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ON THE DISCREPANCY PRINCIPLE AND
GENERALISED MAXIMUM LIKELIHOOD FOR REGULARISATION

MARK A. LUKAS

Let fn\ be the regularised solution of a general, linear operator equation, Kfo = g,
from discrete, noisy data j/j = g(xi) + £i, i = 1,. . . ,n, where ei are uncorrelated
random errors with variance a2 . In this paper, we consider the two well-known
methods - the discrepancy principle and generalised maximum likelihood (GML),
for choosing the crucial regularisation parameter A. We investigate the asymptotic
properties as n —» oo of the "expected" estimates AD and \\t corresponding to
these two methods respectively. It is shown that if /o is sufficiently smooth, then
AD is weakly asymptotically optimal (ao) with respect to the risk and an L2 norm
on the output error. However, AD oversmooths for all sufficiently large n and also
for all sufficiently small u2. If /o is not too smooth relative to the regularisation
space W, then AD can also be weakly ao with respect to a whole class of loss
functions involving stronger norms on the input error. For the GML method, we
show that if /o is smooth relative to W (for example /o € We'2 , 9 > m, if
W — Wm'2), then XM is asymptotically sub-optimal and undersmoothing with
respect to all of the loss functions above.

1. INTRODUCTION

We consider the problem of estimating the solution of a linear operator equation
(scaled onto [0,1])

(1.1) Kf{x) = g(x), .6(0,1],

given only discrete, noisy data

Vi = g(xi) + eu i = l,...,n.

The errors £j are modelled as uncorrelated random variables with mean 0 and common
variance <r2. We assume that K : £2(0,l) —> L2(0,1) is 1-1 and let /o be the unique
solution of (1.1).
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400 M.A. Lukas [2]

To estimate /o , we use the method of regularisation, which defines a regularised
solution fnx to be the minimiser of

(1-2) n-iy£(Kf(xi)-yi)
a +X\\Pf\\\w

over a Hilbert space W C £ 2 ( 0 , l ) . Here P : W —> W is either the identity or an
orthogonal projection of W onto span{#i, . . . ,0m}-1 for some 0< 6 W. This includes
the important case where W is the Sobolev space Wm'2[0,1] and H-P/H^ = | | / ^ | l r 2 .
in which m is called the order of regularisation (see [23]). This squared norm term
serves to penalise non-smooth approximate solutions, and the regularisation parameter
A > 0 controls the tradeoff between smoothing the solution and being faithful to the
data, a larger parameter giving a smoother solution.

There are two important cases of (1.1) that should be mentioned. One is the class
of integral equations of the first kind

Kf(x) = / k(x,t)f(t)dt = g(x),
Jo

examples of which arise in a wide variety of applications. The other case is with K = I,

the identity, which corresponds to the problem of smoothing the data r/i = f(xi) + £i.

In this case, if | | P / | | W = ||/^m^||^2 > then the regularised solution fn\ is known to be

just the natural polynomial smoothing spline estimate of degree 2m — 1.

From computational experience, it is known that fn\ can be a very good approxi-

mate solution of (1.1) provided a good value of the regularisation parameter A is used.

This is supported by general theoretical results in [2, 11] and [18] which show that if

the sequence A = A(n) —• 0, but not too quickly, then fn\ converges to f0 as n —> oo

in the sense that E ||/nA — /ollvp ~~* 0> where E denotes expectation.

For the regularised solution to be most useful in practice, there should be a reliable

method to estimate a good value of A from the data. Several methods have been pro-

posed, most notably generalised cross-validation (GCV) (Wahba [21]), the discrepancy

principle (Morozov [16]) and generalised maximum likelihood (GML) (Anderssen and

Bloomfield [1] and Wahba [22]).
In a theoretical assessment of these methods, it is essential to consider their asymp-

totic behaviour as n —* oo. In [14], it is shown that the GCV method rates very well in
this respect; in fact, the "expected" GCV estimate Xy is asymptotically optimal with
respect to several natural loss functions. It is the purpose of this paper to investigate
the asymptotic properties of the corresponding estimates for the discrepancy principle
and GML.
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To describe these methods, first define the operator Kn : W —* K n by Knfi =

Kf(x{), t = l , . . . , n , and define the influence matrix A by the condition that Knfn\ —

Ay for any data y . In our framework, the (squared) discrepancy -D(A) is defined to be
the normalised sum of squared residuals

(1-3) D{\) = n-1 \\KnfnX - y||2 = n"1 ||(/ - A)y\\2 ,

where ||-|| denotes the Euclidean norm, and the discrepancy principle estimate XJJ is
the unique solution of the non-linear equation D(X) = a2. (A unique solution exists in
all reasonable problems — see section 3.) Note that the variance a2, or a good estimate
of it, must be known.

The discrepancy principle was first proposed and investigated by Morozov [16]. It
has been widely used and studied, and several modified versions have been developed
(see [8, 17] and their references). However, in all of these works a deterministic rather
than the present probabilistic framework is used.

The GML estimate AM is defined to be the minimiser over A > 0 of the GML
function

(1-4) M(X) = y T ( J

[ d + (

where de t + ( / — A) means the product of the non-zero eigenvalues of I — A. Note that,

like the GCV estimate, the GML estimate has the advantage of not requiring a2.

A maximum likelihood estimate for choosing A was first proposed by Anderssen

and Bloomfield [1] in the context of numerical differentiation of time series (see also

Davies [4]). This was generalised to the above GML estimate by Wahba [22].

