SUM OF TWO INNER FUNCTIONS AND EXPOSED POINTS IN H^1

by TAKAHIKO NAKAZI*

(Received 4th April 1990)

If h is an outer function in H^1 then it is shown that $h = (q_1 + q_2)g$ where both q_1 and q_2 are inner functions with $\operatorname{Im} \bar{q}_1 q_2 \leq 0$ almost everywhere, and g is a strong outer function (equivalently, $g/||g||_1$ is an exposed point of the unit ball of H^1). If $q_1 + q_2$ is nonconstant then such an h is not strongly outer. Moreover a sum of two inner functions is studied.

1980 Mathematics subject classification (1985 Revision). Primary 30D55, 46J45; Secondary 47B35.

1. Introduction

Let U be the open unit disc in the complex plane and let ∂U be the boundary of U. A function in U is said to be of class N if the integrals

$$\int_{-\pi}^{\pi} \log^{+} \left| f(re^{i\theta}) \right| d\theta$$

are bounded for r < 1. If f is in N, then $f(e^{i\theta})$ which we define to be $\lim_{r \to 1} f(re^{i\theta})$, exists almost everywhere on ∂U . If

$$\lim_{r \to 1} \int_{-\pi}^{\pi} \log^+ \left| f(re^{i\theta}) \right| d\theta = \int_{-\pi}^{\pi} \log^+ \left| f(e^{i\theta}) \right| d\theta$$

then f is said to be the class N_+ . The set of all boundary functions in N or N_+ is denoted by N or N_+ , respectively. For $0 , the Hardy space <math>H^p$, is defined by $N_+ \cap L^p$.

We call q in N_+ an inner function if $|q(e^{i\theta})|=1$ a.e. on ∂U . A function h in N_+ is called outer if it is not divisible in N_+ by a nonconstant inner function. A function g in H^1 is strongly outer if the only functions f in H^1 such that f/g is positive are scalar multiples of g. (If g has norm 1, it has this property if and only if it is an exposed point of the unit ball of H^1 .) Every strongly outer function is outer.

H. Helson [7] recently gave a necessary and sufficient condition for strong outer

This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.

TAKAHIKO NAKAZI

functions. That is related to the divisibility by the square of the sum of two inner functions. We can prove similarly the following result. Let g be outer in H^1 . Then g is strongly outer in H^1 if and only if $g/(q_1+q_2)$ is not in H^1 for any inner functions q_1, q_2 such that q_1+q_2 is not constant and $-i(q_1-q_2)/(q_1+q_2)$ is nonnegative almost everywhere. A. Beurling [1] established a celebrated factorization theorem. That is, a nonzero function f in N_+ can be factorized as in the following: f = qh where q is inner and h is outer in N_+ . Thus it is desirable to show that if f is not a strong outer function in H^1 then $f = (q_1 + q_2)g$ where both q_1 and q_2 are inner functions, $-i(q_1-q_2)/(q_1+q_2)$ is nonnegative almost everywhere and g is a strong outer function in H^1 . In Section 2 we show this factorization is true. In the proof, a theorem of E. Hayashi ([4, 5]) and theorems of H. Helson ([6, 7]) are crucial. It is more desirable to show that if f is not strongly outer then $f = (q_1 + q_2)^2 g$ where both q_1 and q_2 are inner and g is strongly outer by a theorem of Helson [7]. In Section 3 we consider this problem. A strong outer function is important in a solution set of an extremal problem of H^1 . In Section 4 we try to describe the solution sets intelligibly. In Section 5 a characterization of absolute values of strong outer functions is given.

2. A sum of two inner functions

Suppose f is a function in H^1 which has the form: $f = (q_1 + q_2)g$ where q_1, q_2 are inner functions, $q_1 + q_2$ is not constant, $\text{Im } \bar{q}_1 q_2 \leq 0$ and g is a strong outer function. By the following lemma, f is not strongly outer. In this section we show the converse.

