CONVERGENCE OF ITERATES AND DIFFERENTIABILITY

FRANCIS J. PAPP and ROBERT M. NIELSEN

(Received 10 February 1970, revised 29 May 1970).

Communicated by E. Strzelecki

1. Introduction

Given a function T mapping a Hausdorff locally convex topological vector space Φ into Φ and a point ϕ_0 of Φ , convergence of the elementary filter associated with the sequence of iterates determined by T and ϕ_0 is investigated. Sufficient conditions that the limit $\overline{\phi}$, if it exists, be a fixed point of T are given and in the case Φ is the space of real valued functions of a real variable differentiability of the limit function $\overline{\phi}$ is investigated.

It should be noted that it is not assumed that T is continuous and/or linear.

2. Notations, Conventions, and Preliminaires

For each $x \in E$, a nonempty set, let (Ξ_x, ξ_x) be a topological vector space and denote by (Φ, ξ) the topological vector space $\Pi_{x \in E} \Xi_x$ equipped with the product topology. Then (Φ, ξ) is a Hausdorff locally convex topological vector space (l.c.t.v.s.) if and only if (Ξ_x, ξ_x) is a Hausdorff l.c.t.v.s. for each $x \in E$.

The dual of Φ equipped with a topology ρ will be denoted by Φ'_{ρ} and it is assumed throughout that ρ is compatible with the duality between Φ and Φ' .

The filter base of ρ -open neighborhoods of a point ϕ' of Φ' will be denoted by $N_{\rho}(\phi')$ and in particular $N_{\rho}(\theta')$ denotes the filter base of ρ -open neighborhoods of the identity element of Φ' . The associated filter of neighborhoods will be denoted by $\mathscr{G}N_{\rho}(\phi')$.

If T is any function mapping Φ into Φ and ϕ_0 is any element of Φ , the following sequence of iterates can be formed

$$\phi_0, T\phi_0, T^2\phi_0, \cdots, T^n\phi_0, \cdots,$$

and will be denoted by $\{\phi_0\}_T$. $T^n\phi_0$ is defined as follows: $T^0\phi_0 = \phi_0$, $T^n\phi_0 = T(T^{n-1}\phi_0)$ for $n = 1, 2, \cdots$. Finally, $\mathscr{F}\{\phi_0\}_T$ will denote the elementary filter associated with the sequence $\{\phi_0\}_T$.

For convenience, the definition of convergence on a filter is given in terms of uniform spaces.

DEFINITION 2.1. [1; 287] Let Y be a uniform space, \mathscr{F} a filter of subsets of Y, and \mathscr{G} a filter of subsets of X^Y , where X denotes either Φ or the real numbers $R^\#$, regarded as uniform spaces. \mathscr{G} converges to f_0 on \mathscr{F} , denoted $\mathscr{G} \to f_0$ on \mathscr{F} , if for every member of U of the uniformity on X there is a D in \mathscr{G} such that for each f in D there is an F_f in \mathscr{F} with the property that $(f(s), f_0(s))$ is in U for all f in f.

Since $X^{\mathbf{r}}$ is also a uniform space, the roles of Y and $X^{\mathbf{r}}$ may be interchanged and the convergence of \mathcal{F} to s_0 on \mathcal{G} is defined in an exactly analogous manner.

In particular, for a sequence $\{\phi_n\} \subseteq \Phi$ and the filter base $N_\rho(\phi')$ in Φ' , $N_\rho(\phi') \to \phi'_0$ on $\{\phi_n\}$ means: for every $\varepsilon > 0$ there is a D in $N_\rho(\phi')$ such that for each ψ' in D there is a number N > 0 with the property that $|\langle \phi_n, \psi' \rangle - \langle \phi_0, \psi \rangle| < \varepsilon$ for all $n \ge N$.

Similarly, $\{\phi_n\} \to \phi_0$ on $N_{\rho}(\phi')$ means: for every $\varepsilon > 0$ there is a number N > 0 such that for each $n \ge N$ there is a $D \in N_{\rho}(\phi')$ with the property that $|\langle \phi_n, \psi' \rangle - \langle \phi_0, \psi' \rangle| < \varepsilon$ for all $\psi' \in D$.