Define the "expected" discrepancy principle estimate XD to be the solution of
ED(X) — a2 . (Again a unique solution exists in all reasonable problems - see section
3.) Also define the "expected" GML estimate AM to be the minimiser over a certain
set [An,oo) (to be defined later) of EM(X). We wish to determine the asymptotic
properties of XJJ and AM as n —> oo.

We use the following loss functions (the same as those used in [14]): the risk

ER(X) = En'1 \\KnfnX - g||2 ,

the corresponding L2(F) norm of the output error

where F is an appropriate distribution function, and the family of loss functions ELP(X)

(defined in (2.15)) involving stronger norms on the input error fn\ — /o. These norms
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correspond to spaces Wp, where p can be thought of as a smoothness index. (In some

cases, as shown in [2] and [12], Wp is equivalent to the Sobolev space Wp'2[0,1].)

Define the inefficiency ratio of A/j with respect to ER(X) to be

ID/R = £i*(AD)/[min ER(X)},

and similarly define IM/R f°r Âf • Inefficiency ratios with respect to the other loss
functions can be defined in the same way. Estimates of the minimum values of the loss
functions appearing in the denominator are known (see [2] and [14]) and are reviewed
in section 2.

In the special case of periodic data smoothing, Wahba [20] shows that if /o is
sufficiently smooth, then Xu is weakly asymptotically optimal (ao) with respect to the
risk, in that IQ/R = O(l) as n —> oo. This result was extended to periodic numerical
differentiation and certain convolution integral equations by Davies and Anderssen [7].

In Theorems 3.1 and 3.2, we show that if f0 G Wp, where either /3 > 2 or /3 < 2
and a certain upper bound is achieved, then AD is weakly ao in general with respect
to both the risk and EL(X). If also /o ^ W2+6> 8 > 0, (which can be interpreted as
meaning that the order of regularisation m is sufficiently high relative to the smoothness
of /o ) then, from Theorem 3.3, Ajr> is also weakly ao with respect to ELP(\) for a range
of p ^ 0. However, if /o G Wp, /3 > 2, then AD is asymptotically sub-optimal with
respect to ELP(\) for any p > 0 in a certain range.

In [20] and [7], it is also shown that if /o is smooth, then A^ always oversmooths
in the special cases above, meaning that for all n sufficiently large, \r> > XR , where XR

minimises ER(X). In Theorem 3.4, we show that if /o G Wp, /3 ^ 3, then this result is
true in general. Theorem 3.5 shows that Ap also oversmooths for all sufficiently small
a2. Numerical results in [3] for the case of data smoothing are consistent with these
theoretical results.

For the "expected" GML estimate \M , Wahba [22] shows that if /o is smooth in
a certain sense and Pfo ^ 0, then IM/R —» 00 as n —• 00. However, her argument
depends on several heuristic assumptions about the asymptotic behaviour of certain
functions of n and A. In the case of periodic numerical differentiation of order k,
Davies and Anderssen [6] prove that if

(1.5) f
i/=0

where 7jv is the i/th Fourier coefficient of g, then IM/R - t e a as n - » o o . In this situ-

ation, from the discussion before Corollary 5.2 in [14], the condition (1.5) is equivalent

to our condition /o G Wi.

https://doi.org/10.1017/S0004972700014891 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014891


[5] On the discrepancy principle 403

In Theorems 4.1 and 4.2, we show that in general, if /<> G Wp, with /? > 1 (which
means that /o is smooth relative to W) and Pfo ^ 0, then IM/R —> oo as n —» oo; that
is, AM is asymptotically sub-optimal with respect to the risk. In addition, AM always
undersmooths in that for all n sufficiently large, XM < XR , where AH minimises ER(X).

Theorem 4.3 shows that AM is also asymptotically sub-optimal and undersmoothing
with respect to EL(X) and any of the loss functions ELP(X), p ^ 0. Numerical
experiments in [22] for data smoothing and in [5] for numerical deconvolution do not
conclusively illustrate these asymptotic results, although in [22] IM/R is consistently
greater than Iv/R, the inefficiency of the GCV estimate.

If /o is "rough" relative to W, then it is known (see [22]) that AM can be ao.
However, usually the smoothness of fg is unknown. From the above results, one can
therefore conclude that the GML estimate has the disadvantage that its asymptotic
performance is overly dependent on the unknown smoothness of the solution /o .

2. PRELIMINARY RESULTS

It is known (see [9]) that under mild conditions, there is a unique regularised
solution fnx- Assume that for each x € [0,1], the linear functional / —> Kf(x) is
bounded from W -> R . Then Kn : W -> E n , Knfi = Kf(xi), is bounded, and let
Kn : 1™ —» W be the adjoint with respect to the inner product n~1(-,-), where (•,•)
denotes the Euclidean inner product on R n . If N(Kn) H N(P) = 0, then the Euler-
Lagrange equation for the minimisation of (1.2) gives the unique regularised solution

fnX =

where Un = K*Kn.
An alternative form for fn\ can be obtained as follows (see [23]). Since for each x

the linear functional / —* Kf(x) is bounded, there exists a representer TJX E W such
that for all / G W, Kf(x) — {f,r)x)w. Let (x = Prjx, and denote rn = t]Xi and
ii = Ui- Define the matrices T and S by T o = K9j(xi) and E{j = (ti,£j)w. If
N(Kn) n N(P) = {0}, then T has full rank m and there exists a matrix B such that
BBT — In-m

 a n d BT = Qn-m.-x.m- The regularised solution can then be expressed as

(2.1) fnX =

where a — (a-i,... ,am) is the unique solution of

Ta = y-{i:+nXI)BT(BEBT+ nXl)~1By.
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From this it easy to see that the influence matrix A is given by

I-A = n\BT{BY,BT + n\l)~1B.

