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1. Introduction

Given a function T mapping a Hausdorff locally convex topological vector
space @ into ® and a point ¢, of @, convergence of the elementary filter associated
with the sequence of iterates determined by T and ¢, is investigated. Sufficient
conditions that the limit @, if it exists, be a fixed point of T are given and in
the case @ is the space of real valued functions of a real variable differentiability
of the limit function ¢ is investigated.

1t should be noted that it is not assumed that T is continuous and/or linear.

2. Notations, Conventions, and Preliminaires

For each xe E, a nonempty set, let (£,,£,) be a topological vector space
and denote by (®,&) the topological vector space II, . ; Z, equipped with the
product topology. Then (®,¢) is a Hausdorff locally convex topological vector
space (l.c.t.v.s) if and only if (Z,,&,) is a Hausdorif lc.t.v.s. for each x€E.

The dual of ® equipped with a topology p will be denoted by @, and it
is assumed throughout that p is compatible with the duality between ® and @’.

The filter base of p-open neighborhoods of a point ¢’ of ®’ will be denoted
by N,(¢') and in particular N (0") denotes the filter base of p-open neighbor-
hoods of the identity element of ®’. The associated filter of neighborhoods will
be denoted by ¥N,(¢').

If T is any function mapping @ into ® and ¢, is any element of ®, the fol-
lowing sequence of iterates can be formed

¢0, T¢O’ T2¢0, Tt Tn¢03 Tt

and will be denoted by {¢o};r. T"¢o is defined as follows: T°@, = ¢,
T "¢y = T(T" '¢o) for n = 1,2,---. Finally, #{¢,} will denote the elementary
filter associated with the sequence {¢o}r.
For convenience, the definition of convergence on a filter is given in terms
of uniform spaces.
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DEFINTION 2.1. [1; 287] Let Y be a uniform space, # a filter of subsets
of Y, and & a filter of subsets of X", where X denotes either ® or the real numbers
R#, regarded as uniform spaces. ¥ converges to f, on &, denoted 4 — f, on &,
if for every member of U of the uniformity on X there is a D in % such that for
each fin D there is an F, in & with the property that (f(s), f4(s)) is in U for all
s in Fy.

Since X" is also a uniform space, the roles of ¥ and X* may be interchanged
and the convergence of & to s, on ¥ is defined in an exactly analogous manner.

In particular, for a sequence {¢,} < ® and the filter base N, (¢') in &',
N,(¢") — ¢’¢ on {$,} means: for every e >0 there is a D in N,(¢') such that
Jor each ' in D there is a number N > 0 with the property that I {Pust'> —
{pos¥D| <€ for alln 2 N.

Similarly, {¢,} — ¢o on N,(¢') means: for every ¢ >0 there is a number
N > 0 such that for each n = N there is a De N, (¢') with the property that
| <bust’> = (o ¥'>| <& for all Y'eD.

Two topologies are of particular interest: p = ¢(®’,®) and if ® is semi-
reflexive, p = B(®’',®), the so called norm-topology.

3. Principal Results

Given a function T, a point ¢, of @, and a topology p for ®’, the results
obtained below center on the relationship between the two filters #{¢,}; and
YN,(0").

LeMMA 3.1. Let & be any filter of subsets of ® and let ¥ = N (0'). If
F — § on G then ¢ is p-continuous.

ProoF. See [2] Theorem 2.

The fundamental relationship between the two filters N, (0') and F{¢,},
is given by the theorem which follows.

TuaeoreM 3.2, If Z, is Hausdorff for each xcE, and

D) F{po}r is o(®,0")-Cauchy,

ii) p is any topology compatible with the duality between ® and @',

iii) ¥N,(0") - 0" on F{Po}r,
then there is an element ¢ of ®, for which F{$o}r - ¢ on IN,(©).

PROOF. Since F{¢po}r is o(®,D')-Cauchy, F{¢,}r determines an element @
of ®'* for which F{¢o}r — ¢ weakly.

Let F be any member of & {¢}r.

Since @’ is Hausdorff, ¥N,(0') —» 8’ and so

WL, INL0)) = .07

for every y’e F, indeed, convergence holds for all ye®'* =2 ®.
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If De¥N,(0') and since F{¢o}r is o(®,D’)-Cauchy, then (F{¢o}r,¢¥">

— {p,y’> for every y'eD.
By the duality theorem of Brace [1; 292], #{¢y}r — ¢ on ¥N,(6’). By

the lemma, ¢ €®”,.

The third hypothesis of the above theorem may be replaced by the following
equivalent expression which is given in terms of the iterates of T':

iii’y For every ¢ > Q there is a p-neighborhood D of 0' € ®' such that for
each ¢' €D there exists an N = N(¢’) > 0 for which l (T"q’)o,(/)’), < & whenever
k=N.

The following example shows that the weak limit of #{¢,}; need not be
a fixed point of T.

ExamPLE 3.3. Let ® = @' = L,[0,2n]. Define the continuous nonlinear
function T on a subset of ® as follows:

Th(x) = p(x)cosx + [1—¢*(x)] */? sin x
whenever supxe[o’m] qb(x)] <1,

The function T has the unique fixed point ¢(x) = cos(x/2) and on the other
hand #{0}; converges weakly to zero.

