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Introduction. Let 5 be a cancellative semigroup. This paper is motivated by the
problem of finding a description of semigroup rings K[S] over a field K that are
semiprime or prime. Results of this type are well-known in the case of a group ring /C[G],
cf. [8]. The description, as well as the proofs, involve the FC-centre of G defined as the
subset of all elements with finitely many conjugates in G. In [4], [5] Krempa extended the
FC-centre techniques to the case of an arbitrary cancellative semigroup S. He defined a
subsemigroup A(5) of 5 which coincides with the FC-centre in the case of groups, and can
be used to describe the centre and to study special elements of K[S]. His results were
strengthened by the author in [7], where A(5) was also applied in the context of prime
and semiprime algebras K[S]. However, A(5) itself is not sufficient to characterize
semigroup rings of this type. We note that in [2], [3] Dauns developed a similar idea for a
study of the centre of semigroup rings and certain of their generalizations.

In the present paper, we introduce a congruence a> on 5 that plays the role played by
the FC-centre in the class of groups. This allows us to find necessary conditions for the
ring K[S] to be semiprime or prime. When restricted to the class of group rings or
semigroup rings of semigroups with a group of fractions, these conditions are equivalent
to those characterizing semiprimeness and primeness of K[S], see [7], [8]. The second
main result of the paper establishes semiprimeness of K[S] for every cancellative
semigroup S in the case where ch(K) = 0.

If 8 is a congruence on a semigroup S, then by 1(6) = IK^(8) we denote the ideal of
the algebra K[S] generated by the set {s -t \ (s,t) e 8}. B(K[S]) stands for the prime
radical of K[S]. If A is a subset of 5, then (A) denotes the subsemigroup of S generated
by A. If S has no identity element, 5' stands for the monoid obtained by adjoining an
identity to S. Otherwise, we put Sl = S.

1. Reversive congruence and the sufficient conditions. For an arbitrary (not
necessarily cancellative) semigroup 5 consider the relation ps on S defined by

(s,t)eps if for every xeSl sxSDtxSi=0

We will write p in place of ps if unambiguous. If x e Sl and (s, t) e p, (t, u) e p, then
sxg = txh and t(xh)e = u(xh)f for some e,f, g,h e S. Thus sxge = uxhf, which shows that
(s,u)e p. It is clear that p is reflexive and symmetric. Moreover, (s, t) e p easily implies
that (sz, tz) e p and (zs, zt) e p for every z e S. Therefore p is a congruence on 5. Note
that p = S X S whenever 5 is a cancellative semigroup that satisfies the right Ore condition.

Let p ' = p^ be the left-right dual congruence to p and let x = xs — p n p'.

LEMMA 1. Let S be an arbitrary semigroup. Then
i) p, p' and T are congruences on S.
ii) Let a e {p, p ' , T}. Then os/a is the trivial congruence on S/o.
iii) // S is left cancellative, then p is a left cancellative congruence on S.
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Proof, i) was established above.
ii) Assume that (sp, tp)e pS/p for some s,t eS, where yp denotes the image of y e S

in Sip. Then, for every xeS1 we have spxp(S/p)C\tpxp(S/p)^0. It follows that
(sxu,txz)ep for some u,zeS. Then sxuS D txzS ¥= 0 , so that w 5 n t t S # 0 . Hence
(j , ( )ep. A symmetric argument works for a = p'.

If (sr, fT) e TSIT where sx, tT are the images of s, t in Six, then (sp, fp) e rs/p because
the natural homomorphism S—>S/p factors as S—>S/T—»5/p (note that for every
epimorphism (f):U—*T we have (</>(*)> 0(>O) e Tr whenever (jc,y) e rv, x,y e (/). As
shown above, this implies that (s,t)ep. Similarly sP' = tp.. Therefore sT=tT, which
proves ii).

iii) Let y,s,teSbe such that (ys,yt)ep. ThenysxSflytxS + 0 for allx eS1 and so
sxS fl txS # 0 since 5 is left cancellative. Hence (5, r) e p.

Roughly speaking, r is a measure of how far a cancellative semigroup 5 is from being
an Ore semigroup. Following the standard terminology, [1], § 1.10, we call T the reversive
congruence on S.

Assume that there exist 0=£a,ceK[S] such that axc = 0 for every xeS1. Let
a = A^i + . . . + Xnsn for s, e 5 , A, e ^ , where the s, are distinct and the A, are nonzero. If
(5! ,5 2 )^p , then we can choose j c ^ e S 1 such that s^xi2S C\s2xX2S = 0 . Otherwise we put
JC,2 = 1. We then define a2 = ax]2, c2 = cxX2 and note that a2xc2 = 0 for every x e S\ Next,
we proceed in the same way with respect to the pair tut3 in the presentation
a2 = A,/, + . . . + Xjn where /, =^,JC12. Repeating this for all pairs 1,/ , where ye
{2,. . . ,n}, and then for all remaining pairs i<k, i, k e {1 , . . . ,n}, we come to the
elements

b = axi2xl3. . . x23x24 . . . *(„_!),,, d = cxl2xl3. . . x23x24 • • • x^n-^n

such that bxd = 0 for every jreS1. Moreover, the following condition is satisfied for

if s,tesupp(a)y and (s,t)$p, then sS(~)tS = 0 (1)