Two topologies are of particular interest: $\rho = \sigma(\Phi', \Phi)$ and if Φ is semi-reflexive, $\rho = \beta(\Phi', \Phi)$, the so called norm-topology.

3. Principal Results

Given a function T, a point ϕ_0 of Φ , and a topology ρ for Φ' , the results obtained below center on the relationship between the two filters $\mathscr{F}\{\phi_0\}_T$ and $\mathscr{G}N_{\rho}(\theta')$.

Lemma 3.1. Let \mathscr{F} be any filter of subsets of Φ and let $\mathscr{G} = \mathscr{G}N_{\rho}(\theta')$. If $\mathscr{F} \to \overline{\Phi}$ on \mathscr{G} then $\overline{\Phi}$ is ρ -continuous.

Proof. See [2] Theorem 2.

The fundamental relationship between the two filters $\mathscr{G}N_{\rho}(\theta')$ and $\mathscr{F}\{\phi_0\}_T$ is given by the theorem which follows.

THEOREM 3.2. If Ξ_x is Hausdorff for each $x \in E$, and

- i) $\mathscr{F}\{\phi_0\}_T$ is $\sigma(\Phi,\Phi')$ -Cauchy,
- ii) ρ is any topology compatible with the duality between Φ and Φ' ,
- iii) $\mathscr{G}N_{\rho}(\theta') \to \theta'$ on $\mathscr{F}\{\phi_0\}_T$,

then there is an element $\overline{\phi}$ of Φ_{ρ}'' for which $\mathscr{F}\{\phi_0\}_T \to \overline{\phi}$ on $\mathscr{G}N_{\rho}(\theta')$.

PROOF. Since $\mathscr{F}\{\phi_0\}_T$ is $\sigma(\Phi,\Phi')$ -Cauchy, $\mathscr{F}\{\phi_0\}_T$ determines an element $\overline{\phi}$ of Φ'^* for which $\mathscr{F}\{\phi_0\}_T \to \overline{\phi}$ weakly.

Let F be any member of $\mathscr{F}\{\phi_0\}_T$.

Since Φ' is Hausdorff, $\mathscr{G}N_{\rho}(\theta')\to\theta'$ and so

$$\langle \psi, \mathcal{G}N_{\rho}(\theta') \rangle \rightarrow \langle \psi, \theta' \rangle$$

for every $\psi' \in F$, indeed, convergence holds for all $\psi \in \Phi'^* \supseteq \Phi$.

If $D \in \mathcal{G}N_{\rho}(\theta')$ and since $\mathcal{F}\{\phi_0\}_T$ is $\sigma(\Phi, \Phi')$ -Cauchy, then $\langle \mathcal{F}\{\phi_0\}_T, \psi' \rangle \to \langle \overline{\phi}, \psi' \rangle$ for every $\psi' \in D$.

By the duality theorem of Brace [1; 292], $\mathscr{F}\{\phi_0\}_T \to \overline{\phi}$ on $\mathscr{G}N_{\rho}(\theta')$. By the lemma, $\overline{\phi} \in \Phi''_{\rho}$.

The third hypothesis of the above theorem may be replaced by the following equivalent expression which is given in terms of the iterates of T:

iii') For every $\varepsilon > 0$ there is a ρ -neighborhood D of $\theta' \in \Phi'$ such that for each $\phi' \in D$ there exists an $N = N(\phi') > 0$ for which $|\langle T^k \phi_0, \phi' \rangle| < \varepsilon$ whenever $k \geq N$.

The following example shows that the weak limit of $\mathscr{F}\{\phi_0\}_T$ need not be a fixed point of T.

EXAMPLE 3.3. Let $\Phi = \Phi' = L_2[0, 2\pi]$. Define the continuous nonlinear function T on a subset of Φ as follows:

$$T\phi(x) = \phi(x)\cos x + \left[1 - \phi^2(x)\right]^{1/2}\sin x$$

whenever $\sup_{x \in [0,2\pi]} |\phi(x)| \leq 1$.