The discrepancy D(\) and the GML function M(A) can be evaluated using the
following spectral decomposition (see [22]). Clearly, there exists an orthogonal matrix
U such that

= UDUT,

where D is diagonal containing the decreasing eigenvalues Xvn = Dvv ^ 0, v =

1 , . . . ,n - m. Setting W = BTU, clearly WTW = In-m and

(2.2) I-A = nXW{D + n\I)-1WT.

Let wv = (wiv,... ,wni/) be the i/th column of W and, for any z E 5&n, define

Then, from (1.3) and (2.2), we have

(2.3)

and from (1.4) and (2.2), we have

(2.4) M(\) =

Define functions /ii(A) and /i2(A) by

I n-m

m + ^ A,,B/(nA

(2.6) /x2( A) = n-hiA2 = n'1 \m

These functions will play a crucial role in the asymptotic analysis of the discrepancy

principle and GML estimates (as they do for the GCV estimate - see [14]).

Let q be the kernel
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and let Qn be the matrix Qn = [q(xi, Xj)]. In the case where P = I, it is known that

fnx = v(Qn + nA/rV and

Then the appropriate spectral decomposition is Qn = WDWT, where \vn = Dvv 5= 0,

v — 1, . . . , n, and W is orthogonal.

The general, finite spectral decomposition defined above is related to the following

infinite spectral decomposition of operators. The latter decomposition is also used to

define a family of spaces, which were introduced in [2].

Let T be the class of distribution functions F on [0,1] with density bounded

away from 0 and oo. For any F £ T, let L2(F) denote the space L2(Q, 1) with inner

product

r1

Jo

Clearly, the norms ||-||£a and ||-||£,2(j>) are equivalent.

Let K* : L2{F) -> W be the adjoint of K : W -» L2(F) and define U = K*K :
W —> W. Since K : W —> L2 is assumed to be 1-1 and compact, U is also 1-1 and
compact. Then there is a basis {<j)v} for W and eigenvalues {~fv} of P with respect to
U such that 0 ^ 71 ^ 72 ^ • • • , 7* —> 00,

(2.7) (^>v,U(f>ll)w = 6vll, (<l>i,,P<f>p)w = iv^vp.,

and for any / £ W,

(2.8) / =

Define an inner product on W by

(2.9) (/,*), = f ] (1 + luf (/, U*v)w(v, U4,v)w,

and let Wp be the Hilbert space completion under the corresponding norm ||-|| of the

set {/ £ W : | |/ |L < 00}. It is shown in [14] that Wi = W with equivalent norms,

and K : Wo —» L2(F) is an isometric isomorphism.

The following properties follow easily from the above definitions. From (2.7), for

all v,

(2.10) P4>v=-fvU<t>v.
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Since dimN(P) = TO, we have -yv = 0 for v = 1 , . . . ,m , and span{^v : v ^ TO} =
iV(P). Therefore, from (2.10), -yv > 0 for v > TO. Using (2.8), (2.10) and the orthogo-
nality of P , it is not hard to show that

From (2.9), it is clear that for any fi,

(2.12) \\P<j>,\\2
p ^ f ; (1 + 7 , ) P ( ^ . W ^ = (1 + 7M)"-

We now list the main assumptions for results in this paper. (These are the same
as those in [14].) For convenience we shall use the following notation: for two positive
sequences an and bn, denote an ~ bn if and only if an = 6n(l + o(l)) , denote an < bn

if and only if an = O(6n), and denote an w bn if and only if an < bn and bn < an.

ASSUMPTION 1. The random errors e,-, i = 1 , . . . , n , satisfy Eei = 0 and EeiEj —

ASSUMPTION 2.

(a) The operator K : W —» L2 is 1-1, bounded and compact, and if(W) is
dense in L2.

(b) P : W —» TT is an orthogonal projection with 771 = dimiV(P) < 00.
(c) There exists r > 1 such that 7,, a uT for v > m.

ASSUMPTION 3.

(a) For each x 6 [0,1], the functional W -> R, / -> if / (x ) is bounded.
(b) For all n sufficiently large, N(Kn) l~l JV(P) = {0}.

ASSUMPTION 4. For the kernel q(x,y) = (773,r]y)w, there exists g such that q(x,x) <

g, for all x G [0,1]. (This is equivalent to q being uniformly bounded, since |g(x,y)| ^

It is not hard to show that (see [14])

(2.13) n - 1 Q n = KnK*n and n ^ E = KnPK*n.

Using the first equality, it is clear from Assumption 4 that for all z 6

(2.14) \\K*nAw = n~l(KnK*nz,z) < qn'1 \\z\\2 .

By definition of U and Un, clearly, for all f,v G W,
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ASSUMPTION 5. There exists F e T, a € ( 0 , 1 - 1 / r ) , { p i , . . . ,pj} C [0,s] and a

sequence dn —> 0 such that, for all f,v £ W,

\((U-Un)f,v)w\ < d

Define the general loss function ELp{\) by

(2-15) ELp(\) = E\\fnx-fo\\2
p.