The same procedure can be then applied to the elements in supp(c)_y (in place of the
elements of supp(a)). Thus, replacing y by an appropriate right multiple of y, we can also
assume that the following is true:

if s,te supp(c)_y and (s,t)$p, then sSDtS = 0 (V)

A similar argument (involving p' in place of p, and the left multiplications by an
appropriate sequence of elements of S1 in place of the right multiplications by
JC12, xi3,.. . ,*(„_!)„) can be applied to the elements of supp(a))' and supp(c)_y
successively. This yields an element u e S such that the following condition is satisfied:

if s, t e u(supp(a))y and (s,t)$p', then SsDSt = 0, (2)

and similarly

if s, t e u(supp(c))y and (s,t)$p', then Ssf)St = 0. (2')

More can be claimed if 5 is left cancellative. Let e e {a,c} and let 2, v e supp(e) be
such that (uzy, uvy) $ p. Then (zy, vy) $ p and (1), (1') imply that zyS n vyS = 0 . Since
p is left cancellative by Lemma 1, this yields uzyS D uvyS = 0 . Hence, in this case, the
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following assertion is also true for e e {a, c}:

if s, t e u(supp(e))y and (s,t)$p, then sSHtS = 0. (3)

To state the technical lemma below it is convenient to fix some notation. Let
ay = ax + . . . + ak where each a, is of the form £ \,S/y with the summation running over

the set At c. supp(a) such that A,y lies in a p-class of S and supp(a)_y is a disjoint union of
A{y,. . . ,Aky. From (1) it follows that (AiyS)n(AjyS) = 0 for j*i. Therefore, the
equality (ay)xc = 0 implies that atxc = 0 for i = 1,. . . , k, and all x e 5 ' .

Let c = fixtx + . . . + [iwtw, fi,e K,ti sS, where the f, are distinct and the jti, are
nonzero.Thenc = cx + . . . + cm where each c, is of the form £ ^ with the summation running

i
over the set C, c supp(c) such that C, lies in a p-class of 5 and supp(c) is a disjoint union
of C , , . . . ,Cm.

Let uay = bx +. . . + bq where every bj is of the form £ Xius,y with the summation

running over the set Bj c supp(a) such that uBjy lies in a p-class of 5 and u(supp(a))y is a
disjoint union of uBxy,. . . , uBqy.

Let uay = ex + . . . + ep where every e, is of the form £ ktusiy with the summation

running over the set £, c supp(a) such that uEty lies in a r-class of 5 and u(supp(a))>' is a
disjoint union of uExy,. . . , uEpy.

Let ucy = dx + . . . + dr where every ds is of the form £ \itutty with the summation

running over the set D, c supp(c) such that uDjy lies in a T-class of 5 and M(supp(c))_y is a
disjoint union of uDxy,. . . , uDry.

With the above notation we derive the following result.

LEMMA 2. Assume that axe = 0 for some 0 # a, c e K[S] and all x e S1. Then
i) OjXC = 0 for every x e S', / = 1,. . . ,k.

ii) If S is left cancellative, then a,xcy = 0 and b/XCj = 0 /or every i,j and all x € S1.
Moreover q = k and bt = uat for all i.

iii) / / 5 is cancellative, then e/xdj = 0 for every i,j and all x eSl. Moreover, e,•, d/ =£ 0
for all i,j.

Proof, i) follows from what has been said above
ii) Assume that 5 is left cancellative. From (3) it follows that btxc = 0 for every i. If

sxp = txq for some s,teuBiy and some p,q esupp(c), then (sxp,txp)ep because
(s,t)e p. Hence {txq,txp) e p and Lemma 1 iii) shows that (p,q)e p. This easily implies
that biXCj = 0 holds for every i,j and all x e 5 ' . The left cancellativity of p also implies that
q = k and b, = «a, for i = 1 , . . . , k. This proves ii).

iii) The reasoning of the proof of ii) applied to the identity ax(ucy) = 0 in place of
axe = 0, followed by an application of the left-right dual argument involving assertions
(2), (2') can be used to establish iii).

LEMMA 3. Assume that T is a cancellative semigroup generated by a subset F such that
F lies in a single p-class in T. Then T has a group H of right fractions.
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Proof. We have to show that sTP\tT^0 for every s,teT. It is enough to check
this for s = sxs2 . . . sm, t = txt2 • • • tm where m > 1 and s,, f, e F. Since (sm, tm) e p, there
exist M,, u, e Tsuch that .?„,«, = fmUi- Then s{ . . . sm^tsmui = s, . . . sm_xtmvx. Now, there
exist u2,v2eT such that sm_x{tmvl)u2 = tm_x{tmvl)v2 because ($„,_,, fm_,) e p. Hence
5, . . .sm_,5mM,M2 = s1 . . .sm_1tmvlu2 = si . . .sm-2tm_xtmvxv2. Proceeding this way we
find elements u,, u, e T such that s, . . . 5mU! . . . um = f, . . . rmu, . . . vm. This proves the
assertion.

