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If ft is an outer function in H1 then it is shown that h = (q1 + q2)g where both qx and
with iraqtfifLO almost everywhere, and g is a strong outer function (equivalently, g/||g||i is an exposed point
of the unit ball of H1). If qi + q2 is nonconstant then such an ft is not strongly outer. Moreover a sum of two
inner functions is studied.
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1. Introduction

Let U be the open unit disc in the complex plane and let dU be the boundary of U. A
function in U is said to be of class N if the integrals

J log+|/(re»)|d0

are bounded for r< 1. If / is in N, then f(eie) which we define to be lim,— ! f(re'B), exists
almost everywhere on dU. If

lim

then / is said to be the class JV+. The set of all boundary functions in N or N+ is
denoted by N or N + , respectively. For 0<p^oo, the Hardy space Hp, is defined by
N+nLp.

We call q in N+ an inner function if |<j(e'9)| = l a.e. on dU. A function h in N+ is
called outer if it is not divisible in N + by a nonconstant inner function. A function g in
Hl is strongly outer if the only functions / in H1 such that f/g is positive are scalar
multiples of g. (If g has norm 1, it has this property if and only if it is an exposed point
of the unit ball of Hl.) Every strongly outer function is outer.

H. Helson [7] recently gave a necessary and sufficient condition for strong outer
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functions. That is related to the divisibility by the square of the sum of two inner
functions. We can prove similarly the following result. Let g be outer in Hl. Then g is
strongly outer in H1 if and only if g/(qi+q2) is not in H1 for any inner functions qt,q2

such that qi + q2 is not constant and —i(q1 — q2)/(<l 1+12) iS nonnegative almost
everywhere. A. Beurling [1] established a celebrated factorization theorem. That is, a
nonzero function / in N+ can be factorized as in the following: f=qh where q is inner
and h is outer in N + . Thus it is desirable to show that if / is not a strong outer
function in Hl then f — {qi + q2)g where both ql and q2 are inner functions,
—'(<7i~42)/(<h +92) is nonnegative almost everywhere and g is a strong outer function
in Hl. In Section 2 we show this factorization is true. In the proof, a theorem of E.
Hayashi ([4, 5]) and theorems of H. Helson ([6, 7]) are crucial. It is more desirable to
show that if/ is not strongly outer then f=(ql + q2)

2g where both qt and q2 are inner
and g is strongly outer by a theorem of Helson [7]. In Section 3 we consider this
problem. A strong outer function is important in a solution set of an extremal problem
of Hl. In Section 4 we try to describe the solution sets intelligibly. In Section 5 a
characterization of absolute values of strong outer functions is given.

2. A sum of two inner functions

Suppose / is a function in H1 which has the form: f=(qi + q2)g where qlyq2 are
inner functions, q^+q2 is not constant, I n n j ^ ^ O and g is a strong outer function. By
the following lemma, / is not strongly outer. In this section we show the converse.

Lemma. Let qu q2 be inner functions with qi¥
i—q2. Then — i(qi — q2)/(ii + Q2)

 IS

nonnegative if and only iflmqlq2^0.

Proof. Use the following equality:

-»(gi -g2)_ -2lmqlq2

Theorem 1. If f is not a strong outer function in H1 then f = (qi+q2)s where both qt

and q2 are inner functions, I m q ^ ^ O almost everywhere, (qi — q^'1 is summable and g
is a strong outer function. If f is outer then q!+q2 is also outer. Ifqt is a finite Blaschke
product of degreee n then so is q2.

Proof. Suppose f = qoh
2 where q0 is inner and h is outer in H2. By a theorem of E.