Lemma. Let q_1 , q_2 be inner functions with $q_1 \neq -q_2$. Then $-i(q_1-q_2)/(q_1+q_2)$ is nonnegative if and only if $\operatorname{Im} \bar{q}_1 q_2 \leq 0$.

Proof. Use the following equality:

$$\frac{-i(q_1-q_2)}{q_1+q_2} = \frac{-2 \operatorname{Im} \bar{q}_1 q_2}{|1+\bar{q}_1 q_2|^2}$$

Theorem 1. If f is not a strong outer function in H^1 then $f = (q_1 + q_2)g$ where both q_1 and q_2 are inner functions, $\operatorname{Im} \bar{q}_1 q_2 \leq 0$ almost everywhere, $(q_1 - q_2)^{-1}$ is summable and g is a strong outer function. If f is outer then $q_1 + q_2$ is also outer. If q_1 is a finite Blaschke product of degreee n then so is q_2 .

Proof. Suppose $f = q_0 h^2$ where q_0 is inner and h is outer in H^2 . By a theorem of E. Hayashi ([4, 5])

$$H^2 \cap (h/\bar{h})\bar{H}^2 = g_0(H^2 \ominus zqH^2)$$

and

$$h/h = \bar{q}\bar{g}_0/g_0,$$

where q is an inner function and g_0^2 is strongly outer. Hence $h = sg_0$ where $s \in H^2 \ominus zqH^2$ and $\bar{q}s^2 \ge 0$. Since $|s^2 \pm iq|^2 = |s|^4 + 1$,

$$s^2 + iq = p_1 h_1$$
 and $s^2 - iq = p_2 h_1$

where p_1, p_2 are inner functions and h_1 is a function in H^1 with $h_1^{-1} \in H^{\infty}$. Hence

$$s^2 = (p_1 + p_2) \frac{h_1}{2}$$
 and $q = -i(p_1 - p_2) \frac{h_1}{2}$

and

$$\bar{q}s^2 = (p_1 + p_2) / -i(p_1 - p_2).$$

Put $g=h_1g_0^2/2$, $q_1=q_0p_1$ and $q_2=q_0p_2$, then $f=(q_1+q_2)g$, g is strongly outer, $-i(q_1-q_2)/(q_1+q_2)$ is nonnegative and $(q_1-q_2)^{-1}$ is summable. By the lemma above $\operatorname{Im} \bar{q}_1q_2 \leq 0$.

If q_1 is a finite Blashke product of degree *n* then so is q_2 . For $-i(p_1-p_2)/(p_1+p_2)$ is a nonnegative in N_+ because $p_1 + p_2$ is outer, and

$$\frac{-i(p_1-p_2)}{p_1+p_2} - i = \frac{-i2p_1}{p_1+p_2}$$

and

$$\frac{-i(p_1-p_2)}{p_1+p_2}+i=\frac{-i2p_2}{p_1+p_2}.$$

This shows degree $p_1 =$ degree p_2 [6, 7] and hence $q_2 = q_0 p_2$ is a finite Blaschke product of degree *n*.

In the theorem above

$$-i(q_1-q_2)g=q_0qg_0^2.$$

In general even if $f = (q_1 + q_2)g$ and g is strongly outer, $-i(q_1 - q_2)$ does not have such properties.

For any pair (q_1, q_2) of inner functions $q_1, q_2, -i(q_1-q_2)/(q_1+q_2)$ is real. However there exists a pair (q_1, q_2) such that $-i(q_1-q_2)/(q_1+q_2)$ is nonnegative. Suppose a, α_j and β_j are complex numbers, $0 < |a| \le 1, |\alpha_1| < 1$ and $|\alpha_j| \le |\beta_j|$ (j = 1, 2). If

$$\alpha_1 \beta_1 = a/\bar{a}, \alpha_1 + \beta_1 = (1 + |a|^2 + i)/\bar{a}$$

and

$$\alpha_2 \beta_2 = a/\bar{a}, \alpha_2 + \beta_2 = (1 + |a|^2 - i)/\bar{a}$$

then $-i(q_1-q_2)/(q_1+q_2)$ is nonnegative where

$$q_1 = \frac{z - \alpha_1}{1 - \bar{\alpha}_1 z}$$
 and $q_2 = \frac{z - \alpha_2}{1 - \bar{\alpha}_2 z}$