We are now able to prove our first main result.

THEOREM 1. Let S be a cancellative semigroup. Then
i) K[S/T] is prime. In particular, B(K[S])CI(T).

ii) K[S/p] is prime.
iii) / / ch(/Q = 0, then K[S] is semiprime.

Proof, i) By Lemma 1 ii) the congruence rs/T is trivial. Hence, to show that K[S/T] is
prime it is enough to prove that K[S] is prime whenever T is trivial. Suppose that K[S] is
not prime. Then there exist 0 =£ a, c e K[S] such that axc = 0 for all xeS1. Lemma 2
implies that there exist u, y e S such that e^d, = 0 for all i,j where uay = c, + . . . + ep and
ucy = dl + . . . + dr for nonzero elements e-,,dj such that each supp(e,) (and also each
supp(dy)) is contained in a single r-class of 5. Since r is trivial, this implies that e,, dt e S, a
contradiction. Hence, K[S] is prime.

The remaining assertion in i) follows since /(r) is the kernel of the natural
homomorphism K[S]—*K[S/x].

ii) Since rs/p c pslp and the latter is trivial by Lemma 1, the assertion follows from i).
iii) Suppose that B(K[S]) ¥=0. Then there exists a e K[S], a=£0 such that axa = 0 for

every x e S1. Choose the minimal integer n for which the following condition is satisfied:
there exist a cancellative semigroup U and an element 0 ¥= b e K[U] such that bxb = 0 for
all x e U1 and |supp(£)| = n. Using Lemma 2 with respect to the semigroup T =
(supp(fe)) and the congruence rT we conclude that supp(fe) lies in a single T^-class of T.
Therefore, by Lemma 3, we can assume that T= (supp(fe)) has a group H of right
fractions. It is well known that B(K[H]) = 0 because ch(K) = 0. From [7], Theorem 19 in
Chapter 7, it thus follows that B(K[T]) = 0. Since bK[T]b = 0, it is clear that
b e B(K[T]). This contradiction completes the proof.

REMARK 1. Assume that 5 is cancellative. The proof of Theorem 1 together with the
known characterizations of prime and semiprime group rings, cf. [8], provides sufficient
conditions for K[S] to be prime or semiprime. Namely, K[S] is prime (semiprime)
whenever for every subsemigroup T of 5 that has a group of fractions H, the group ring
K[H] is prime (semiprime respectively). (In the prime case, starting with an identity
axe = 0 for all x e S1 we can choose z e supp(a) and w e supp(c) and consider the identity
(wa)x(cz) = 0. Then wz esupp(wa), supp(cz). Choosing a,c with minimal |supp(a)| +
|supp(c)| we can assume, as in the proof of Theorem 1 iii), that T = (supp(wa), supp(cz))
has a group of right fractions H. Then, again by [7], Theorem 19 in Chapter 7,
(wa)x(cz) = 0 is an identity in K[H].)

If uv~l e A(//), where u,v eT, then there exists k > 1 such that ukv = vuk, so that
the elements s = uk, t = vuk~l commute and uv~l = st~\ This leads to the following:
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i) K[S] is prime whenever 5 has no elements s, t such that st = ts, s # t, and s" = t"
for some n > 1.

ii) if ch(K) = p>0, then K[S] is semiprime whenever S has no elements s,t such
that st = ts,s=£t and s" = t".
Clearly, as seen in the group ring case, these conditions are not necessary.

2. The FC-congruence and the necessary conditions. When studying prime rings
K[S], as well as the semiprime case in positive characteristics, we will need a stronger
congruence that naturally arises from the above considerations. It will play the role
played by the FC-centre A(G) of a given group G in the study of the group ring K[G], cf.
[8]. The first attempt towards a generalization of A-methods to the case of semigroup
rings of arbitrary cancellative semigroups was made by Krempa in [4], [5], where the
notion of A-subsemigroups was created. A similar idea was later developed by Dauns in
[2], [3].

For every cancellative semigroup 5 a subsemigroup A(5) is defined by A(5) =
{s e S | for every x e S there exists s* e S such that xs =s*x and the set {s* \ x e 5} is
finite}. It was shown in [7] that /C[A(S)] is prime (semiprime) if K[S] is prime
(semiprime). (Moreover, primeness and semiprimeness of the former are characterized by
conditions given in Remark 1.) Then, we asked whether the converse is true. This
supposition clearly was too optimistic, even in the case where 5 embeds into a group, as
the following example shows. Let G be the direct product of the free nonabelian group H
on x,y and the group Z2= {e,z}. Let S = (x,y)1 U (x,y)z. Then K[S] is not prime (and
it is not semiprime if ch(/C) = 2) because xz, x satisfy the condition of Theorem 2 below.
On the other hand A(5) = {1}, so that /C[A(5)] is prime.