Hayashi ([4, 5])

H2n(h/R)H2=g0(H
2ezqH2)

and
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where q is an inner function and go is strongly outer. Hence h = sg0 where seH2 QzqH2

and qs2^0. Since |s2±iq|2 = |s|4+ 1,

iq — pihl and s2 — iq = p2hi

where pit p2 are inner functions and ht is a function in H1 with Jij"1 eH00. Hence

s2 = (Pi+P2)y and 4 = - i ( P i - p 2 ) y

and

Put g = /iigoA qi = q0Pi and q2 = q0p2, then /=(<?!+<?2)g, g is strongly outer,
is nonnegative and (^i — qz)~l is summable. By the lemma above

If ^j is a finite Blashke product of degree n then so is q2. For —i{pi—p2)/(p1+p2) is
a nonnegative in N + because Pi+p2 is outer, and

-'(P1-P2) i= ~i2Pi
P1+P2 P1+P2

and

, i=
P1+P2 P1+P2

This shows degree px = degree p2 [6, 7] and hence q2 = qop2 is a finite Blaschke product
of degree n.

In the theorem above

In general even if f = {qi + q2)g and g is strongly outer, — i(qi~q2) does not have such
properties.

For any pair (qi,q2) of inner functions qitq2, —i(Qi~Q2)/(<li + Q2) is real. However
there exists a pair (qi,q2) such that — i(qt — qiMiq^ + qi) is nonnegative. Suppose a, a,-
and /?; are complex numbers, 0 < | a | ^ l , | a i | < l and |a, |^ | /?j | 0 = 1,2). If

and
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then — i(<?i— q2)/(ii + 42) is nonnegative where

z —a, , z —a2

^ and ^
9 i l ^ a n d <?2 ^ .

1— (XjZ 1—a2z

For |(z —a)(l—az) + jz|2 = | l —az|2 + 1 . Hence (z — a)(l—dz) + iz = qlh and
(z — d\{\—dz) — iz = q2h where /i is outer. Therefore (z — a)(l — az) = (ql+q2)h and
z= —i(ql—q2)h. Since z/(z —a)(l —oz) is nonnegative, — i(<?i— <72)/(<h+<Z2) is
nonnegative.

3. A sum of two inner functions and the square

In this section we wish to factorize the part qt + q2 in Theorem 1 which is not
strongly outer. This problem is suggested by a theorem of Helson [7] (see Section 1).

Theorem 2. Let qt and q2 be inner functions such that qt+q2 is outer, lmq1q2^0
almost everywhere and {qi—q2)~

l is summable. If the inner part q of qt—q2 has one of
the following three properties then there exist two inner functions Pi,p2 such that

where k is strongly outer.

(1) q = q% for some inner function q0.

(2) q(U)$U.

(3) q is a finite Blaschke product.

Proof. Since (1) is a special case of the proof of (2), we will show (2). If
then there exists aeU with a.iq(U). Put q'=(q — <x)/(l-a<j) then q' = ql for some inner
function q0 because q' is a singular inner function. Moreover

q<ll = -j^ and ho = l-dq.
"o

Hence q(qoho)
2 = \qoho\

2 and qoho/(l+q) is real because q(\+q)2 is nonnegative. Let
s2 = 1(41+12)/ — KQi— II)' t n e n s/(l+<?) is real and seH2 because {qx— q 2 )" 1 is
summable. Since |s + iqo'Io|2 = |'s|2 + |'Io|2>

s + iqoho = Pihi and s-iq0h0 = p2h1

where Pi,p2 are inner functions and ht is a function in H2 with |/i01 ^|Aix|. Hence
^ and s = (p1+p2)h1. Thus
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Put k= -i(,qi — q2)hl/q; then k is strongly outer and hence (2) follows.
Suppose q is a finite Blaschke product of degree n. If feH1 and qf is nonnegative

then f = yY['j=i{z-aj){l—djZ)l2 where y is positive constant, |a , |^ l ( l g j ^ n ) and I2 is
strongly outer in Hl with rleH™ ([2, 8]). Since s2 = q{q1 + q2)/-i{q1-q2) is an outer
function with qs2 ̂  0,

s = y1f\(-djy'2(z-aJ)l

where y ^ O and |a,| = l ( l g j ^n ) . Put / = l l"=i( -^) 1 / 2 (z-c ; ) / where |c,| = l ( l ^ j
and {Cj}"=1 is disjoint from {a,}"=1. Then

for some e>0 because {CJ}J= t n {«;•}"= i = </>. Therefore s + if = 2plhl and s — if = 2p2hl

where Px,p2 are inner functions and ftj is a function in //2 with l/l^l/ij. Now as in the
proof of (2), (3) follows.