For $|(z-a)(1-\bar{a}z)\pm iz|^2 = |1-\bar{a}z|^2 + 1$. Hence $(z-a)(1-\bar{a}z)+iz = q_1h$ and $(z-a)(1-\bar{a}z)-iz = q_2h$ where *h* is outer. Therefore $(z-a)(1-\bar{a}z)=(q_1+q_2)h$ and $z = -i(q_1-q_2)h$. Since $z/(z-a)(1-\bar{a}z)$ is nonnegative, $-i(q_1-q_2)/(q_1+q_2)$ is nonnegative.

3. A sum of two inner functions and the square

In this section we wish to factorize the part $q_1 + q_2$ in Theorem 1 which is not strongly outer. This problem is suggested by a theorem of Helson [7] (see Section 1).

Theorem 2. Let q_1 and q_2 be inner functions such that $q_1 + q_2$ is outer, $\operatorname{Im} \bar{q}_1 q_2 \leq 0$ almost everywhere and $(q_1 - q_2)^{-1}$ is summable. If the inner part q of $q_1 - q_2$ has one of the following three properties then there exist two inner functions p_1, p_2 such that

$$q_1 + q_2 = (p_1 + p_2)^2 k$$

where k is strongly outer.

- (1) $q = q_0^2$ for some inner function q_0 .
- (2) $q(U) \subsetneq U$.
- (3) q is a finite Blaschke product.

Proof. Since (1) is a special case of the proof of (2), we will show (2). If $q(U) \subsetneq U$ then there exists $\alpha \in U$ with $\alpha \notin q(U)$. Put $q' = (q - \alpha)/(1 - \bar{\alpha}q)$ then $q' = q_0^2$ for some inner function q_0 because q' is a singular inner function. Moreover

$$\bar{q}q_0^2 = \frac{\bar{h}_0}{h_0}$$
 and $h_0 = 1 - \bar{\alpha}q$.

Hence $\bar{q}(q_0h_0)^2 = |q_0h_0|^2$ and $q_0h_0/(1+q)$ is real because $\bar{q}(1+q)^2$ is nonnegative. Let $s^2 = q(q_1+q_2)/-i(q_1-q_2)$; then s/(1+q) is real and $s \in H^2$ because $(q_1-q_2)^{-1}$ is summable. Since $|s\pm iq_0h_0|^2 = |s|^2 + |h_0|^2$,

$$s + iq_0 h_0 = p_1 h_1$$
 and $s - iq_0 h_0 = p_2 h_1$

where p_1, p_2 are inner functions and h_1 is a function in H^2 with $|h_0| \leq |h_1|$. Hence $h_1^{-1} \in H^{\infty}$ and $s = (p_1 + p_2)h_1$. Thus

352

$$q_1 + q_2 = (p_1 + p_2)^2 \frac{-i(q_1 - q_2)}{q} h_1^2.$$

Put $k = -i(q_1 - q_2)h_1^2/q$; then k is strongly outer and hence (2) follows.

Suppose q is a finite Blaschke product of degree n. If $f \in H^1$ and $\bar{q}f$ is nonnegative then $f = \gamma \prod_{j=1}^{n} (z-a_j)(1-\bar{a}_jz)l^2$ where γ is positive constant, $|a_j| \leq 1$ $(1 \leq j \leq n)$ and l^2 is strongly outer in H^1 with $l^{-1} \in H^{\infty}$ ([2, 8]). Since $s^2 = q(q_1+q_2)/-i(q_1-q_2)$ is an outer function with $\bar{q}s^2 \geq 0$,