Note that for p = 0, from the isometric isomorphism K : Wo —> L2(F),

EL0(X) = EL{\) = E \\KfnX - l

Using Assumption 1, ELP(X) can be decomposed as

where H n̂A/oUp is the squared bias

||iWo||2
p = \\Efnx ~ fo\\2

p =

and Vnx is the variance

= E \\/nX - EfnXf = E \\(XP
* II

Under Assumptions 1, 2, 3 and 5, estimates of the squared bias and variance are derived
in [2] (see also [11] in the case where P = I). The results are stated in Propositions
3.1 and 3.2 in [14]. If /o 6 Wp, /3 ̂  max{p,s}, then as n —» oo, the bias estimate has
the form

min{l, A2} H/oll̂  < H^A/OII" < min{l, A^-"} ||/0||^ if p ̂  p < p + 2,

\\BnXfo\\2
p w min{l,A2}||/o||2p+2 if P>p + 2,

and the variance estimate has the form

where
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The estimates are uniform in A £ [An,oo), where An is a certain sequence which
-> 0. It is known that if - 1 / r < p < 2 - 1/r, then for all A > 0, C(X,p) «

l/r),-2),where

( Aa, A ^ 1,

Define 5 to be the set of functions for which the upper bound on the squared bias
is achieved in the sense that

for p ^ (3 < p+2. It is shown in [11] that there is such a set. If Xp minimises ELp(X)
and either f0 G Wp, (3 ̂  p + 2, or f0 £ SV\Wp, p < (3 < p + 2, then from Corollary
3.1 in [14], Xp « A* and ELp(Xp) w ^^^(A*) —» 0 as n —» oo, where

( 2 1 6 )

Theorems 4.1 and 4.3 in [14] provide estimates of the functions jii(A) and

defined in (2.5) and (2.6) respectively. The results are that under Assumptions 2-5, if

An —> 0 as n —> oo in such a way that d^Xn —* 0, then

oo

(2.17) ^(A) ~ n-1 Y, (1 + ̂ T,)"1 * n-'DiX; -1/r, -1),
v=l

(2.18) / i 2 ( A ) ~ n - 1 C ( A , 0 ) « n-1£>(A; - 1 / r , - 2 ) ,

both uniformly in A £ [An,oo).

We shall also need estimates of the risk loss function ER(X). Using Assumption

1, this can be decomposed as

(2.19) ER(X) = b2(X) + v{X),

where 62(A) is the squared bias

(2.20) b2(X) = n-1 ||(/ - A)g||2 = nA2 " f ^ / ^ A + Xvnf

and v(X) is the variance

(2.21) v(X)=n-1E\\Aef =*2p.2{X).
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Clearly, (2.18) gives an estimate of v(X). Upper and lower bounds for 62(A) are de-
rived in Theorem 4.5 in [14]. These are of the same order as those for ||2?n.x/o||o =

\\EKfnx - gfL2(F) • If AR minimises ER(X) and either f0 £ Wp, /3 ^ 2, or
fo G S nWp, s ^ P < 2, then from Corollary 4.1 in [14], XR ss A* and
ER(XR) « ER(X*) - • 0 as n -> co, where

(222) y A : { U
3. ASYMPTOTIC PROPERTIES OF AD

From (2.3), the discrepancy D(X) is strictly increasing with A from D(0) = 0, and
n—TO n—m

D(X) —» n " 1 5D !/Jn as A —» oo. Hence, if a-2 < n^1 £) y\n (otherwise the signal
v=l v=l

would be totally dominated by noise), then the equation D(X) = a2 defines a unique

solution Xp , the discrepancy principle estimate.

Taking the expectation of D(X) and using Assumption 1 gives

ED{X) = b2(X) + <T2n~hi(I - A)2

where b2, fii and /*2 are defined in (2.20), (2.5) and (2.6) respectively. Therefore, the
equation ED(X) = a2 is equivalent to

(3.1) 62(A) = <72[2^!(A)-/x2(A)].

n — m

Clearly, b2(X) is strictly increasing from 62(0) = 0, and 62(A) —» ra~* J3 5 2
n
 a s

A —» oo. In addition, it is easy to show that

n—TO

2fii(X) — |i2(A) = 1 — n~1 2_] [nX/(nX + Xvn)]
2,

which is positive and strictly decreasing from 2/ii(0) —/i2(0) = 1, and 2/iX(A) —
mn~l as A —> oo. Hence, if

(3.2) ^ m n - 1 < n ' 1 ^ g l n ,

then (3.1) has a unique solution A D , the "expected" discrepancy principle estimate.
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Lemma 4.4 in [14] shows that under Assumptions 2 and 5, if /o £ Wp, /? ̂  s, then

n'1 Z) dn ~ I I ^ I I L ^ F ) as n -> OO, where P : L2{F) -> L2(F) is the orthogonal

projection onto sj>axi{K${}•*-. Therefore, no matter how large a2 is, (3.2) is satisfied
for all sufficiently large n.

The following theorem describes the asymptotic behaviour of AD = AD(^) as

n —* oo.

THEOREM 3 . 1 . Suppose that Assumptions 1-5 hold, fa £ Wp, /3 ^ a, and

Xn —> 0 as n —» oo in such a way that n~1Xn —> 0 and

3 _ 1 / T .