By Theorem 1 and the remark after it, if / is outer and not strongly outer then

f = ( q + q ) g

The proof of Theorem 2 implies that if q satisfies one of (l)-(3) then / can be factorized
as in the following: f=(Pi + P2)2h2.g0 and h\g0 is strongly outer. In Theorem 2 if
qql = h~0/h0 and hi is strongly outer then the proof of (2) works and hence its conclusion
is still valid.

4. The solution sets of extremal problems

For each / in H2 we define a subset of H2 in the following:

Again by virtue of Theorem 1, we consider stfqi+q2 for two inner functions qi,q2- If
$4qi+qi contains a function whose absolute value is that of a strong outer function and
the inner part satisfies the conditions in Theorem 2, then the conclusion of Theorem 2 is
still valid. This is one of the motivations for the study of s/qi+qr For each / in Hl we
define a subset of H1 as follows:
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gf~l is nonnegative}.

The intersection of yt and the unit ball S1 of H1 is a solution set of an extremal
problem of Hl. Sff n Sl was described by the author [8] when it is weak-* compact and
E. Hayashi ([4, 5]) described it completely. However the solution may not be
understandable enough when it is not weak-* compact. If feH2 then (s#j-)2cSffi and
this is another motivation for the study of s/qi +qi.

Theorem 3. Let <7i,<?2 be inner functions and p —

(1) s/q,+q2 + isfqi+q2 = H2epzH2.
(2) Let b be a Blaschke product such that b=(p—x)/(l — ap) and <xeU (such an a. exists

always). Then

(3) Ifb is a finite Blaschke product of degree n then

n

where g=\\ dj(l—djZ) and {«,}"= i are the zeros ofb.

(4) If n is finite then
r i 2 / + i ( J ) ( j ) N / %j£ and |a,| =

if 21+1^j^n, and a is real}.

(5) s/1+b^sf = {feH2:f = Y]l0l0iJ(bj + b'j)-iPJ{bJ-b'j)-]} and
is#1+b. Here b = Y\f=ibj where

b0 = 1 and b'j=bb~j. a,- and Pj are real numbers and £ denotes the L2 — limit of the finite
sums.

Proof. (1) s/qi+q2 = s/1+p because

1+p (l+p)p p+1

lffej^l+pthenf(l+pyl=f(l + p)-1 and hence

If (l+p)-if=(l+p)-ige(l+p)-1H2n(l+p)-1H2 then pf=g because l+p=p(l+p).

https://doi.org/10.1017/S0013091500005642 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500005642


SUM OF TWO INNER FUNCTIONS AND EXPOSED POINTS IN H1 355

Hence /=p t / i and g = p2h where h is outer, and px and p2 are inner. This implies that
pp1h = p2h and pp2h = p1h. Therefore

and

P{-i(Pi-P2)h}= -i(Pi~P2)h.

This implies that (Pi+p2)h/2 and —i(Pi—p2)h/2 belong to s^1+p. Since

Thus

(

On the other hand

H2

This shows (1) because sfqi+qi

(2) I f /= l -ap then

and hence {l+p)2l2/(l+b)2 is nonnegative a.e.. Therefore (l+p)//(l + b) is real and
s/1+p = sf{1+b)l = lst1+b because / " ^ H 0 0 .