We show that an appropriately chosen congruence on 5 should play the role played
by the FC-centre in the study of prime and semiprime group rings.

Let (o be the relation defined on an arbitrary semigroup 5 by the rule

(s, t) e (o if there exists a finite set F c 5 that lies in a single r-class of 5 and such that
sxF n txF =£ 0 for every x e S\

We claim that a> is a congruence on 5. Clearly, OJ is reflexive and symmetric. Assume that
(s.ljed), (t, u) e o) and let F, G be the suitable finite sets chosen for s,t and t,u. If
xeS1, then sxs' = txt' and t{xt')t" = u(xt')u' for some s',t'eF, and t",u'eG.
Consequently sxs't" = uxt'u'. Then (s, u) e (o because FG is a finite set every element of
which is in the r-class of 5 in which s't" lies. Let z e S. It is easy to see that the set F can
be used to show that (zs, zt) e a) and (sz, tz) e co. This proves the claim. It is clear that
w c p . We call co the FC-congruence on 5.

If (s,t)e(o, then by FSJ we will denote a finite subset of 5 x S that satisfies the
following two conditions

*) there exists ueS such that for every (c, d) e Fs, we have (c, u) e x, (d, u) e t.

**) Fs, is minimal (subject to the inclusion relation) with respect to the property that
for every x e S1 there exists (c,d)e Fsl with sxc = txd.

Fs, need not be uniquely determined. We will often replace a given set FSJ by another set
that satisfies *), **), keeping the same notation if unambiguous.

https://doi.org/10.1017/S0017089500009514 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500009514


6 JAN OKNINSKI

We will further assume that 5 is cancellative. Then, clearly a» is a left cancellative
congruence and we can always choose FZStZI = FSJ for any given s,teS,zeS', with
(s,t)eco.

Assume that (s,t)e co and that Fs, is chosen. Since FStl is finite, there exist n<m,
with m < \Fst\ + 1, such that ssmc = tsmd and ss"c = ts"d for some (c, d) e Fst. It follows
that

tsmd = sm+ic = 5 m - V + 1 c = sm-"tsnd

and consequently tem~" =sm~"t since 5 is cancellative. Therefore, for every s,teS with
(5, /) e co we have te* = 5*/ for some k < |£>r|.

We are now ready to prove the following key result. Here, by to' we mean that
left-right symmetric version of the congruence co. The finite sets chosen for every
(s,t)ect)' will be denoted by F 5 ' . Further, given Fsl, we will always choose FIJS =
{(d, c)eSxS\(c,d)e Fst}. If sxc = txd for x e S\ (c, d) € Fs „ we call the pair (c, d)
an ^-conjugate of the pair (s, t) in Fs,.

PROPOSITION. Let S be a cancellative semigroup. Then
1) co = co' is a cancellative congruence on S.
2) For every s,t e 5 satisfying (s,t) e a>, the set Fs, can be chosen so that

i) FSJ = {(cud),. . . , (cn,d)} for some cu. . . ,cn,d eS and (c,, d) e w for each i,
ii) cd = dc for every (c,d)e Fs,,

iii) Fdc = Fs<l = Fsl for every (c, d) e FSJ,
iv) for every x eS1 the rules (c, d)x = (d, c') ifcxd = dxc' with (d, c') € Fls, (d, c)x =

(c ' , d) ifc'xd = dxc with (c ' , d) e FSJ define inverse mappings (. , .)•*: Fsj—* F, s and

V > -)x : ^ ( ^ ~ * *!s,M
v) for every z e Sl we have FSJ = Fzs2:, = FSZJZ.

Proof Let (s, t) e co. Assume that Fs, = {(c,, d{),. . . , (cn, dn)}. By the minimality
of Fs, (see condition (**)) we know that for every i there exists x e Sl such that sxct = txdj.
Since co is left cancellative and (s,t)eco, the latter implies that (c,, d,-) e w for every i.

By condition (*) in the definition of FStl we know that (di7 u) e x and (c,, w) e x for
some ueS. In particular, there exist w,veS such that dxw = d2v. Consider the set
F = {(ciw,diw),(c2v,d2v),.. . ,(cnv,dnv)}. It is clear that this set again satisfies
condition (*). For every x e 51 an x-conjugate of (s, t) can be found in F. Since 5 is right
cancellative, it follows that F also satisfies (**). Therefore, replacing Fs_, by F, we can
assume that d, = d2. (Note that |F | = |£,, | because Fsl satisfies (**). In fact, if
(c{w,dxw) = (c,u,djV) for some / ^ 2 , then for any y eS1 the equality syc{ = tydx implies
syq = tydh which shows that the pair (c1; d,) could be removed from Fsl, a contradiction).
Proceeding this way with respect to the subsequent d,'s, we come to the case where
d, = . . . = dn, so that we can assume FSt, = {(c,, d),. . . , (cn, d)}. In particular, since
(c,, d)ea>, condition i) is satisfied for Fs,.