Let A* be as defined in (2.22), and assume that A* Jj An and AD ^ An. If /3 < 2, tien
as n - t o o ,

AD

and if aiso fo & S, then XD « A* . If /3 ^ 2, then AD ~ A* as n —» oo.

PROOF: From (2.17) and (2.18), if A ^ An, then as n -> oo,

L+A7,)-2

-1 i \ \ •* . . ft i \ . . \—2

; - 1 / r , -1) + AZ?(A; - ( 1 + 1/r), -2)]

(3.3) ss o*n-xD{\;-llr,-\).

Using the lower bound on b2{X) in Theorem 4.5 in [14], there exists a constant c > 0,
independent of n and A, such that AD ^ AD , where AD = AD(W) is the unique solution
of

(3.4) c min{l, A2} = ̂ 2[2Ml(A) -

This implies that for all n sufficiently large, AD < 1. Otherwise, there would be a

subsequence AD of AD such that XD > 1, but from (3.3) and (3.4), c w <r2n~1XD

and so XD —» 0, a contradiction. Hence, solving for AD from (3.3) and (3.4), we get

AD ^ AD , where

AD « {a2n-'
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Again from Theorem 4.5 in [14], since AD < 1, we have as n —> oo,

* 2 ( A D ) < A £ | | / O | | * , if / 3 < 2 ,

6 2 ( A D ) « A D | | / 0 | | ^ if (3>2,

and w holds for /3 < 2 if also /o G 5 . The required results for AD follow easily from
these estimates, (3.3) and the defining equation (3.1). D

Using Theorem 3.1, we obtain the following results about the asymptotic ineffi-

ciency of AD •

THEOREM 3 . 2 . Suppose that Assumptions 1-5 hold, An —> 0 as n —» oo asin
Theorem 3.1, and A* ^ An and AD ^ An. Let XR and XL minimise ER(X) and EL(X)
respectively over A ^ An. IS f0 6 Wp, fl ^ 2, or f0 E S f) Wp, s ^ /3 < 2, then as
n —•> o o ,

AD ^ Afl ~ Ax, w A*,

EL(XD)

PROOF: It is easy to check that An satisfies the conditions in Corollaries 3.1 (with
p = 0) and 4.1 in [14]. From these and Theorem 3.1, we have

AD W A* SS XR « XL,

ER(XD) »

and the result follows. U

THEOREM 3 . 3 . Suppose that Assumptions 1-5 hold, Xn —> 0 as n —> oo asin
Theorem 3.1, and X* ^ An and AD ̂  An. Let Ap minimise ELP(X) over X ^ An. If
/o ^ W^+fi, 6 > 0, and either f0 G Wp, 0 = 2, or f0 6 S PI Wp, a ^ /3 < 2, then for
any 0 ^ p < min{/?,2 — a — l/r}, XD « Ap and

However, if f0 £Wp, 0 > 2, then for any 0 < p <2- s -l/r, XD/XP -> 0 as n —» oo

and
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(Note that 2 - s - 1/r > 1.)

PROOF: Clearly An satisfies the conditions of Corollary 3.1 in [14]. For the first
part, from this corollary and Theorem 3.1, we have

AD « (<r»n-1)r / ( ' r+1) « A,,

ELP{XD) « ELP(XP),

and the result follows. For the second part, from Theorem 3.1 and Corollary 3.1 in [14],
we have

V"™™**'"1*, 0 < P < 0 - 2,

Moreover, from Propositions 3.1 and 3.2 in [14], ELP(XD) ~ Vn\D and so

ELP(XD) f ( ^ n - i ) ^ - " ) / ^ ) - " / ^ ^ ) , 0 < „ < P - 2,

and by checking the exponents this —> oo. D

These results show that in many cases AD is weakly asymptotically optimal with
respect to the given loss functions. Theorem 3.2 extends results of Wahba [20] in the
case of periodic data smoothing, and Davies and Anderssen [7] in the case of periodic
numerical differentiation, both of which only use the risk criterion.

In these papers, it is also shown that if /o is smooth, then for all n sufficiently
large, XD always oversmooths with respect to the risk; that is AD > XR, where An
minimises ER(X). Numerical experiments in [3] for data smoothing are consistent with
this result. The proofs in these cases rely on the known growth rate of the eigenvalues
of the 77i th derivative operator.

In the present situation, the eigenvalues -yv are only bounded above and below as
ciur ^ ft, ^ C2fr for some constants ci, ci > 0. Nevertheless, the next theorem shows
that in general, if f0 is smooth relative to W, then for all n sufficiently large, XD
always oversmooths with respect to the risk.

We shall use the foUowing definition and lemma. A symmetric kernel h(x,y) is
said to have the smoothness of the Green's function of a self-adjoint linear differential
operator of order 2p if

(a) for each I — 0, . . . , 2p - 2, the derivative {dl/dxl)h{x, y) exists and
is continuous at all (x, y) G [0, 1] x [0, 1], and for 2 — 2p — 1 and
2p, (<?'/dxl)h(x, y) exists and is continuous for x ^ y, and
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(b) lim (dP'-i/dx^-^hix, y) and lim (d2*'1 / f t c 2 * - 1 ) / ^ , y) exist and are

bounded for all y £ [0, 1].