$$s = \gamma_1 \prod_{j=1}^n (-\bar{a}_j)^{1/2} (z - a_j) l$$

where $\gamma_1 > 0$ and $|a_j| = 1$ $(1 \le j \le n)$. Put $f = \prod_{j=1}^n (-\bar{c}_j)^{1/2} (z - c_j) l$ where $|c_j| = 1$ $(1 \le j \le n)$ and $\{c_j\}_{j=1}^n$ is disjoint from $\{a_j\}_{j=1}^n$. Then

$$|s \pm if|^2 = |s|^2 + |f|^2 \ge \varepsilon |l|^2$$

for some $\varepsilon > 0$ because $\{c_j\}_{j=1} \cap \{a_j\}_{j=1}^n = \phi$. Therefore $s + if = 2p_1h_1$ and $s - if = 2p_2h_1$ where p_1, p_2 are inner functions and h_1 is a function in H^2 with $|l| \le |h_1|$. Now as in the proof of (2), (3) follows.

By Theorem 1 and the remark after it, if f is outer and not strongly outer then

$$f = (q_1 + q_2) \frac{q}{-i(q_1 - q_2)} g_0.$$

The proof of Theorem 2 implies that if q satisfies one of (1)-(3) then f can be factorized as in the following: $f = (p_1 + p_2)^2 h_1^2 g_0$ and $h_1^2 g_0$ is strongly outer. In Theorem 2 if $\bar{q}q_0^2 = \bar{h}_0/h_0$ and h_0^2 is strongly outer then the proof of (2) works and hence its conclusion is still valid.

4. The solution sets of extremal problems

For each f in H^2 we define a subset of H^2 in the following:

$$\mathscr{A}_f = \{g \in H^2 : gf^{-1} \text{ is real}\}.$$

Again by virtue of Theorem 1, we consider $\mathscr{A}_{q_1+q_2}$ for two inner functions q_1, q_2 . If $\mathscr{A}_{q_1+q_2}$ contains a function whose absolute value is that of a strong outer function and the inner part satisfies the conditions in Theorem 2, then the conclusion of Theorem 2 is still valid. This is one of the motivations for the study of $\mathscr{A}_{q_1+q_2}$. For each f in H^1 we define a subset of H^1 as follows:

TAKAHIKO NAKAZI

$$\mathscr{S}_f = \{g \in H^1: gf^{-1} \text{ is nonnegative}\}.$$

The intersection of \mathscr{G}_f and the unit ball S^1 of H^1 is a solution set of an extremal problem of H^1 . $\mathscr{S}_t \cap S^1$ was described by the author [8] when it is weak-* compact and E. Hayashi ([4, 5]) described it completely. However the solution may not be understandable enough when it is not weak-* compact. If $f \in H^2$ then $(\mathscr{A}_f)^2 \subset \mathscr{G}_{f^2}$ and this is another motivation for the study of $\mathscr{A}_{q_1+q_2}$.

Theorem 3. Let q_1, q_2 be inner functions and $p = q_1 q_2$.

(1) $\mathscr{A}_{q_1+q_2}+i\mathscr{A}_{q_1+q_2}=H^2\ominus pzH^2$.

(2) Let b be a Blaschke product such that $b = (p - \alpha)/(1 - \bar{\alpha}p)$ and $\alpha \in U$ (such an α exists always). Then

$$\mathscr{A}_{q_1+q_2} = (1 - \bar{\alpha}p) \mathscr{A}_{1+b}.$$

(3) If b is a finite Blaschke product of degree n then

$$\mathscr{A}_{1+b} = g^{-1} \mathscr{A}_{1+z}$$

where $g = \prod_{i=1}^{n} \bar{a}_i(1-\bar{a}_i z)$ and $\{a_j\}_{j=1}^{n}$ are the zeros of b.