We know that for every (x,y) e co there exists j s 1 such that jcyy = yjcy. Then we can
choose k such that dkc = cd* for each (c, d) e Fs,. It is clear that sxc = txd if and only if
sxcdk~l = txdk. Moreover, the elements dk,cdk~l commute. Therefore, replacing each
pair (c, d) e Fsl by the pair (cdk~l, dk), we come to a set that satisfies both (*) and (**) in
the definition of Fst, so that we can assume that c,d = dct for every i = 1,. . . , n. This
proves ii).
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Let sxCj = txd for some x e S1 and some i. Since (c,, d) e a>, for every y e 5 ' there
exist p,q eS such that c,_yp = dy*?. This equality is equivalent to sxdyq = sxc:yp = txdyp,
so that the pair (q,p) can be chosen from Fs t. It follows that Fc.d can be chosen so that
Fc,,d £ FtJ.

Suppose now that sxct = txd, sxck = txd for some i, k and some x e S1. Then i = k, so
that the x-conjugate of (s, t) is uniquely determined in Fsl. We denote it by (s, t)x.

If CjZd = dzCj, CjZd = dzck for some i,y, fc and some z e Sl, then j = k. It follows that
z-conjugation determines a function (. , -Y • Fs ,^> Fls. Similarly one shows that for every
z e S\ z-conjugation is an embedding of Fs, into Fl<s. Since \FSJ = \F,J is finite, it follows
that F*tt = FtJ. This means that for every (Cj,d)eFs%, and every xeS1 there exists
(chd)eFsl such that dxCj-Cixd. In other words, the elements chd satisfy the left-right
symmetric version of the definition of co. Moreover, we get a mapping (. , .)x:FlyS—>FSyt

given by (d,Cj)x = (c,, d). Clearly (.,.)* and (. , .)x are inverse functions, which
establishes iv).

Let y e 5 ' . Choose x e Sl so that sxCj = fctd. Since we know that the ysjc-conjugation
is an onto mapping FSJ—*F,j, it follows that there exists / such that (cy, d)ysx = (d, c,).
Then

dy{txd) = dy(sxCj) = Cjysxd

and consequently dyt = Cjys. Therefore (s,t)€(i)' with a finite set Fs- ' chosen in Fsl. In
particular, OJ = a>' and it is a cancellative congruence because CJ is left cancellative. This
completes the proof of 1).

We have shown that Fs'' c Fs,. The left-right symmetry of a> allows us to prove that
FSJ c Fs-', so that Fsl = FSJ. If z eS, then we can clearly choose FSZJZ = FSJ = FSJ. Since,
as above, we can also have Fszlz = FSZJZ, it follows that Fszn = FSJ. It is clear that we can
choose F2S 2, = Fs,. This proves v).

Since Fs'' = FStt, for every / there exists y e 5 ' such that Cjys = dyt. Again, if
sxCj = txd, it follows that

Cjysxd = dytxd = dysxc/

and so (d,Cj)ysx = (c,,d) = (s,t)x. Therefore FSJsFdCj. Since FSJ was chosen so that the
converse inclusion is satisfied, we come to Fd c = FSJ for every y = 1, . . . , n. This shows
that iii) is satisfied, completing the proof of the proposition.

REMARK 2. Assume that S has a group G of right fractions. Let s, t e 5 be such that
sA(G) = f A(G). Then tt~' e A(G) has finitely many conjugates in G, which therefore can
be written as ctd~\ . . . , cnd~l for some c,, d e 5. Since c,d~' e A(G), there exists k > 1
such that d*c, = c,d* for every i. Thus, replacing c, by c,d*~' and dby dk, we can assume
that c,d = dc, for every i. Let F = {(c,, d) \ i = 1,. . . , n). For every x e S1 there exists i
with CjXs = dxt. Thus ( s , / ) e p ( and similarly (chd)ep'. Clearly p = SxS, so that
(c,, d) e T for every /. By the definition of w' it follows that (s, t) e co', and so Proposition
implies that (s,t)eco. Conversely, assume that s,teS are such that (s,t)ea). Then
A = {(s'Uy \x eS1} is a finite set such that Ay = A for every y e S 1 . Consequently
A =Ay~' and since G = 55~ ' (it is enough to assume that G is a group generated by S
here), it follows that A is the set of all G-conjugates of s~lt. Therefore s~lt e A(G). This
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proves that co coincides with the restriction to S of the congruence determined on G by
A(G).

One might ask why the assumption that the S-conjugates of the pair (s,t) can be
chosen from a single r-class of 5 is added in the definition of co. First, Remark 2 shows
that co is an extension of the notion of the FC-centre in the class of groups. Moreover, the
proof of Theorem 1 shows that, whenever axe = 0 for some a,c e K[S] and all x e S1, then
a,c can be chosen so that supp(a), supp(c) lie in a r-class of S. It is then natural to expect
that a description of prime and semiprime rings K[S] involves this "local" restriction on
Fsl. Finally, without this restriction, we are not able to adjust Fs, to a single co-class of S.
The latter will be crucial in the proof of Theorem 2. As we have seen in Proposition, this
additional condition implies that the definition of co is left-right symmetric and
consequently co is a cancellative congruence. It is not clear whether the same can be
claimed without our restriction. The problem comes from the absence of the following
"equality of fractions" condition (see Malcev's condition, [1], § 12.4):

if sxc = txd, sxc' = txd' and syc = tyd for some
s,t,c,d,c',d',x,yeS, then syc' = tyd'.