LEMMA 3 . 1 . Suppose that Assumptions 2, 3 and 5 hold, and the kernel q(x,y)
has the smoothness properties of the Green's function of a sett-adjoint linear differ-
ential operator of order 2p. Also suppose that X — X(n) —> 0 as n —> oo such that
d^A~("+1/r) —> 0 and h^lX~1 —> 0, where hn — max{xi+1 — xi) (assuming without loss
of generality that {x{} are in ascending order). If fo £ W3, then a s n - t o o ,

v=l

PROOF: Prom the definition of gvn, ^vn and S, we have

v=l

- n*S
TBT {BVBT + nX) "X (BVBT)-1 (5E5T + nXl) ~'

(3.5)

+ yS\\
' llw

Now let /** G W denote the unique function that minimises ||-P/||jv o v e r W subject
to Knf = g. It is known (see [9, 10]) that

(3:6) Pfn = ^TBT(BEBT)~1Bg.

Introduce any data y = g + e, where e satisfies Assumption 1, and let fn\ be the
corresponding regularised solution. Then

r>rn jp-pt — en* \(nvnr\ i R v n T ± » i n n™
JTJ — hjFjnX = ^B \(±Jh±f ) — [ULitS + TlM) Ug

Combining (3.5) and (3.7), we get

n—m

• Kn)2] = A"2 | | P / " - EPfnX\\2
w .

The right hand side can be bounded by adding and subtracting Pfo as follows:

A ~ l II D t n T? T> / II < < \ — l | I D f n D / l l i \ ~ 1 | I D / T?T) t II

H-P/ - tjfjn\\\w ^ A | | i^/ —/^/0||vK + A IK/0 — -C'-rVnAllw
(3.8) < A"1 \\fn - fo\\w + A"1 \\BnXf0\\w .
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For the first term on the right hand side, we use a theorem in [15] (see also [19] in the
case where P = I) which implies that

and this —> 0 as n —> oo by assumption. From Proposition 3.1 in [14], since the W
norm is equivalent to the W\ norm, the second term on the right hand side of (3.8) is
bounded by

A-Mltf-Jk/ollwrSII/oH,,

and the result follows. D

Note that in the important case where K is an integral operator with kernel k(x, t)
and W has a reproducing kernel r(t,s), it is known (see [19]) that

q{x,y)= f f k{x,t)r(t,s)k{y,s)dsdt.
Jo Jo

Thus the smoothness of q(x,y) will depend on the smoothness of k(x,t) and r(t,s).

THEOREM 3 . 4 . Suppose that Assumptions 1, 2, 3 and 5 hold, and q(x,y) has
the smoothness properties of the Green's {unction of a self-adjoint linear differential
operator of order 2p. Also suppose that (£2nr(»+i)/(2r+i) _> Q and /i£nr / ( 2 r + 1 ) -» 0,
where hn = max{xi+1 — a;;}, and for all sufficiently large n, the risk ER(X) has a
unique local and global minimum over A > 0 at \R = AR(TI) . If fo £ W3, then for all
n sufficiently large, A/? > XR .

PROOF: From (2.19) and (2.21), the risk equals ER(X) = 62(A) + er2fi2{X). Using
(2.20), the derivative of 62(A) can be written as

( _ o A - i i , 2 m 9 1 2 / ,—— = IX b (X) - 2A &nx,

where

= n2YglJ(nX + Xvn)
3.

n—m

v=\

Hence, from (3.1) and (2.6), we have

(3.9) > 4AoV[Mi(AD) - M2(AO)] - 2X2
DGnxD.
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From the proof of Theorem 4.3 in [14] and Theorem 3.1 above, as n —» oo,

n—m

Xvnf

On the other hand, from Theorem 3.1 and Lemma 3.1,

Tl —T7X

Therefore, from (3.9), (d/dX)ER(XD) is positive for all sufficiently large n. The result
follows since ER(X) is assumed to have a unique local and global minimum for all
sufficiently large n. U

It is worth noting that, as shown in [13], ER(X) has a unique local and global
minimum if the finite sequence ngln/X

2
n, v = 1 , . . . ,n — m, is non-increasing. A

heuristic argument (see [13]) can be used to indicate that this condition should hold
for a large subset of functions /o G W3, and therefore the uniqueness assumption in
Theorem 3.2 is not as restrictive as it might seem.

Lastly in this section, we consider the way in which AD depends on the variance
a2. From the proof of Theorem 3.2, one can construct a value of N such that AD
oversmooths for all n ^ N, and clearly this value of N decreases as the variance a2

decreases. This implies that for a fixed n, AD oversmooths for all sufficiently small
a2. In the next theorem, we prove this fact directly. This behaviour was observed in
numerical experiments reported in [3] for the case of data smoothing.

THEOREM 3 . 5 . For fixed n, if ER(X) has a unique local and global minimum
over A > 0 at A = XR , then for all a2 sufficiently small, XD > XR .