The function T has the unique fixed point $\overline{\phi}(x) = \cos(x/2)$ and on the other hand $\mathscr{F}\{0\}_T$ converges weakly to zero.

Note too that $\mathscr{F}\{\phi_0\}_T$ need not be $\sigma(\Phi, \Phi')$ -Cauchy for every choice of ϕ_0 ; for example, this is the case for $\mathscr{F}\{1\}_T$.

With additional hypotheses, sufficient conditions for the weak limit $\overline{\phi}$ of $\mathscr{F}\{\phi_0\}_T$ to be a fixed point of T are given below.

Let C denote the space of continuous mappings of Φ into Φ .

THEOREM 3.4. If Ξ_x is Hausdorff for each $x \in E$ and

- i) there exists $\phi_0 \in \Phi$ for which $\mathscr{F}\{\phi_0\}_T$ is $\sigma(\Phi, \Phi')$ -Cauchy (and so determines an element $\overline{\phi}$ of Φ'^*),
 - ii) there exists a filter T of subsets of C for which:
 - a) $\mathcal{F} \to T$
 - b) $\mathscr{F}(\psi) \to T\psi$ for all ψ in at least one F in $\mathscr{F}\{\phi_0\}_T$, and
 - c) $K(\mathcal{F}) \to K\overline{\phi}$ for all K in at least one $D \in \mathcal{F}$, where $\mathcal{F} = \mathcal{F}\{\phi_0\}_T$,
 - iii) $\mathscr{F}\{\phi_0\}_T \to \bar{\phi}$,

then

- i) $\mathcal{F} \to T$ on \mathcal{F} if and only if $\mathcal{F} \to \overline{\phi}$ on \mathcal{F} , and
- ii) $T \vec{\phi} = \vec{\phi}$.

Proof. (i) follows by direct application of the duality theorem of Brace [1; 292].

The duality theorem also insures that

and

$$\lim_{F \in \mathscr{F}} \lim_{D \in \mathscr{F}} D(F) = \lim_{D \in \mathscr{F}} \lim_{F \in \mathscr{F}} D(F).$$

However, the left hand side is equal to $\overline{\phi}$ and the right hand side is equal to $T\overline{\phi}$.

Turning now to the special case $E = \Xi_x = R^\#$, it is of interest to give conditions insuring that the weak limit $\overline{\phi}$ of $\mathscr{F}\{\phi_0\}_T$ be r-times continuously differentiable at a point x_0 of E (respectively, on all of E), briefly $\overline{\phi} \in C^r(x_0)$ (respectively, C'(E)).

To this end, let $\{f_n\}$ be a sequence of elements of ϕ satisfying

- i) $f_n \in C^r(x_0)$ for each $n = 1, 2, \dots,$
- ii) $\{f_n\}$ converges pointwise to f(x) on some neighborhood of x_0 .

Define $q_n^{[s]}(x)$ and $q^{[s]}(x)$ as follows:

$$q_n^{[s]}(x) = \begin{cases} [f_n^{(s-1)}(x) - f_n^{(s-1)}(x_0)]/(x - x_0) & x \neq x_0 \\ f_n^{(s)}(x_0) & x = x_0, \end{cases}$$

$$q^{[s]}(x) = \begin{cases} [f^{(s-1)}(x) - f^{(s-1)}(x_0)]/(x - x_0) & x \neq x_0 \\ \lim_{n \to \infty} f_n^{(s)}(x_0) & \text{when it exists} & x = x_0 \end{cases}$$

where $1 \le s \le r$ and $n = 1, 2, \dots$

LEMMA 3.5. Given a sequence $\{f_n(x)\}$ satisfying (i) and (ii) above, the following are equivalent:

- i) $f^{(s)}(x_0)$ exists and $\lim_{n\to\infty} f_n^{(s)}(x_0) = f^{(s)}(x_0)$,
- ii) the sequence $\{f_n^{(s)}(x_0)\}$ of constant functions converges to $q^{[s]}(x)$ on $\mathcal{G}N(x_0)$, the filter generated by the neighborhoods of x_0 ,
 - iii) $\{q_n^{[s]}(x)\} \to q^{[s]}(x)$ on $\mathcal{G}N(x_0)$ for every $s, 1 \leq s \leq r$.