This would be needed in the proof of Proposition if we are not able to adjust right away
the pairs in Fs, so that they satisfy assertion 2) i).

The main advantage of having assertion 2) i) in Proposition comes from the following
observation.

LEMMA 4. Let ueS. Then the set Tu = {x eS \ (x,u")e co for some n 2:1} is a
subsemigroup of S that satisfies the left and right Ore conditions. Moreover, if(s, t) e cofor
some s,teTu, then s~lt e A(G,,), where Gu denotes the group of fractions of Tu.

Proof. Let x,yeTu. Then (x,u")ea>, (y,um)eco for some n , / n > l . Clearly
{xy, un+m) e co so that xy e Tu. If for example m'»n, then (xum~" ,y) e co and we know
that there exists k such that (xum~")yk = yk(xum~"). It follows that xTu C\yTu^0 because
um~"yk,yk~ixum~" e Tu. A symmetric argument shows that we also have Tux D Tuy ^0.
The remaining assertion follows from Remark 2 because (s, t) e coTu whenever s,teTu are
such that (s,t)e co.

We will need certain subgroups of the above-defined groups Gu. For u e S let
D u = {x~ly e Gu \ x , y e Tu, (x,y) e co} a n d Hu = {x~ly e Gu \ x , y e Tu, (x,y) e co a n d Fx<y

can be chosen in Tu x 7^}.

LEMMA 5. Let ueS. Then Hu c Du are subgroups of A(GU). Moreover, every z eSl

acts by "conjugation" as an automorphism of Hu, that is, (x~ly)z = cd~' where
(x,yY = (c,d)eFXtyczTuxTu.

Proof It is clear that DU,HU are closed under taking inverses in Gu. Assume that
x~xy, w~xv e Du where x,y, w,v eTu are such that (x,y) e co, (w, v) e co. From Lemma 4
it follows that yw~l = h~lg where g,h e Tu. Then the elements hx,hy -gw,gv lie in the
same to-class of 5. Since (x~ly)(w~lv) = (hx)~l(gv), this implies that Du is a sub-
semigroup of Gu. Therefore it is a subgroup of Gu and Du c A(GU) by Lemma 4.

Now, we show that for every x~xy e Hu with (x,y) e co and every z e Sl the element
(x~ly)z is well defined in Hu. Assume that x~ly =x~ly for some x,y e Tu with (x,y) e co
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and F; 9c. Tu x Tu. Then there exist a,b eTu such that ax = bx (cf. Lemma 4) and so
ay = by. Since xzc=yzd, xzs=yzt for some c,d,s,t eTu, we come to axzc = ayzd,
bxzs = byzt. If cp=sq for some p,qeTu (existing because c,se7],), we must have
dp = tq. This implies that cd~x = cp(dp)~x = sq(tq)~x = st~x, which shows that the rule
(x~xy)z = cd~x defines the z-conjugates of the elements of //„. Clearly (c, d) e co because
xzc =yzd and (x,y) e co (note that co is cancellative). We know that FCtd can be chosen so
that Fcd c Fyjc. Since Fyjc c Tu x !„, it follows that cd~x e Hu.

Next, we check that {x~xy)z{w~xv)z = (x~xyw~xv)z, where (w,v)eco and w~xv e
Hu. Let

(#) xzc=yzd, wzc = vzd

for some c,deTu. If cd~xcd~x= ef~x and JC^IV"'!/ = g~xh for e,f,g,heTu, then we
have to show that gze = hzf. Multiplying on the left both equalities in (#) by some
elements of Tu we can assume that x = w (see Lemma 4). A similar argument (involving
right multiplication) allows us to assume that d = d. Next, multiplying both equalities on
the left by some xk we can assume that xy = yx (since (x, y) e co, a power of x commutes
with y). Similarly, we reduce to the case where cd = dc. Finally, we multiply both
equalities on the left by xr = wr for r such that wr+l, wrv commute. Then, replacing x = w
by wr+1, v by wrv, and y by wry we can also assume that wv = vw (note that wr+i = xr+l,
wry=xry also commute because xy=yx, so that the last step does not affect the
foregoing simplifications). Similarly, multiplying on the right by an appropriate power of
d, we come to the case where cd = dc. Now

x~xyw~xv =x~lyx~lv = x~2yv, cd~xcd~x = cd~xcd~x = ccd~2

so that we can choose g =x2, h=yv, e = cc,f = d2. Then

gze = x(xzc)c = x{yzd)c = xyzdc = yxzcd = y(wzc)d = y{vzd)d = hzf.