(3) z" = F|g|2/f2 and hence we can show stfl+zn=gs/l+b as in the proof of (2).
(4) Since (^1+zn)2c:^zn and

ft (z-«i)(l-V):|fl^l (lgjg«) and

(4) follows.
(5) If f = 'Z7=o[.<*j(bj + b'j)-iPj(bj-b'j)'] then it belongs to s/1+b by the first line of (1)

and

= J
l + b (l+b)b~ 5+1

If feH2QbzH2 and / is orthogonal to {bj+b'j, -i(bj-b'j)}Jl0 then it is orthogonal to
{bj,b'J}'jL0. We will show that / is zero almost everywhere. Since (/,60)=0 and bo=\,
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f = zf0 and fosH2Q bzH2. (f,bl)=O implies fo(zl) = 0, and hence fo = blfl and fy eH2,
where (,) denotes the inner product in H2. Since

0={fo,b2)={fi,b2Bl),

/x(z2) = 0 and fo(z2) = O. By t n e s a m e argument, /0(f,) = 0 for ; ^ 3 and hence febzH2.
This implies that / is zero because feH2 QbzH2. This completes the proof of (5).

5. A characterization of strong outer functions

Several characterizations of strong outer functions are known (cf. [8, Theorem 3], [4,
Theorem 8], [3, Chapter IV, Exercise 18] and [7]). See Theorem 1. In this section we
give a characterization. For a real valued measurable function u on <3U, if / e N and
R e / = w on dU, it denotes the real part of/ on U, that is, the harmonic extension of u,
and *u denotes the imaginary part of /—/(0) on U.

If / is in H1 and u is a nonnegative function in L1 such that |/(e'8)|^u(e'9) almost
everywhere on dU, then |/(z)|:gu(z) on U. The inner outer factorization of / and the
Poisson integrals of u and | / | give the above inequality in U. If u is nonnegative then
u + i*u belongs to f)p<lH

p and is an outer function. Let f(ew) = (e'e— I)2 and
u(e / 9 )=-2(e i < ' - l )V+l ) - 2 ( l+cos0) ; then u + i*u= -2{ew-\)\eie+ \yx is an outer
function in f)p<1H" and \f(eie)\^u{eie) a.e. on 8U. However it is not true that
|/(z)|^u(z) on U. Hence the condition of the integrability of u is needed to show the
inequality on U.

Theorem 6. Let g be an outer function in H1. The following are equivalent.

(1) g is a strong outer function.
(2) For every nonnegative function u on dU such that u + i*u is an outer function in N-+

and \g(e'e)\^u(e'e) a.e. on dU, we have \g(z)\^u(z) on U.
(3) For every nonnegative function u on dU such that u + i*u is an outer function in N +

and \g(ew)\^u(eiB) a.e. on dU, we have ||(0)|g«(0).

Proof. The proof is suggested by the proof of [3, Chapter IV, Lemma 5.4].

(1) =>(2). Put cj) = u + i*u. Let a be a measurable function on dU such that

|a|5£7i/2 a.e. and a = arg <j> (mod 2n).

Then u = Re</> = |</>|cosa and |g/$|^cosa a.e. on dU. Let ip = exp(— *a + ia) then i//
belongs to Hp for some p < 1 by Zygmund's theorem (cf. [3, Chapter III, Corollary 2.6])
and

a.e. on dU
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and Reip is in L1. Since <p is an outer function, *//g/(t> is in N + and hence 4ig/4> belongs
to Hl. Put h = \j/g/(j>. Then arg/i = argg a.e. (mod27t) and hence h = yg for some y > 0
because g is strongly outer. Thus \j/ = y<p and u is in L1. By the remark above Theorem 6
|g(z)|^u(z) on U. This implies (2).

(2) => (3) is trivial.

(3)=>(1). If g is not a strong outer function, then there exists an outer function h0 in
H1 such that argg = arg/ja y a.e. (mod2re) for any |a| = l and y>0 where hay =
y(z — a){l—az)h0. We can choose a and y such that

Hence, if u = \g\ + Reh-1
yg = h-l

yg(\g\ + 1) then

"(0) = |||(0) + Re «"-1(0)1(0) < 0 ^ |g(0)|.

On the other hand,

is analytic and outer in N+. This contradicts (3).
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