PROOF: From (3.1) and the behaviour of 62(A) and 2/ii(A)-/x2(A), it is clear that
AD I 0 as a2 J, 0. In addition, for all sufficiently small A,
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and therefore ccr as a- —* 0, where

Using this in the derivative of ER(\), we get

- 2X2
DGnxD - 2a2

> 0

for all sufficiently small a, and the result follows. D

4. ASYMPTOTIC PROPERTIES OF THE GML ESTIMATE

In this section, we extend the asymptotic analysis of GML carried out by Wahba
[22]. Define the functions /Z^A) and /Z2(A) by:

= (n - Xvn/(nX + Xvn)

J[2(X) = (n - - m) = (n -
v=l

Clearly 0 < Mi(A) < 1 and 0 < /T2(A) < 1 for A > 0. Also ^(A) and JI2(A) satisfy
the same estimates as fJ-i(X) and /i2(A) in (2.17) and (2.18) respectively, uniformly in
A G [Anjoo). Taking expectation of the GML function M(A) defined by (2.4), and
using Assumption 1, we have

(4.1)

where

= [XG(X)

nA/(nA
i /= l
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and <72 = a2(n — m)/n. We wish to estimate the minimiser AM of EM{\).

First consider the case where f0 6 span{#i}. Then gvn = 0, v = 1,... ,n — m,

and so (4.1) can be written as

" 1(4.2) [cr2(n - m) ] " 1 EM{\) = [d(A)]-1 (n - m ) " 1 ^ n\/(nX +

Arguing as in [22], the right hand side of (4.2), being the ratio of an arithmetic to

a geometric mean, is bounded below by 1, and clearly, it approaches 1 as A —» co.

Therefore, assuming that the Xvn are not all equal, JEM(A) is minimised at AM = °o.

Now consider the general case where /<> ^ span{0j}. Define Gi(A) by

n—m

Gi(X) = £ Xvng\
t/=i

Differentiating (4.1) and using the equalities

gives

(4.3) n - 1

By setting the derivative equal to zero and making certain assumptions about
the asymptotic behaviour of g\n, /?i(A) and ^{X), Wahba [22] obtains an asymptotic
decay rate for AM • We shall obtain the corresponding result without these assumptions.
First we prove the following lemmas.

LEMMA 4 . 1 . Suppose that Assumptions 1, 2, 3 and 5 hold and let f0 G Wp,

ft > 1. If X — X{n) —> 0 as n —> oo in such a way that

then G(X) ~ HP/oil^ and d(A) ~ ||P/o||ir.

PROOF: AS shown in [22], for any n and A,

(4.4) d(A) ^ G(A) < " ^ glJXvn = \\Prfw ^ \\Pfofw,

^
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where / " is the unique function in W that minimises ||.P/||w subject to Kf(xi) =
g(xi), i = l,... ,n. The equality in (4.4) holds because from (3.6),

Now, from the definition of Xvn and gvn, and (2.1), we have

G1(X) = \\cTBT(SHBT+nXiy1BSfw = \\PEfnXfw .

Since the W norm is equivalent to the W\ norm and /? > 1, Proposition 3.1 in [14]
implies that as n —> oo,

\\PEfnx\\w > \\Pf4w ~ WPEf^ ~ PM\w
= \\Pfo\\w(l + o{l)).

Using this together with (4.4), gives the required results. U

LEMMA 4 . 2 . Under Assumptions 2-5, if f0 G Wp, (3 ^ s, and g - Kf0, then
as n —* oo,

where P : L2(F) —• L2(F) is the orthogonal projection onto

PROOF: Let 7n : Rn —» K" be the orthogonal projection of Rn onto
From the definition of the matrix B, it is clear that the matrix of Pn is BTB. Then,
from the definition of \vn and gvn, and (2.13), we have

= n-1(S,PnKnPK*Png>)

= \\PK*nPnS\\
2
w.

Now Pn& = Knfo , where

m

(4-5) To = U •

and the c™ are defined by the equations (Png)-^n^t) = 0, i = 1 , . . . ,m , as in the

proof of Lemma 4.4 in [14]. Similarly, Pg = Kf0, where

(4-6) 7o = /o
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and the a are defined by the equations ^Pg,K6i)LJ.F, = 0 , i = 1,. . . ,m. Therefore,

adding and subtracting PUnf0 , we get

,1/2

-\\PK'P9\\ w
- PUf0

w

(4.7)

The first term on the right hand side of (4.7) converges to 0 as n —» oo, since, from
(2.11), (2.10), Assumption 5 and (2.12),

\\P(U-Un)f0\\w = )2
W

t/=m+l

E -r.-1
7 = 1

and the sum converges because a < 1 — 1/r. For the second term on the right hand
side of (4.7), first we have from (2.14),

\\PU .(fo-,

^qn-'W^Pg-PngW2

m
= on 7 \Ci — d )Kn6

t= l

t = l

where (lnPg) • = Pg(xj), j = 1,. . . ,n. From Assumption 5,

and from the proof of Lemma 4.4 in [14],
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Thus, the right hand side of (4.7) converges to 0, and the result follows. D

THEOREM 4 . 1 . Suppose that Assumptions 1-5 hold, and let f0 G Wp, /? > 1,

with Pfo 7̂  0. Let An —» 0 as n —* oo in such a way that n~1Xn —> 0 and

dlK{'+1) - 0, if 1 < fi < 3 - 1/r,

Define

and assume that A ^ An. Then there exists a sequence AM = AM(") of minimisers of
EM(X) over A ^ An satisfying XM ~ A as n —• oo.

PROOF: First we show that for all n sufficiently large, EM(X) has a minimiser
\M = A M ( I ) over [A,j,oo), and \M —» 0 as n —y oo. Suppose that A ^ o, for some
o > 0. Then, from (2.17) and (2.18), we have as n -> oo,

(4.8) fr(A) « n - ^ " 1 , M2(A) « n^A" 2 .