This proves the claim. Since (x,y) e co, x = w and (v, w) e co, we see that (g, h) e co. We
have also shown that the set Fgh (consisting of the appropriate pairs (e,f) = (g, h)z, z e
Sx) can be chosen in Tu x. Tu. Therefore Hu is a subsemigroup, and so a subgroup, of Du.
Hence, the z-conjugation is an endomorphism of Hu. By the left-right symmetry of co
there is a map q^>qz, q eHu, such that (pz)z =p for every p eHu and {qz)

z = q (namely,
if xzc =yzd, then (cd~x)z =x~xy). Therefore z acts as an automorphism of Hu.

Our main objective is to prove the following result.

THEOREM 2. Let S be a cancellative semigroup. Assume that s,teS are such that
(s,t) e co, sm = tm for some m>\, s±t, and st = ts. Then K[S] is not prime. Moreover, if
ch(K) =p>0 and m=p, then K[S] is not semiprime.

Proof. Choosing Fs, as in Proposition, we can assume that there exists d e S such
that for every (c,e)eFsl we have (c,d)eco, d = e and cd = dc. If xeSx is such that
sxc = txd, then

s
m

xc
m = sm~xtxdcm~x = tsm~xxcm~xd = . . .= tmxdm = smxdm

so that cm = dm. Hence, every pair c,d inherites the hypotheses on s,t. Fix some
(c, d) e Fs,. By assertion iii) of the Proposition we know that Fdc = FSJ cAd x Ad where
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Ad denotes the ai-class of d in 5. Now Z = {((d~lc)'Y | z e S1, / = 1 , . . . , m) is a finite
subset of the group H,, and Z consists of periodic elements (see Lemma 5). Since Hd is an
FC-group, Z generates a finite group F cHd, see [8], Lemma 4.1.5. Clearly Fz = F for
every z e Sl and so yF = Fy for every yeTd. Then there exists e e Td such that
eF = Fe c, Td (a common denominator of the elements of F). Let a = £ /. Then

ea = ae e K|Td]. We will show that, for every z e S\ the following equality holds in K[S]

(#) (ae)z(ae) = \F\(ae)ze

Then (ae)z[(ae) - |F| e] = 0 and clearly ae =£0 because a ¥= 0 and e e 5. If ae = |F| e, then
|supp(ae)| = 1, so that |supp(a)| = 1. Then F is a trivial group, which implies that d = c
because d~xceF. This contradicts the fact that s=tt and shows that (ae) - \F\ e =£0.
Therefore (#) implies that K[S] is not prime. If additionally ch(K) = m, then |F| = 0 in K
-because d~lc e F has order m. Therefore K[S] is not semiprime in this case.

It remains to prove that (#) holds. Since eF = Fee Td, we know that F = {a,e~' | i =
1,. . . , n} = {c~'a, | i = 1,. . . , n} for some a, 6 Trf. For every z 6 51 the z-conjugation is
an automorphism of F, so that for every i there exists / such that atze = ezaj. Moreover,
i—»/ is a one-to-one map of the set {1, . . . , n} onto itself. Therefore

(ae)ze = [^ aA ze = ezi^ aA = ez(ae).

Since this holds for every z e S\ we also get

(ae)2ze2 = (ae)[(ae)ze]e = e[(ae)ze](ae).

Now ae = ea and a2 = \F\ a in /C[Gd], so that (ae)e = e(ae) and (ae)2 = l^l (ae)e in
The latter two equalities can then be viewed as equalities in ^[7^] c K[S]. Thus
\F\e(ae)ze2 = e(ae)z(ae)e, a n d c o n s e q u e n t l y \F\(ae)ze = (ae)z(ae) b e c a u s e e e S i s a
regular element in K[S]. This proves (#) and-completes the proof of the theorem.

Since a> plays the role that is played by the FC-centre A(G) in the case of a group
ring K[G], the necessary conditions found in Theorem 2 generalize the results known for
group rings, see [8], and for semigroup rings of cancellative semigroups that have groups
of fractions, [7]. We conjecture that these conditions are also sufficient.

We conclude with a few simple examples.