(4) If n is finite then

 $\mathscr{A}_{1+zn} = \{ \alpha \prod_{j=1}^{l} (z-a_j)(1-\bar{a}_j z) \prod_{j=2l+1}^{n} (-\bar{a}_j)^{1/2} (z-a_j); \ |a_j| < 1 \text{ if } 1 \leq j \leq l \text{ and } |a_j| = 1 \text{ if } 2l+1 \leq j \leq n, \text{ and } \alpha \text{ is real} \}.$

(5) $\mathscr{A}_{1+b} \supseteq \mathscr{A} = \{ f \in H^2 : f = \sum_{j=0}^{\infty} [\alpha_j (b_j + b'_j) - i\beta_j (b_j - b'_j)] \}$ and $\mathscr{A} + i\mathscr{A} = \mathscr{A}_{1+b} + i\mathscr{A}_{1+b}$. Here $b = \prod_{j=1}^{\infty} b_j$ where

$$b_j = \frac{|z_j|}{z_j} \frac{z - z_j}{1 - \bar{z}_j z} \text{ for } j \ge 1,$$

 $b_0=1$ and $b'_j=b\overline{b}_j$. α_j and β_j are real numbers and \sum denotes the L^2 -limit of the finite sums.

Proof. (1) $\mathscr{A}_{q_1+q_2} = \mathscr{A}_{1+p}$ because

$$\frac{q_1+q_2}{1+p} = \frac{(q_1+q_2)\bar{p}}{(1+p)\bar{p}} = \frac{\bar{q}_1+\bar{q}_2}{\bar{p}+1}.$$

If $f \in \mathscr{A}_{1+p}$ then $f(1+p)^{-1} = \overline{f}(1+\overline{p})^{-1}$ and hence

$$(1+p)^{-1}H^2 \cap (1+\bar{p})^{-1}\bar{H}^2 \supseteq (1+p)^{-1} \{\mathscr{A}_{1+p} + i\mathscr{A}_{1+p}\}.$$

If $(1+p)^{-1}f = (1+\bar{p})^{-1}\bar{g} \in (1+p)^{-1}H^2 \cap (1+\bar{p})^{-1}\bar{H}^2$ then $pf = \bar{g}$ because $1+\bar{p}=\bar{p}(1+p)$.

354

Hence $\underline{f} = p_1 h$ and $\underline{g} = \underline{p_2} h$ where h is outer, and p_1 and p_2 are inner. This implies that $\overline{p}p_1 h = \overline{p_2} h$ and $\overline{p}p_2 h = \overline{p_1} h$. Therefore

$$\bar{p}(p_1+p_2)h = (p_1+p_2)h$$

and

$$\bar{p}\{-i(p_1-p_2)h\}=\overline{-i(p_1-p_2)h}.$$

This implies that $(p_1 + p_2)h/2$ and $-i(p_i - p_2)h/2$ belong to \mathscr{A}_{1+p} . Since

$$f = (p_1 + p_2)h/2 + i\{-i(p_1 - p_2)h/2\}, (1 + p)^{-1}f(1 + p)^{-1}\mathscr{A}_{1 + p} + i(1 + p)^{-1}\mathscr{A}_{1 + p}.$$

Thus

$$(1+p)^{-1}H^2 \cap (1+\bar{p})^{-1}\bar{H}^2 = (1+p)^{-1} \{\mathscr{A}_{1+p} + i\mathscr{A}_{1+p}\}.$$

On the other hand

$$H^2 \ominus pzH^2 = H^2 \cap p\bar{H}^2 = (1+p)\{(1+p)^{-1}H^2 \cap (1+\bar{p})^{-1}\bar{H}^2\}$$

This shows (1) because $\mathscr{A}_{q_1+q_2} = \mathscr{A}_{1+p}$.

(2) If $l=1-\bar{\alpha}p$ then

$$b = p \frac{|l|^2}{l^2}$$

and hence $(1+p)^2 l^2/(1+b)^2$ is nonnegative a.e.. Therefore (1+p)l/(1+b) is real and $\mathscr{A}_{1+p} = \mathscr{A}_{(1+b)l} = l \mathscr{A}_{1+b}$ because $l^{-1} \in H^{\infty}$.