Note too that F{¢}r need not be o(®,®')-Cauchy for every choice of ¢g;
for example, this is the case for #{1};.

With additional hypotheses, sufficient conditions for the weak limit ¢ of
F{¢o}r to be a fixed point of T are given below.

Let C denote the space of continuous mappings of ® into &.

THEOREM 3.4. If E,is Hausdorff for each x€E and
i) there exists ¢poc® for which F{¢o}r is o(®,D')-Cauchy (and so deter-
mines an element ¢ of ®'%),
ii) there exists a filter T of subsets of C for which:
a) g -»T
b) I () » Ty for all  in at least one F in F{¢o}r, and
¢) K(¥) > K¢ for all K in at least one De I, where F = F{¢,}r,
iii) F{do}r = ¢,
then
) 7 > Ton F ifand only if F - ¢ on T, and
iy T ¢ = 4.
Proor. (i) follows by direct application of the duality theorem of Brace
[1; 292].
The duality theorem also insures that
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lim lim D(F) = lim lim D(F).

Fe# Ded DeJ Fe¥&F

However, the left hand side is equal to ¢ and the right hand side is equal to T¢.

Turning now to the special case E = E, = R*, it is of interest to give con-
ditions insuring that the weak limit ¢ of F{¢$,}; be r-times continuously dif-
ferentiable at a point x, of E (respectively, on all of E), briefly ¢ e C'(x,) (res-
pectively, C'(E)).

To this end, let {f,} be a sequence of elements of ¢ satisfying

i) f,eC'(x,) for each n = 1,2,---,

i) {f,} converges pointwise to f(x) on some neighborhood of x,.

Define ¢t*(x) and q")(x) as follows:

_ U £l x # 5

g-(x)
and Lf;l(S) (xO) X = Xog,
[F¢70) =570 x)l/(x=x0) X # Xo
¢ i(x) = . . .
lim £{(x,) when it exists X = Xg

where 1 £s<rand n=12,--

LEMMA 3.5. Given a sequence {f,(x)} satisfying (i) and (ii) above, the
JSollowing are equivalent:

i) fx,) exists and lim,_, ,f,"(x0) = £ (xo),

ii) the sequence {f{(xo)} of constant functions converges to q'(x) on
%N(xg), the filter generated by the neighborhoods of x,,

i) {g5(x)} — q")(x) on IN(xo) for every s, 1L <s<r.

Proor. The case s = 1 is Theorem 1.2 in [3].
For s such that 1 <s £ r, apply Theorem 1.2 [3] to the sequence

{f(s_ l)(xo)} .

THEOREM 3.6. If for some xy,€E

) T(C'(xo)) = C'(xo),

i) F{¢o}r converges pointwise to ¢ on some neighborhood of x,,
iii) ¢o€C(x0),

iv) {(T"o)” (xo)| n = 1,2,-} converges on GN(x,), then $eC'(x).

PrROOF. If ¢, € C"(x,), the above hynotheses insure that the sequence {T"¢,}
satisfies the hypotheses of the lemma.

COROLLARY 3.7. If the above hypotheses are satisfied at each x€E, then
¢ cC'(E).
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It should be remarked that while the above hypotheses are sufficient to in-
sure ¢ € C'(E) and the existence of the pointwise limit ¢ the conditions are also
necessary by virtue of the three equivalent statements of the lemma.

4. Applications
If ® is semireflexive, B(®’, D) = (D', D).

TueOREM 4.1. If the hypotheses of Theorem 3.2 are satisfied for the choice
p = p(@', D), then dedy.

Proor. The conditions of Theorem 3.2 imply that ¢ is p-continuous [3;2]

Lemma 4.2. If Z, is Hausdroff for each xe€ E, and

i) @ is semireflexive,

i) F{po}r is a bounded o(®,®’)-Cauchy filter, then there exists an ele-
ment ¢ of ®'* such that

i) F{po}r = ¢ on IN,(0), and

i) 9N, (0") = 0" on F{¢o}r.

Proo¥. The assumption that @ is semireflexive is equivalent to the statement:
every bounded o(®,®d’)-Cauchy filter in ® converges to a point of ®'* on
YN (0"), by virtue of Theorem 5 [2; 240]. In particular therefore, the second
hypothesis insures that this is the case for & {¢,}r and hence the first conclusion

Finally since @’ is Hausdorff, #N,(0’) — 0’ and thus in particular ¥N_(0’) - 6’

on F{¢o}r.
THEOREM 4.3. If p = o(®’, D), the hypotheses of Theorem 3.2 and Lemma
4.2 are satisfied, then $e®.

References

[1] J. W. Brace, ‘Convergence on Filters and Simple Equicontinuity*, I/l. J. Math., TX, 1965,

286-296.
[2] R. M. Nielsen, ‘Completion in the Bidual’, J. Australian Math. Soc., VIII (2) 1968, 238-241.
[3] R. M. Nielsen, ‘Pointwise Convergence and Differentiability’, J. Math. Anal. and Appl., XXV

1969, 337 - 340.

Present address:
Department of Mathematics
University of Lethbridge
Alberta TIK 3M4
Canada

https://doi.org/10.1017/51446788700010739 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700010739