EXAMPLE 1. Let 5 be the Baer-Levi semigroup on a countable infinite set A, cf. [1].
That is, 5 consists of all one-to-one mappings s.A^A such that A\s(A) is an infinite set,
subject to the composition st = s°t. It is known that 5 is left cancellative and Ss = S for
every 5 6 5. Hence p ' = 5 x 5 . Let s,teS be such that the complement of the set
Z = {a e A \ s(a) = t(a)} is finite. Then, for every x e S 1 the set X = {aeA \sx(a) =
tx(a)} satisfies x(X) c Z. Moreover, a—*x(a) is an injective mapping of A\X into A\Z,
so that \A\X\ < |.4\Z| = n <o°. Let Au . . . ,An+l be disjoint infinite subsets of A such
that A = Ax U . . . U An+i. Then, for every x eSl, there exists i such that X 3 At. Let ps e S
be such that p,(A)c.Aj,j-I,... ,n + l. Then xpt(A)c.x(X)cZ, so that sxpt = txph It
follows that (s, t) e p, and so (s, t) e T. Assume now that s,teS satisfy (s, t) e r. Suppose
that the set A\Z is infinite. It is easy to see that there exists an infinite set E czA\Z such
that s(E)Ht(E) = 0. (If s(G)nt(G) = 0 for a finite set GcA\Z, then there exists
ae(A\Z)\G such that s(a) i t(G) and t(a) is(G). Then s(G U {a}) n t(G U {a}) = 0 , so
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that E can be constructed inductively.) Let x e 5 be such that x(A) c E. Since
sx(A) cs(E) and tx(A) c t(E), it follows that sxS n txS = 0 , a contradiction. This proves
that the complement of Z is finite. Therefore r = p is characterized by this condition.
Note that T is not cancellative. If FM = {(«,, u,) , . . . , («„, vn)} is a set chosen for some
(s,t) e GO, then we know that Fs ,c.T XT for a T-class T of 5. This implies that all u, and
V), viewed as functions A—*A, coincide on a subset B c.A with a finite complement. It is
easy to see that this leads to s = t, so that the congruence co is trivial.

We will proceed to show that K[S] is prime for every field K. To this end we slightly
modify the argument of the proof of Lemma 2. Namely, if 0=/=a e K[S] and supp(a) =
{sx, ...,sn), let bye A, i ±j, be such that S/(6iy) #iy(6tf). Set B = {6,y | i,j = 1,. . . , n}. If
s,/esupp(a) are such that (s,t)$p, then the set Z defined above has infinite
complement in A and as above we can find an element x e S such that sx(A) D tx{A) = 0 .
By changing the values of x at finitely many points we find a function x' eS such that
Bcx'(A) and •$*'(/!) n fct'O4) is finite. The latter implies that sx'S D tc'5 = 0 , while the
former ensures that SJX'¥=SJX' for all /=£/. Hence ax'^0. Thus, proceeding as in the
proof of Lemma 2 i), we show that whenever axe = 0 for some 0 =#= c e K[S] and all x e Sl,
then a'xc = 0 for all x e S1 where a' =£0 is an element of /C[S] the support of which lies in
a single T-class of 5. This allows us to assume that supp(a) lies in a T-class of S. Then the
set D on which the functions of supp(a) agree has a finite complement in A. If
supp(c) = {t{,. . . , tm), then there exist a,-eA, i = 2,...,m, such that tx{ai)^tj{a,).
Choose z eS such that {zfi(a,), z/(-(a,-) \ i = 2,. . . ,m} cD and ztt(A) 2 {6,; | ; =
2,. . . , n). If 5,zr, = SjZtj for some /,/ , this implies that (/, i) = (1,1). This contradicts the
fact that azc = 0 and establishes our claim. Since this observation seems to be of
independent interest, we single it out below.

THEOREM 3. Let S be the Baer-Levi semigroup on a countable infinite set. Then K[S]
is prime for every field K.

EXAMPLE 2. Let S be the semigroup determined by the generators xi,x2,x3,yuy2,y3

subject to the relationsxxy\ = x2y^,x1y2 = x3yi,xly2 = x2y2, x^y2 = x2y\. It is known that 5
is cancellative, has the unique product (u.p.) property (consequently, K[S] is a domain
for every field K) and does not have the two unique product (t.u.p.) property, [7].
Moreover 5 embeds into a group, but it does not have a group of fractions. Suppose that
s,teS are such that (s,t)ep. Assume for example that the length \s\ of s in the
generators of 5 does not exceed |r|. If y e {yuy2,y3} is the terminal letter in t, then
choose c,deS such that sx"c = tx"d where n = \t\. From the defining relations it follows
that |*| = |f| and further s = t (see the reasoning of [7], Example 10.13). If x e {xx,x2, x3)
is the terminal letter of t, then choose c,deS so that sy"c = ty"d. Then, a similar
argument shows that \s\ = \t\ and sy, = tyx. Therefore s = t. It follows that p is the trivial
congruence on 5.

Similarly, one can show that p is trivial in the case of the cancellative semigroup T
not embeddable into a group, constructed by Malcev in [6]. It is known that 7 is a t.u.p.
semigroup and that K[T] is a domain.

EXAMPLE 3. Let 5 be a cancellative monoid with A(5) =£ 1 (for example with a
nontrivial centre). Then co is nontrivial since (s, l ) e w for every s e A(5). In fact, for
every x e 5' there exists sx e S such that xs = s*x and F = {sx | x e S1} is a finite set. Since
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(sx, 1) 6 T, cf. [7], Chapter 9, it follows that F*-1 = {(l,sx) | x e S1} can be chosen to show
that (s, l ) e w ' = a>.

EXAMPLE 4. Let U be a cancellative semigroup not embeddable into a group and let
G be a group with A(G) =£ 1. Examples of semigroups not embeddable in groups and such
that co is nontrivial can be constructed by considering subsemigroups of U x G.
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