, so that only negative helicity
neutrinos and positive helicity antineutrinos are readily observed. It has not so far
been established that the ‘hard to see’ positive helicity neutrino is different from
the ‘easy to see’ positive helicity antineutrino.
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66 Free space solutions of the Dirac equation

Problems

6.1 With the normalisaion of ψ+ determined by equation (6.14), show that

ψ
†
+ψ+ = cosh θ = E/m.

(Note that this is not the usual normalisation of particle quantum mechanics.)
Show that the probability of this positive helicity state being in the right-handed

mode is

eθ /(2 cosh θ ) = (1 + v/c)/2

and the probability of its being in the left-handed mode is (1 − v/c)/2. What are the
corresponding results for ψ−?

6.2 Show that the negative energy positive helicity state of equation (6.18) has probability
(1 + v/c)/2 of being in the left-handed mode.

6.3 Show that

u†
±(p)u±(p) = ν

†
±(p)v±(p) = E p/m,

u†
±(p)u∓(p) = v

†
±(p)v∓(p) = 0,

u†
±(p)v±(−p) = v

†
±(−p)u±(p) = u†

±(p)v∓(−p) = v
†
∓(−p)u±(p) = 0.

These results are useful in Problem 6.4.

6.4 Using the plane wave expansion (6.24) and the energy–momentum tensor components
(6.22) and (6.23), show that the energy and momentum carried by the wave ψ are
given by (6.25) and (6.26).

6.5 Consider a momentum p in the direction specified by the polar coordinates θ and φ.

p̂ = (sin θ cos φ, sin θ sin φ, cos θ ).

Show that

σ · p̂ =
(

cos θ sin θ e−iφ

sin θ eiφ − cos θ

)

and the Pauli spin states

|+〉 =
(

cos(θ/2)
sin(θ/2)eiφ

)
, |−〉 =

(− sin(θ/2)e−iφ

cos(θ/2)

)

are the helicity eigenstates appearing in (6.14) and (6.15). An overall phase is
undetermined.
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