Proof. The case s = 1 is Theorem 1.2 in [3].

For s such that $1 < s \le r$, apply Theorem 1.2 [3] to the sequence $\{f^{(s-1)}(x_0)\}$.

THEOREM 3.6. If for some $x_0 \in E$

- i) $T(C'(x_0)) \subseteq C'(x_0)$,
- ii) $\mathscr{F}\{\phi_0\}_T$ converges pointwise to $\overline{\phi}$ on some neighborhood of x_0 ,
- iii) $\phi_0 \in C^r(x_0)$,
- iv) $\{(T^n\phi_0)^{(r)}(x_0)| n=1,2,\cdots\}$ converges on $\mathscr{G}N(x_0)$, then $\overline{\phi}\in C^r(x_0)$.

PROOF. If $\phi_0 \in C^r(x_0)$, the above hynotheses insure that the sequence $\{T^n\phi_0\}$ satisfies the hypotheses of the lemma.

Corollary 3.7. If the above hypotheses are satisfied at each $x \in E$, then $\overline{\phi} \in C^r(E)$.

It should be remarked that while the above hypotheses are sufficient to insure $\overline{\phi} \in C^r(E)$ and the existence of the pointwise limit $\overline{\phi}$ the conditions are also necessary by virtue of the three equivalent statements of the lemma.

4. Applications

If Φ is semireflexive, $\beta(\Phi', \Phi) = \tau(\Phi', \Phi)$.

THEOREM 4.1. If the hypotheses of Theorem 3.2 are satisfied for the choice $\rho = \beta(\Phi', \Phi)$, then $\bar{\phi} \in \Phi''_{B}$.

PROOF. The conditions of Theorem 3.2 imply that $\bar{\phi}$ is ρ -continuous [3; 2]

LEMMA 4.2. If Ξ_x is Hausdroff for each $x \in E$, and

- i) Φ is semireflexive,
- ii) $\mathscr{F}\{\phi_0\}_T$ is a bounded $\sigma(\Phi,\Phi')$ -Cauchy filter, then there exists an element $\bar{\phi}$ of Φ'^* such that
 - i) $\mathscr{F}\{\phi_0\}_T \to \overline{\phi}$ on $\mathscr{G}N_{\sigma}(\theta')$, and
 - ii) $\mathscr{G}N_{\sigma}(\theta') \to \theta'$ on $\mathscr{F}\{\phi_0\}_T$.

PROOF. The assumption that Φ is semireflexive is equivalent to the statement: every bounded $\sigma(\Phi, \Phi')$ -Cauchy filter in Φ converges to a point of Φ'^* on $\mathscr{G}N_{\sigma}(\theta')$, by virtue of Theorem 5 [2; 240]. In particular therefore, the second hypothesis insures that this is the case for $\mathscr{F}\{\phi_0\}_T$ and hence the first conclusion

Finally since Φ' is Hausdorff, $\mathscr{G}N_{\sigma}(\theta') \to \theta'$ and thus in particular $\mathscr{G}N_{\sigma}(\theta') \to \theta'$ on $\mathscr{F}\{\phi_0\}_T$.

THEOREM 4.3. If $\rho = \sigma(\Phi', \Phi)$, the hypotheses of Theorem 3.2 and Lemma 4.2 are satisfied, then $\overline{\phi} \in \Phi$.

References

- [1] J. W. Brace, 'Convergence on Filters and Simple Equicontinuity', Ill. J. Math., IX, 1965, 286-296.
- [2] R. M. Nielsen, 'Completion in the Bidual', J. Australian Math. Soc., VIII (2) 1968, 238-241.
- [3] R. M. Nielsen, 'Pointwise Convergence and Differentiability', J. Math. Anal. and Appl., XXV 1969, 337 – 340.

Present address:

Department of Mathematics University of Lethbridge Alberta TIK 3M4 Canada