Also, from Lemma 4.5 in [14] and Lemma 4.2,

v=l

(4.9) > A"V(a +

and, from Lemma 4.4 in [14],

n—m
2
l/n

Combining (4.3), (4.8), (4.9) and (4.10), we get, for some positive constants ci, c-i and

L \
"2
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Clearly, there exists N such that for all n ^ N and A ^ a, the right hand side is
> 0. Hence, for all n ^ N, EM{\) has a minimiser AM — A M ( « ) over [A^oo), and
furthermore AM - » 0 as n —> oo. Now, setting the right hand side of (4.3) equal to 0
at A = AM , gives the equation

(4.11) A M G 1 ( A M ) - A M ^ 1 ( A M ) G ( A M ) = 5 : 2 / I 2 ( A M ) - ? 2 / X ? ( A M ) .

Since AM —» 0 as n —> oo, from (2.17) and (2.18) we have /Z-^AM) —* 0, JI\(XM) /W2(^M)

—» 0 and JL2(\M) « n~1^M • Using this and Lemma 4.1, equation (4.11) gives

which implies that AM ~ A. Since A ̂  An by assumption, this completes the proof. D

Now we consider the asymptotic inefficiency of the GML estimate. If Pfo = 0,
then as shown in [22], IM/R — 1 f°r ̂  n- This follows because, if Pfo = 0, then
62(A) = 0, and so from (2.19) and (2.20), ER(\) — <72/i2(A), which clearly is minimised
at A/j = oo = AM •

However, in the usual case where Pfo ̂  0, the following theorem shows that if f0

is smooth relative to W, then AM is asymptotically sub-optimal and undersmoothing
with respect to ER(\). This result was conjectured in [22].

THEOREM 4 . 2 . Suppose that Assumptions 1-5 hold and let f0 £ Wp, /3 > 1,
with Pfo ̂  0. Suppose that A and An are defined and related as in Theorem 4.1, and

A* ^ An, wiiere A* is defined in (2.22). Let AR minimise ER(X) over A ̂  An. If AM
is the sequence of minimisers of EM(X) over A ̂  An, defined by Theorem 4.1, then as

n —> oo, A M / A H —» 0 and

1
—» OO.

PROOF: AS in the proof of Theorem 5.1 in [14], AR -» 0 as n - > oo, and hence,
from Theorems 4.4 and 4.5 in [14], Ajt > A*. Therefore, from Theorem 4.1 and since
f3 > 1, we have A M / A H < A/A* -» 0. In addition, (2.18) and Theorem 4.1 imply that

ER(XM) > v2n2{XM) « otn-ij-1'" « (^n" 1 ) - 7 ^ 0 .

On the other hand, from Corollary 4.1 in [14],
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The result follows easily by dividing the bounds and checking the exponents. D

Under the same conditions, the GML estimate XM is also asymptotically sub-
optimal and undersmoothing with respect to EL( A) or any of the stronger loss functions
ELp(X), as shown below.

THEOREM 4 . 3 . Suppose that Assumptions 1-5 hold, and let f0 G Wp, /? > 1,
with Pfo ^ 0. Suppose that X and An are defined and related as in Theorem 4.1, and
A* ^ An, where A* is defined in (2.16) and 0 $$ p < 2 — s — 1/r. Let Xp minimise
ELp(X) over A ^ An. If XM is the sequence of minimisers of EM(X) over A ^ An,
defined by Theorem 4.1, then as n —» oo, XM/XP —> 0 and

ELp{Xp) ~ | ^n_ljKl-p)/(H-D-2r/(

—» oo.

PROOF: Using Proposition 3.1 and Corollary 3.1 in [14], we have

min{l, X2
p} ||/o ||2 < ELp(Xp) < ELp{Xp) -> 0,

and so Xp —* 0 as n —v oo. Hence, from Propositions 3.1 and 3.2 in [14], Xp > A*.
Therefore, from Theorem 4.1 and since /3 > 1, we get XM/XP < A/A* —> 0. In addition,
Proposition 3.2 in [14] and Theorem 4.1 imply that

Since ELP(XP) ^ ELP(A*) , the result follows from Corollary 3.1 in [14]. D

Consider the case of periodic numerical differentiation of order k using regular-

isation of order m. From the discussion before Corollary 5.2 in [14], the condition

/o G Wp, /3 > 1, in Theorems 4.2 and 4.3 is equivalent to f0 G W(0), 0 > m, where

W(9) = I / G L2 : JT {2wvfe \fv^ < oo and f0 = 0 1
L t/=-oo J

/ / = o | ifand / / = o | if 0 G

Therefore in this case, these two theorems generalise a result in [6] which uses the risk

criterion and the condition /o G W(2m + k) = W2 .

The asymptotic properties of AM are quite different if /o is "rough" relative to W.

In [22], Wahba shows that if g\n — bXvn, 1/ = 1, . . . ,n — TO, then AM = XR = <r2/(nb)

and so IM/R = 1 • This suggests that if as n —> 00,

n—m

(412)
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then GML should perform quite well. Note that from (4.4), the condition (4.12) implies
that /o i W.

If the smoothness of /o is known in terms of say 0 = sup{0 : /o € We'2} (where
6 may be fractional), then it may be possible to choose the space W (or the order
of regularisation) so that (4.12) is satisfied. This point is discussed further in [12].
However, if little or nothing is known about the smoothness of /o (which is the usual
case), then (4.12) will be of no assistance.
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