- (3) $\overline{z}^n = \overline{b}|g|^2/g^2$ and hence we can show $\mathscr{A}_{1+z^n} = g \mathscr{A}_{1+b}$ as in the proof of (2).
- (4) Since $(\mathscr{A}_{1+z^n})^2 \subset \mathscr{G}_{z^n}$ and

$$\mathscr{S}_{z^n} = \left\{ \gamma \prod_{j=1}^n (z - a_j)(1 - \bar{a}_j z) : |a_j| \le 1 \ (1 \le j \le n) \text{ and } \gamma > 0 \right\},\$$

(4) follows.

(5) If $f = \sum_{j=0}^{\infty} [\alpha_j (b_j + b'_j) - i\beta_j (b_j - b'_j)]$ then it belongs to \mathscr{A}_{1+b} by the first line of (1) and

$$\frac{-i(b_j-b'_j)}{1+b} = \frac{-i(b_j-b'_j)\overline{b}}{(1+b)\overline{b}} = \frac{i(\overline{b}_j-\overline{b}'_j)}{\overline{b}+1}.$$

If $f \in H^2 \ominus bzH^2$ and f is orthogonal to $\{b_j + b'_j, -i(b_j - b'_j)\}_{j=0}^{\infty}$ then it is orthogonal to $\{b_j, b'_j\}_{j=0}^{\infty}$. We will show that f is zero almost everywhere. Since $(f, b_0) = 0$ and $b_0 = 1$,

TAKAHIKO NAKAZI

 $f = zf_0$ and $f_0 \in H^2 \ominus bzH^2$. $(f, b_1) = 0$ implies $f_0(z_1) = 0$, and hence $f_0 = b_1 f_1$ and $f_1 \in H^2$, where (,) denotes the inner product in H^2 . Since

$$0 = (f_0, b_2) = (f_1, b_2 \overline{b}_1),$$

 $f_1(z_2) = 0$ and $f_0(z_2) = 0$. By the same argument, $f_0(z_j) = 0$ for $j \ge 3$ and hence $f \in bzH^2$. This implies that f is zero because $f \in H^2 \ominus bzH^2$. This completes the proof of (5).

5. A characterization of strong outer functions

Several characterizations of strong outer functions are known (cf. [8, Theorem 3], [4, Theorem 8], [3, Chapter IV, Exercise 18] and [7]). See Theorem 1. In this section we give a characterization. For a real valued measurable function u on ∂U , if $f \in N$ and Re f = u on ∂U , \tilde{u} denotes the real part of f on \overline{U} , that is, the harmonic extension of u, and *u denotes the imaginary part of $f - \tilde{f}(0)$ on \overline{U} .

If f is in H^1 and u is a nonnegative function in L^1 such that $|f(e^{i\theta})| \leq u(e^{i\theta})$ almost everywhere on ∂U , then $|\tilde{f}(z)| \leq \tilde{u}(z)$ on U. The inner outer factorization of f and the Poisson integrals of u and |f| give the above inequality in U. If u is nonnegative then $u+i^*u$ belongs to $\bigcap_{p<1} H^p$ and is an outer function. Let $f(e^{i\theta}) = (e^{i\theta}-1)^2$ and $u(e^{i\theta}) = -2(e^{i\theta}-1)^2(e^{i\theta}+1)^{-2}(1+\cos\theta)$; then $u+i^*u = -2(e^{i\theta}-1)^2(e^{i\theta}+1)^{-1}$ is an outer function in $\bigcap_{p<1} H^p$ and $|f(e^{i\theta})| \leq u(e^{i\theta})$ a.e. on ∂U . However it is not true that $|\tilde{f}(z)| \leq \tilde{u}(z)$ on U. Hence the condition of the integrability of u is needed to show the inequality on U.

Theorem 6. Let g be an outer function in H^1 . The following are equivalent.

(1) g is a strong outer function.

(2) For every nonnegative function u on ∂U such that $u + i^*u$ is an outer function in N_+ and $|g(e^{i\theta})| \leq u(e^{i\theta})$ a.e. on ∂U , we have $|\tilde{g}(z)| \leq \tilde{u}(z)$ on U.

(3) For every nonnegative function u on ∂U such that $u + i^*u$ is an outer function in N_+ and $|g(e^{i\theta})| \leq u(e^{i\theta})$ a.e. on ∂U , we have $|\tilde{g}(0)| \leq \tilde{u}(0)$.

Proof. The proof is suggested by the proof of [3, Chapter IV, Lemma 5.4].

(1) \Rightarrow (2). Put $\phi = u + i^*u$. Let α be a measurable function on ∂U such that

$$|\alpha| \leq \pi/2$$
 a.e. and $\alpha = \arg \phi \pmod{2\pi}$.

Then $u = \operatorname{Re} \phi = |\phi| \cos \alpha$ and $|g/\phi| \le \cos \alpha$ a.e. on ∂U . Let $\psi = \exp(-*\alpha + i\alpha)$ then ψ belongs to H^p for some p < 1 by Zygmund's theorem (cf. [3, Chapter III, Corollary 2.6]) and

$$|\psi g/\phi| \leq |\psi| \cos \alpha = \operatorname{Re} \psi$$
 a.e. on ∂U

and Re ψ is in L^1 . Since ϕ is an outer function, $\psi g/\phi$ is in N_+ and hence $\psi g/\phi$ belongs to H^1 . Put $h = \psi g/\phi$. Then $\arg h = \arg g$ a.e. $(\mod 2\pi)$ and hence $h = \gamma g$ for some $\gamma > 0$ because g is strongly outer. Thus $\psi = \gamma \phi$ and u is in L^1 . By the remark above Theorem 6 $|\tilde{g}(z)| \leq \tilde{u}(z)$ on U. This implies (2).

 $(2) \Rightarrow (3)$ is trivial.

 $(3) \Rightarrow (1)$. If g is not a strong outer function, then there exists an outer function h_0 in H^1 such that $\arg g = \arg h_{a,\gamma}$ a.e. $(\mod 2\pi)$ for any |a| = 1 and $\gamma > 0$ where $h_{a,\gamma} = \gamma(z-a)(1-\bar{a}z)h_0$. We can choose a and γ such that

Re
$$h_{a,\gamma}^{-1}(0)\tilde{g}(0) < -|\tilde{g}|(0).$$

Hence, if $u = |g| + \operatorname{Re} h_{a,y}^{-1}g = h_{a,y}^{-1}g(|g|+1)$ then

$$\tilde{u}(0) = \left| \tilde{g} \right|(0) + \operatorname{Re} \tilde{h}_{a,\gamma}^{-1}(0) \tilde{g}(0) < 0 \leq \left| \tilde{g}(0) \right|.$$

On the other hand,

$$h_{a,\gamma}^{-1}g(|h_{a,\gamma}|+1)+ih_{a,\gamma}^{-1}g^{*}(|h_{a,\gamma}|+1)$$

is analytic and outer in N_+ . This contradicts (3).

REFERENCES

1. A. BUERLING, On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1949), 239-255.

2. K. DE LEEUW and W. RUDIN, Extreme points and extreme problems in H^1 , Pacific J. Math. 8 (1958), 467–485.

3. J. GARNETT, Bounded Analytic Functions (Academic Press, New York, N.Y., 1981).

4. E. HAYASHI, The solution sets of extremal problems in H^1 , *Proc. Amer. Math. Soc.* **93** (1985), 690–696.

5. E. HAYASHI, The kernel of a Toeplitz operator, Integral E_{g} . Operator Th. 9 (1986), 589–591.

6. H. HELSON, Large analytic functions, Oper. Theory: Adv. Appl. 43 (1989), 209-216.

7. H. HELSON, Large analytic functions II, in Analysis and Partial Differential Equations (C. Sadosky, ed., Marcel Dekker, Basel, 1990).

8. T. NAKAZI, Exposed points and extremal problems in H¹, J. Funct. Anal. 53 (1983), 224-230.

Department of Mathematics Faculty of Science Hokkaido University Sapporo 060 Japan